泄流结构水力拍振机理及动态健康监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国重大水利水电工程的坝高、泄量、泄洪功率均居世界领先水平。由于高速水流、水气二相流、水流——结构相互作用的复杂性,使得泄流结构在长期泄流荷载作用下极易发生疲劳或振动破坏。因此,开展水流诱发结构的振动机理、泄流结构流激振动响应的时频分析、滤波降噪、工作性态识别以及泄流结构动态健康监测技术等领域的研究,对泄流结构的设计和安全运行具有重要的指导作用。本文主要开展以下三个方面的研究:
     (一)泄流结构水力拍振机理研究。在总结分析泄流结构水流荷载特性的基础上,应用时域分析、频谱分析以及时频分析方法,研究了冲击荷载、谐波激励荷载、宽带随机荷载以及白噪声荷载激励下结构的响应特性。通过开展泄流结构原型观测、流激振动系列模型试验以及有限元计算,分析了水流荷载、泄流结构自身特性以及流激振动响应三者之间的关系,首次提出并解释了泄流结构的水力拍振现象,总结了泄流结构流激振动的响应机制。(1)建立一系列室内流激振动模型试验,将相关性分析、谱分析以及时频分析方法应用到试验数据的分析过程中。通过分析不同固有频率的试件在水流荷载作用下的动态振动特性,研究了泄流结构在水流荷载作用下的随机共振形式,提出水力拍振的概念;(2)分析二滩拱坝在泄流荷载作用下,坝身不同部位的振动响应机理,解释响应中出现的水力拍振现象以及在此基础上形成的拍振现象,为高拱坝体型设计和运行管理提供依据;(3)根据水力拍振理论和二滩、蜀河、炳灵等水电站的原型观测分析,明确了水力拍振现象发生的各种情况,较全面地总结了泄流结构流激振动响应的形成机制。
     (二)基于时频分析的泄流结构滤波降噪及工作性态识别方法研究。针对环境激励下的模态辨识方法要求激励荷载必须满足白噪声的特性、且不能在时频域同时进行识别的缺点,本文开展了基于时频分析的泄流结构滤波降噪和工作性态识别方法研究。(1)根据HHT时频分析的特点,研究了泄流结构动力响应中与模态信息相关的共振分量的提取方法,直接应用共振分量进行工作性态识别,能够避免受迫振动分量对识别结果的影响;(2)通过研究EMD与小波阈值联合的滤波降噪方法,提出了含噪信号EMD分解后各分量中噪声标准差的确定方法,解决了小波阈值计算中噪声标准差计算难的问题;(3)研究了基于时频分析的泄流结构工作性态识别方法,并将该方法应用于二滩水电站拱坝和映秀湾水电站拦河闸结构的模态参数辨识中,取得了较好的效果。
     (三)泄流结构动态健康监测技术研究。针对现有健康监测方法存在的不足,本文开展了泄流结构损伤敏感特征指标以及融合决策方法研究。(1)研究和总结了基于波形、标准差、时间序列模型、正则化频率变化率,时频域指标、坐标模态准则、模态振型与频率、模态曲率等损伤敏感指标,建立泄流结构动态健康监测指标体系;(2)研究了基于数据融合技术的决策计算方法,针对D-S证据理论合成规则存在的不足,引入Jousselme距离和证据可信度,改进了D-S证据理论的组合规则。泄流激励下结构的损伤模型试验结果表明,文中方法避免了单一损伤指标由于传感器自身条件、噪声等因素所引起的误判断,有效地降低了错误证据对最终融合结果的影响,适用于泄流结构动态健康监测过程中的损伤定位;(3)结合导墙结构的工作特点,研究了基于HHT时频域指标的稳定性、敏感性和抗噪性,提出了一种适合导墙结构损伤在线监测的新方法。
The height, discharge, flood-discharge power of hydraulic engineering in China isin a leading position of the world. With the influence by high velocity flow, water-airtwo-phase flow and waterflow-structure coupling, the flow pulsating pressure is verylikely to result in structural vibration or even fatigue destruction of flood dischargestructures. It is an important guidance for design and safe operation of flood dischargestructures to research flow-induced vibration mechanism, time-frequency analysismethod for vibration responses, filtering method, working state identification methodand dynamic health monitoring method. The following three main areas are studied:
     Firstly, research on hydraulic beat mechanism of flood discharge structures. Thecharacteristics of the flow pulsating pressure on the flood discharge structures aresummarized, and then time-domain analysis, spectrum analysis, time-frequencyanalysis method are utilized to study the structural vibration responses induced byimpact load, harmonic load, wind-band random load and white noise load,respectively. Based on the prototype tests, flow-induced vibration model and finiteelement analysis, the relationship among flow discharge excitation, hydraulicstructures’ dynamic characteristics, and vibration response has been studied. Then thehydraulic beat phenomena of flood discharge structures has been put forward andexplained.(1) Series model tests of flow-induced vibration have been built, andcorrelation analysis, spectrum analysis, and the time-frequency analysis method areapplied to study the vibration testing data. According to vibration characteristics ofdifferent models induced by flow load, this random resonance responses phenomenonhas been researched, and a new concept “hydraulic beat” has been put farward.(2)The flow-induced vibration responses from each measuring point arranged on Ertandam have been analyzed. It can be concluded that the hydraulic beat phenomena, andeven beat vibration will occur in the closely frequency structures like high arch dam.(3) Based on the hydraulic beat theory and prototype tests for Ertan, Shuhe, Binglinghydropower station, the formation mechanism of hydraulic beat and flow-inducedvibration for flood discharge structures have been summarized.
     Secondly, study on the methods for filtering and working state identification offlood discharge structures based on time-frequency analysis. There are two difficultproblems for modal parameters identification under ambient loading: the first one isthat the excitation load must satisfy the characteristics of white noise, and the second is that the identification range is restricted in time domain or frequency domain.Aimed at these issues, the methods for filtering and working state identification basedon time-frequency analysis are provided.(1) The time-frequency analysis methodbased on HHT is utilized to extract the resonant response, which is closely related tothe structural modal parameters. Then resonant responses are used to working stateidentification of flood discharge structures, and the adverse effect caused by forcedvibration response will be avoided.(2) According to the characteristics of IMFsdecomposed from white noise, the calculation method of noise standard deviation ineach IMF is studied, and the filtering method based on EMD and Wavelet-threshold isimproved.(3) The methods based on time-frequency analysis studied in the paper areapplied to the operational modal parameter identification of Ertan arch dam andYingxiuwan hydropower station sluice respectively. The results show that thesemethods have good applicability in vibration responses analysis of flood dischargestructures.
     Thirdly, the dynamic health monitoring method for flood discharge structures. Inview of some shortcomings existed in health monitoring method, dynamic damageindexes and data fusion decision method are researched in this paper.(1) The dynamicdamage indexes based on vibration waveform, standard deviation, time series model,normalized change ratio of frequency, time-frequency analysis, coordinate modalcriterion, mode shapes and frequencies, mode curvature have been summarized, theindex system of dynamic health monitoring has been established for flood dischargestructures.(2) Due to some issues in the combination rule of D-S evidence theory, animproved method based on Jousselme distance and evidence reliability is put forward.The results of damage model test under flood discharge excitation demonstrates thatthe accurate decision can be obtained based on few evidences, the errors originatedfrom sensor and noise are avoided, and the influence by the wrong evidence iseffectively reduced. The method mentioned in this paper is suitable for damagelocation of dynamic health monitoring.(3) According to working characteristics ofguide walls, and the analysis results for stability, sensitivity, anti-noise of HHTmonitoring indexes, a new monitoring method for guide wall has been put forward.
引文
[1]练继建,杨敏,李火坤等.高坝泄流工程[M].北京:中国水利水电出版社,2008.
    [2]潘家铮,何璟.中国大坝五十年[M].北京:中国水利水电出版社,2000.
    [3]练继建.高坝泄洪安全关键技术研究[J].水利水电技术,2009,40(8):80-88.
    [4] Berryhill, B. H. Experience with prototype energy dissipater [J]. ASCE, Hydr,Divi, May,1963.
    [5] H.T.Falvey, Hydraulic Model Studies of the Modified Outlet Works StillingBasin, Navajo Dam, Cororado River Storage Project, New Mexico [M]. USDepartment of the Interior, Bureau of Reclamation, office of chief engineering,Denver Colorado, June15,1967.
    [6] Л. Π.连佳叶夫,等.高坝溢洪道隔墩水流动力作用的计算[C].高速水流译文集,水利水电出版社,1979.
    [7]曹羡平,张云飞,等.大化水电站溢流坝闸墩振动测试报告[R].北京:中国水利水电科学研究院抗震所,1985.
    [8]王金国.水工建筑物的破坏及防治措施研究[D].四川:四川大学,2002.
    [9]李火坤.泄流结构耦合动力分析与工作性态识别方法研究[D].天津:天津大学,2008.
    [10]崔广涛,林继镛,彭新民.二滩拱坝泄洪振动水弹性模型研究[J].天津大学学报,1991,(1):1-10.
    [11]崔广涛,彭新民.高拱坝泄洪振动水弹性模型[J].水利学报,1996,(4):1-9.
    [12]崔广涛.高水头大流量泄洪结构脉动荷载及其振动和地基反应,“七.五”国家重点科技攻关,国家自然科学基金资助项目研究成果之一——二滩水电站拱坝泄流振动实验研究[R].天津:天津大学水资源与港湾工程系,1991.
    [13]练继建,崔广涛,黄锦林.导墙结构的流激振动研究[J].水利学报,1998,(11):33-37,68.
    [14]崔广涛.高水头大流量泄流振动及新型水垫塘研究,“八.五”国家重点科技攻关,国家自然科学基金资助项目研究成果之一——高拱坝大流量泄洪诱发振动研究[R].天津:天津大学水资源与港湾工程系,1996.
    [15]崔广涛.高水头大流量泄流振动及新型水垫塘研究,“八.五”国家重点科技攻关,国家自然科学基金资助项目研究成果之二——高拱坝大流量泄洪动态仿真及振动影响评估[R].天津:天津大学水资源与港湾工程系,1996.
    [16]崔广涛,练继建,彭新民,等.水流动力荷载与流固相互作用[M].北京:中国水利水电出版社,1999.
    [17]崔广涛.高拱坝泄流振动动态模拟及反馈分析[R].天津:天津大学水资源与港湾工程系,1996.
    [18]崔广涛,彭新民,苑希民,等.高拱坝泄洪振动水弹性模型[J].水利学报,1996,(4):1-9.
    [19]崔广涛,安刚,李军.低水头大流量溢流坝系统水激振动研究[J].水利学报,1994,(1):10-18.
    [20]崔广涛,练继建.三峡水利枢纽厂坝隔(导)墙泄洪振动的水弹性模型实验研究[R].天津:天津大学水利水电工程系,1998.
    [21]练继建.金沙江溪洛渡水电站拱坝泄洪水弹性模型研究[R].天津:天津大学水利水电工程系,2001.
    [22]练继建.黄河拉西瓦水电站坝身泄洪流激振动水弹性模型试验研究报告[R].天津:天津大学水利水电工程系,2006.
    [23]马斌,练继建,杨敏.大比尺高拱坝泄洪振动水弹性模型研究[J].中国工程科学,2008,10(11):23-29.
    [24]Naudascher E. Flow-induced loading and vibration of gates In Proc Int Symp OnHydr for High Dams [C]. Beijing, Invited lecture,1988,1-18.
    [25]S.H Kim, C.W Lee, J.M Lee. Beat characteristics and beat maps of the KingSeong-deok Divine Bell [J]. Journal of Sound and Vibration,2005,281(1-2):21-44.
    [26]Witkov C, Liebovitch L S. Predicting optimal drive sweep rates for autoresonancein Duffing-type oscillators: A beat method using Teager–Kaiser instantaneousfrequency [J]. Journal of Sound and Vibration,2010,329(8):1154-1164.
    [27]苑希民.高水头大流量泄流振动仿真研究[D].天津:天津大学,1996.
    [28]练继建,李成业,刘昉,等.环境激励下二滩拱坝拍振机理的研究[J].振动与冲击,2012,31(3):1-7.
    [29]练继建,李一平.水力自控翻板门拍振机理的研究[J].水利学报,1997,(11):56-64.
    [30]Spidsoe N, Hilrnarsen B. Measured dynamic behavior of North Sea gravityplatforms under extreme environmental conditions [C]. Proceedings of the AnnualOffshore Technology Conference,1983,(3):283-300.
    [31]Stansberg C.T, Huse E, Krokstad J. R, et al. Experimental study of non-linearloads on vertical cylinders in steep random waves [C]. Proceedings of the Fifth (1995)International Offshore and Polar Engineering Conference,1995,(1):75-82.
    [32]Marthinsen T, Stansberg C.T. On the ringing excitation of circular cylinders [C].Proceedings of the Fifth (1996) International Offshore and Polar EngineeringConference,1996,(1):196-204.
    [33]Chaplin J R, Rainey R C T, Yemm R W. Ringing of a vertical cylinder in waves[J]. Journal of Fluid Mechanics,1997,(350):119-147.
    [34]Dvaenport A G. Gust loading factors [J]. Journal of Structural Division,ASCE,1967,(93):11-34.
    [35]Davenport A G. How can we simplify and generalize wind loads?[J]. Journal ofWind Engineering and Industrial Aerodynamics,1995,(54/55):657-669.
    [36]Ming Gu, Xuan-yi Zhou. An approximation method for resonant response withcoupling modes of structures under wind action [J]. Journal of Wind Engineering andIndustrial Aerodynamics,2009,97(11/12):573-580.
    [37]Simiu E, Scanlan R H. Wind effects on structures: fundamentals and applicationsto design,3rd Edition [M]. New York: John Wiley&Sons, Inc.,1996.
    [38]Su C, Fan X M, He T. Wind-induced vibration analysis of a cable-stayed bridgeduring erection by a modified time-domain method [J]. Journal of Sound andVibration,2007,302(1-2):330-342.
    [39]J.M Lee, S.H Kim, S.J Lee, etc. A study on the vibration characeristics of a largesize Korean bell [J]. Journal of Sound and Vibration,2002,257(4):779-790.
    [40]S.Y Park, Y.J Kang, S.H Kim. Identification of beat characteristics and dampingratios of bell type structures using wavelet transform [J]. Journal of Sound andVibration,2009,329(1-2):367-382.
    [41]徐士代.环境激励下工程结构模态参数识别[D].南京:东南大学,2006.
    [42]续秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述[J].振动与冲击,2002,21(3):1-5.
    [43]常虹,殷琨,林涛.环境激励下工作模态参数识别[J].山西建筑,2010,36(5):63-65.
    [44]Kevin, Womack, Jeff Hodson. System identification of the Z24SWISS Bridge
    [A]. Proc. Of19thIMAC [C], Florida, USA,2001:842-845.
    [45]Hermans L, Vander Suweraer H. Modal Testing and Analysis of Structures underOperational Conditions:Industrial Applications [J]. Mechanical Systems and signalProcessing,1999,13(2):193-216.
    [46]P. Andersen. Comparison of system identification methods using ambient bridgetest data [A]. Proc. of17thIMAC[C], Kissimmee, FL, USA,1999,1035-1041.
    [47]Wei-xin Ren, I.E.Harik. Modal analysis of the Cumberland River Bridge on I-24highway in West Kentucky [A]. Proc. of19thIMAC[C]. Kissimmee Florida, USA,2001,21-27.
    [48]Guid De Roeck. Benchmark Study on System Identification through AmbientVibration Measurements [A]. Proc. of18thIMAC[C]. San Antonio, Tx, USA,2000,1106-1112.
    [49]Rune, Brincker. Modal Identification from Ambient Responses Using FrequencyDomain Decomposition [A].18thIMAC,2000,625-630.
    [50]李岳锋.基于结构自由振动的模态参数直接频域识别[J].航空学报,1995,16(3):355-359.
    [51]申凡,郑敏,陈怀海,鲍明.采用频域多参考点模态识别法进行工作状态下的模态识别[J].航空学报,2002,23(4):294-297.
    [52]Ibrahim S.R, Milkulcik E.C. The Experimental Determination of Vibration TestParameters from Time Responses [J]. The Shock and Vibration Bulletin,1976,46(5):187-196.
    [53]Ibrahim S.R, Mikulcik E.C. A method for the direct identification of vibrationparameters from the free response [J]. The Shock and Vibration Bulletin,1977,Bull.47, Part4:183-198.
    [54]Ibrahim S.R. Randon decrement technique for modal identification of structures[J]. AIAA J. of Spacecraft and Rockets,1977,14(11):696-700.
    [55]Ibrahim S.R. Modal confidence factor in vibration testing [J]. AIAA J.ofSpacecraft and Rockets,1978,15(5):313-316.
    [56]朱东生,朱晞,田琪.识别桥梁模态参数时域法的仿真研究[J].兰州铁道学院学报,1995,14(3):1-9.
    [57]朱东生,田琪.用时域法分析建筑结构脉动信号[J].甘肃科学学报,1995,7(4):21-25.
    [58]张辉东.水电站厂房结构的非线性和耦联振动分析与模态参数识别[D].天津:天津大学,2006.
    [59]马维金,熊诗波.基于LSCE算法和FDD算法的振动筛动态特性研究[J].振动、测试与诊断,2003,23(3):195-198,230.
    [60]郑敏,申凡,陈同纲.采用互相关复指数法进行工作模态参数识别[J].南京理工大学学报,2002,26(2):113-116.
    [61]郑敏,申凡,陈同纲.采用相关复指数法进行未知激励下的模态识别[C].2000年中国博士后学术大会论文集.
    [62]刘征宇,陈心昭.关于最小二乘复指数法的频域——时域模态参数识别技术[J].合肥工业大学学报(自然科学版),1989,12(3):10-16.
    [63]Akaike H. Power Specrum Estimation through Autoregressive Model Fitting [J].Annals fo the Institute of Statistical Mathematics,1969,(21):407-419.
    [64]夏禾,陈英俊. AR模型在桥梁模态参数识别中的应用[A].全国第六届振动理论应用会议论文集,1991,345-352.
    [65]常坚刚,路鑫森.振动系统参数识别的ARMA模型与Ibrahim-Randec模型的关系[J].振动工程学报,1988,1(11):23-30.
    [66]赵永辉,邹经湘.利用ARMAX模型识别结构模态参数[J].振动与冲击,2000,19(1):34-36.
    [67]赵永辉,于开平,邹经湘.利用ARV模型识别水轮机轴系模态参数[J].机械强度,2000,22(3):170-173.
    [68]郭中阳,胡子正.参数辨识的特征系统实现算法(ERA)及实践[J].振动工程学报,1992,5(4):326-334.
    [69]刘福强,张令弥.一种改进的特征系统实现算法及在智能结构中的应用[J].振动工程学报,1999,12(3):316-322.
    [70]Lian J J, Li H K, Zhang J W. ERA modal identification method for hydraulicstructures based on order determination and noise reduction of singular entropy [J].Science in China series E-Techological Sciences,2009,52(2):400-412.
    [71]Peeters B., De Roeck G. Stochastic Subspace Techniques Applied to ParameterIdentification of Civil Engineering Structures [A]. Proceeding of New Advances inModal Yunthesis of Large Structures:Nonlinear,Damped and Nondeterministic Cases,Lyon, France, September,1995,151-162.
    [72]Bart Peeters, Guido De Roeck. Reference-based stochastic subspace identificationfor output-only modal analysis [J]. Mechanical System and Signal Processing,1999,13(6):855-878.
    [73]常军,张启伟,孙利民.随机子空间产生虚假模态及模态遗漏的原因分析[J].工程力学,2007,24(11):57-62.
    [74]林友勤,任伟新.基于随机状态空间模型的工程结构损伤检测[J].振动工程学报,2007,20(6):599-605.
    [75]常军,张启伟,孙利民.基于随机子空间结合稳定图的拱桥模态参数识别方法[J].建筑科学与工程学报,2007,24(1):21-25.
    [76]CHEN Ai lin, ZHANG Ling mi. Study of Stochastic Subspace SystemIdentification Method [J]. Chinese Journal of Aeronautics,2001,14(4):222-228.
    [77]Housner G.W., Bergman L.A., Caughey T.K., et al. Structural Control: Past,Present, and Future [J]. ASCE, Journal of Engineering Mechanics,1997,123(9):897-971.
    [78]Pervizpour M., Curtis J, Qin X.et al.Data Processing and Quality Assurance inHealth Monitoring of Constructed System [R]. Paper presented at SPIE' s6thInternational Symposium on NDE for Health Monitoring and Diagnostics,4-8March,2001, and to be published in the SPIE Conference Proceedings, Newport Beach.
    [79]Aftab A., Mufti. Structural Health Monitoring of Innovative Canadian CivilEngineering Structures [J]. Structural Health Monitoring,2002,1(1):89-103.
    [80]Iwaki H, Yamakawa H., Shiba K. et al. Structural Health Monitoring SystemUsing FBG-Based Sensors for a Damage Tolerant Building[R]. Smart Structures andMaterials, San Diago,2002.4694-20.CDVersion.
    [81]Habel W. R., Hofmann D., Kohlhoff H. et al.Complex Measurement System forLong-Term Monitoring of Prestressed Railways Bridges in the New Lehrter Bahnhofin Berlin [R]. Smart Structures and Materials, San Diago,2002.4694-31.CD Version.
    [82]Ni Y. Q., Li H., Wang J.Y. et al. Implementation Issues of Novelty DetectionTechnique for Cable-Supported Bridges Instrumented with a Long-Term MonitoringSystem[R]. NDE for Health Monitoring and Diagnostics, San Diago,2002.4702-33.CD Vesion.
    [83]张启伟,袁万城,范立础.大型桥梁结构安全监测的研究现状与发展[C].中国土木工程学会桥梁及结构工程学会第十二届年会论文集(下册),广州,1996,821-829.
    [84]何旭辉.南京长江大桥结构健康监测及其关键技术研究[D].长沙:中南大学土建学院,2004.
    [85]邬晓光,徐祖恩.大型桥梁健康监测动态及发展趋势[J].长安大学学报(自然科学版),2003,23(1):39-42.
    [86]宗周红,任伟新,阮毅.土木工程结构损伤诊断研究进展[J].土木工程学报,2003,36(5):105-110.
    [87]李宏男,高东伟,伊廷华.土木工程结构健康监测系统的研究状况与进展[J].力学进展,2008,38(2):151-166.
    [88]于阿涛,赵鸣.基于振动的土木工程结构健康监测研究进展[J].福州大学学报(自然科学版),2005,33(增刊):233-239.
    [89]张启伟.大型桥梁健康检测概念与监测系统设计[J].同济大学学报,2001,29(1):65-69.
    [90]Chueng M S, Tadros G S, Brown T G, et al. Field monitoring and research onperformance of the confederation bridge [J]. Canadian Journal of Civil Engineering,1997,24(6):951-962.
    [91]顾冲时,吴中如.大坝安全监测专家系统的结构及知识工程[J].水利技术监督,1998,6(1):36-40.
    [92]杨杰,吴中如.大坝安全监控的国内外研究现状与发展[J].西安理工大学学报,2002,18(1):26-30.
    [93]陈文燕,朱林,王文韬.大坝安全监测的现状与发展趋势[J].电力环境保护,2009,25(6):38-42.
    [94]何勇军,刘成栋,向衍.大坝安全监测与自动化[M].北京:中国水利水电出版社,2008.
    [95]赵志仁,徐锐.国内外大坝安全监测技术发展现状与展望[J].水电自动化与大坝监测,2010,34(5):52-57.
    [96]黄红女,周琼,华锡生.大坝安全监控理论与技术研究现状综述[J].大坝与安全,2005(2):54-57.
    [97]吴中如.水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003.
    [98]李富强.大坝安全监测数据分析方法研究[D].杭州:浙江大学,2012.
    [99]杨弘.高坝消力塘防护结构耦合动力分析与健康诊断研究[D].天津:天津大学,2008.
    [100]杨弘,练继建,冯永祥,等.高坝水垫塘泄洪安全实时监控系统研究[J].水力发电学报,2008,27(3):93-100.
    [101]罗骐先.水工混凝土缺陷检测和处理[M].北京:中国水利水电出版社,1997.
    [102]周明华.对混凝土非破损检测方法的应用述评[J].施工技术,2002,31(4):24-25.
    [103]Lu Jiecheng, Zhuang Zhenquan, Dai Yingxia. Studies on the system ofultrasonic test of concrete [J]. Acoustical Imaging,1993,(20):209-216.
    [104]卢结成,王立敏.砼内缺陷特征参数的快速检测算法[J].中国科学技术大学学报,2000,30(4):434-437.
    [105]单远铭,吴耀,吴慧敏.超声频谱畸变系数在混凝土缺陷区的变化[J].湖南大学学报(自然科学版),1999,26(1):88-91.
    [106]缪群,韩耀红,陆津龙.超声测缺的应用问题与解决对策研究[J].施工技术,2000,29(10):37-38,29.
    [107]李俊如,高建光,王耀辉.超声波检测混凝土裂缝及裂缝成因分析[J].岩土力学,2001,22(3):291-293.
    [108]刘齐卿.混凝土裂缝超声无损检测[J].中南水力发电,1997,(1):65-69.
    [109]杨秋伟.基于振动的结构损伤识别方法研究进展[J].振动与冲击,2007,26(10):86-91.
    [110]Jeong Tae Kim, Yeon Sun Ryu, Hyun Man Cho, Norris Stubbs. Damageidentification in beam type structures:frequency based method vs mode shape basedmethod [J]. Engineering Structures,2003,25(1):57-67.
    [111]Doebling S W, Farrar C R, Prime M B. A summary review of vibration baseddamage identification methods [J]. The Shock and Vibration Digest,1998(3):92-105.
    [112]贾彬,王汝恒,郭文,基于频率指纹的梁类结构损伤定位方法研究[J].西南科技大学学报,2007,22(4):35~39.
    [113]高芳清,金建明,高淑英.基于模态分析的结构损伤检测方法研究[J].西南交通大学学报,1998,33(1):108~113.
    [114]陈素文,李国强.人工神经网络在结构损伤识别中的应用[J].振动、测试与诊断,2001,21(2):116~124.
    [115]张东利,李霆,孙锡龙.利用固有频率特征量诊断混凝土结构损伤位置[J].测试技术学报,2003,17(3):265~269.
    [116]Nandwana B P. On foundation for detection of crack based on measurement ofnatural frequencies [D]. Dissertation, Mechanical Engineering Department, IndianInstitute of Technology, Bombay,1997.
    [117]Lifshitz J M, Rotem A. Determination of reinforcement unbonding ofcomposites by a vibration technique [J]. Journal of Composite Materials,1969,3(3):412-423.
    [118]Cawley.P,Adams.R.D.The location of defects in structures from measurementsof natural frequencies [J]. The Journal of Strain Anslysis for Engineering Design,1979,14(2):49-57.
    [119]West W M. Illustration of the Use of Modal Assurance Crierion to DetectStructural Changes in an Orbiter Test Specimen [C]. In Proc. Air Force Conference onAircraft Structural Integrity,1984,1-6.
    [120]沈文浩,张森文,李长友,等.基于试验模态振型的结构损伤检测参数比较[J].暨南大学学报(自然科学版),2008,29(3):268-271.
    [121]唐小兵,沈成武,陈定方.结构损伤识别的柔度曲率法[J].武汉理工大学学报,2001,23(8):18-26.
    [122]邓焱,严普强.梁及桥梁应变模态与损伤测量的新方法[J].清华大学学报,2000,40(11):123-127.
    [123]李德葆,诸葛鸿程,王波,等.实验应变模态分析原理和方法[J].清华大学学报(自然科学版),1990,30(2):105-112.
    [124]崔鹏.基于应变模态的圆拱结构损伤检测实验研究[D].广州:暨南大学,2009.
    [125]洪力.基于应变模态的结构损伤检测方法研究[D].长沙:湖南大学,2011.
    [126]Pandey A K, Biswas M. Damage Detection in Structures Using Changes inFlexibility [J]. Journal of Sound and Vibration,1994,169(1):3-17.
    [127]Pandey A K,Biswas M. Damage Diagnosis of Truss Structures by Estimation ofFlexibility Change [J]. Modal Analysis the International Journal of Analytical andExperimental Modal Analysis,1995,10(2):104-117.
    [128]Toksoy T, Aktan A.E. Bridge condition Assessment by Modal Flexibility [J].Experimental Mechanics,1994,34(3):271-278.
    [129]Bernal D. Load Vectors for Damage Localization [J]. ASCE Journal ofEngineering Mechanics,2002,128(1):7-14.
    [130]Bernal D,Gunes B. Damage localization in output_only systems:A flexibilitybased approach [C]. AC XX,Los Angeles,California,2002:1185-1191.
    [131]史治宇,罗绍湘,张令弥.结构破损定位的单元模态应变能变化率法[J].振动工程学报,1998,11(3):356~360.
    [132]Stubbs N, Kim J T, Farrar C R. Field Verification of a Nondestructive DamageLocalization and Sensitivity Estimator Algorithm [C]. Proceedings of the13thInternational Modal Analysis Conference,1995,210-218.
    [133]Cornwell P, Doebling S W, Farrar C R. Application of the Strain Energy DamageDetection Method to Plate_Like Structures [J]. Journal of Sound and Vibration,1999,224(2):359-374.
    [134]Shi Z Y,Law S S,Zhang L M. Structural Damage Localization from ModalStrain Energy Change [J]. Journal of Sound and Vibration,1998,218(5):825-844.
    [135]Wu X, Ghaboussi J, Garrett J H, et al. Use of neural networks in detection ofstructural damage [J]. Computers and Structures,1992,42(4):649-659.
    [136]周仙通,王柏生,倪一清.用神经网络和优化方法进行结构参数识别[J].计算力学学报,2001,18(2):235-238.
    [137]Masri S F, Smyth A W, Chassiakos A G, et al. Application of Nueural Networksfor Detection of Changes in Nonlinear Systems [J]. Journal of Engineering Mechanics,ASCE,2000,126(7):666-676.
    [138]姜丽萍.经验遗传-单纯形算法及其在结构损伤检测中的应用[D].北京:北京工业大学,2006.
    [139]李敏强,徐博艺,寇纪淞.遗传算法与神经网络的结合[J].系统工程理论与实践,1999,(2):65-69.
    [140]Perera R, Torres R. Structural Damage Detection Via Modal Data with GeneticAlgorithms [J]. Journal of Structural Engineering, ASCE,2006,132(9):1491-1501.
    [141]Huang N E, Shen Z. The empirical mode decomposition and Hilbert spectrumfor nonlinear and non-stationary time series analysis [C]. Proceedings of the RoyalSociety of London, Series A.1998,454:903-995.
    [142]Huang N.E, Zheng Shen, Steven R L. A new view of nonlinear water waves:TheHilbert Spectrum [J]. Annual Review of Fluid Mesh,1999,31(2):417-457.
    [143]王小宇.基于Hnbert-Huang变换和支持向量机的水轮发电机组状态监测与故障诊断方法研究[D].西安:西安理工大学,2007.
    [144]刘义艳,巨永锋,段晨东,等.基于HHT的多自由度结构渐进损伤特征提取方法[J].西安建筑科技大学学报(自然科学版),2009,41(1):93-99.
    [145]杨宇,于德介,程军圣.基于经验模态分解的滚动轴承故障诊断方法[J].中国机械工程,2004,15(10):908-912.
    [146]关晓磊,颜景龙.爆破振动信号的HHT时频能量谱分析[J].振动与冲击,2012,32(5):535-541.
    [147]李成业,刘昉,马斌,等.基于改进HHT的高拱坝模态参数识别方法研究[J].水力发电学报,2012,31(1):48-55.
    [148]赵丹.基于Hilbert-Huang变换的简支梁桥的损伤识别[D].大庆:大庆石油学院,2007.
    [149]舒忠平.基于希尔波特-黄变换的结构损伤检测方法研究[D].西安:西北工业大学,2006.
    [150]樊海涛,何益斌,周绪红.基于Hilbert-Huang变换的结构损伤诊断方法研究[J].建筑结构学报,2006,27(6):114-122.
    [151]李传习,陈富强.基于HHT的结构损伤特征量与异常诊断[J].长沙理工大学学报(自然科学版),2007,4(3):29-33.
    [152]Darbre G R, De Smet C A, C Kraemer. Natural frequencies measured fromambient vibration response of the arch dam of Mauvoisin [J]. Earthquake Engineeringand Structural Dynamics,2000,29:577-586.
    [153]Proulx J, Patrick P, Julien R, Yannick Rorbert. An experimental investigation ofwater level effects on the dynamic behaviour of a large arch dam [J]. EarthquakeEngineering and Structural Dynamics,2001,30:1147-1166.
    [154]王柏生,何宗成,赵琛.混凝土大坝结构损伤检测振动法的可行性[J].建筑科学与工程学报,2005,22(2):51-56.
    [155]李松辉,练继建.基于支持向量机及模态参数识别的导墙结构损伤诊断研究[J].水利学报,2008,39(6):652-657.
    [156]练继建,崔广涛,林继镛.高拱坝泄洪振动的计算分析与验证[J].水利学报,1999,(12):23-32.
    [157]Robert D. Blevins. Flow-induced vibration [M]. America: Van NostrandReinhold Company,1977.
    [158]刘昉,练继建,辜晋德.基于自回归模型的水流脉动压力频谱特征研究[J].水力学报,2009,40(11):1397-1402.
    [159]盖强.局域波时频分析方法的理论研究与应用[D].大连:大连理工大学,2001.
    [160]陈雨红,杨长春,曹齐放,等.几种时频分析方法比较[J].地球物理学进展,2006,21(4):1180-1185.
    [161]张惠峰,马宏忠,陈凯,等.基于振动信号EMD-HT时频分析的变压器有载分接开关故障诊断[J].高压电器,2012,48(1):76-81.
    [162]Lang W C, Forinash K. Time-frequency analyses with the continuous wavelettransform [J]. American Journal of Physics,1998,66(9):794-797.
    [163]Ni. S H, Lo. K F, Lehmann. L, Huang. Y H. Time-frequency analyses ofpile-integrity testing using wavelet transform [J]. Computers and Geotechnics,2008,35(4):600-607.
    [164]张义平,李夕兵,左宇军.爆破振动信号的HHT分析与应用[M].北京:冶金工业出版社,2008.
    [165]孙小鹏.脉动压力的随机数学模拟[J].水利学报,1991,(5):52-56.
    [166]孙小鹏,薛盘珍,吕家才.泄流压力脉动及其概化设计[J].水动力学研究与进展,1997,12(1):102-112.
    [167]Zhao Hua Wu, Norden E. Huang. A study of the characteristics of white noiseusing the empirical mode decomposition method [J]. The Royal Society,Proc.R.Soc.Lond. A(2004)460,1597-1611.
    [168]James G. H, Carne Thomas G., Lauffer James P. The natural excitation technique(NExT) for modal parameter extraction from operating structures [J]. Modal Analysis:International Journal of Analytical and Experimental Modal Analysis.1993,10(4):260-277.
    [169]Ryan Deering, James F Kaiser. The use of a masking signal to improve empiricalmode decomposition[C]. Acoustics, Speech, and Signal Processing,2005,Proceedings,(ICASSP'05), IEEE International Conference,18-23March2005.
    [170]李火坤,练继建,杨敏,等.强震后基于泄流激励的映秀湾水电站拦河闸动态检测与损伤评估研究[J].振动与冲击,2010,29(9):64-68,242-243.
    [171]应怀樵.波形和频谱分析与随机数据处理[M].北京:中国铁道出版社,2003.
    [172]苏未安,陈秀洪.用旋转矢量法研究“拍”现象[J].江西理工大学学报,2009,30(1):60-63.
    [173]王永涛,臧勇,吴迪平. CSP轧机扭振中“伪拍振”的研究[J].振动、测试与诊断,2009,29(2):209-245.
    [174]周康巍.拍现象与外差变频的区别[J].大学物理,1983,(5):1-4.
    [175]Lian J J, Wang J M, Gu J D. Similarity law of fluctuating pressure spectrumbeneath hydraulic jump [J]. Chinese Science Bulletin,1998,53(14):2230-2238.
    [176]曹伟.厂顶溢流式水电站厂房动力分析[D].大连:大连理工大学,2007.
    [177]D.E. Newland,方同等译.随机振动与谱分析概论[M].北京:机械工业出版社,1980.
    [178]周先雁,沈蒲生.用应变模态对混凝土结构进行损伤识别的研究[J].湖南大学学报,1997,24(5):69-74.
    [179]刘越.震后桥梁结构的时域损伤识别[D].成都:西南交通大学,2008.
    [180]董晓马,王忠辉.损伤定位中应变模态指标的改进研究[J].河南科学,2008,26(7):833-835.
    [181]滕海文,霍达,姜雪峰,林立香.结构损伤位置识别的组合指标法[J].北京工业大学学报,2007,33(5):493-497.
    [182]王志华,张向东,马宏伟.基于应变曲率法的悬臂梁多位置损伤识别实验研究[J].工程力学,2003,增刊,434-437.
    [183]刘伟,高维成,李惠,等.钢筋混凝土空间网格结构曲率模态曲面拟合损伤识别研究[J].振动与冲击,2013,32(3):68-74.
    [184]Dempster A P. Upper and lower probabiiities induced by a muiti-vaiued mapping[J]. Annual Math Statist,1967,38(4):325-339
    [185]Shafer G. A. Mathematical Theory of Evidence [M]. Princeton University, Press,Princeton,1976.
    [186]邓勇,施文康,朱振福.一种有效处理冲突证据的组合方法[J].红外与毫米波学报,2004,23(1):27-32.
    [187]胡丽芳,关欣,何友.基于可信度的证据融合方法[J].信号处理,2010,26(1):17-22.
    [188]丁迎迎,李洪瑞.一种简单有效的处理冲突证据的D-S改进方法[J].指挥控制与仿真,2011,33(2):22-25.
    [189]Jousseime A L, Grenier D, Bosse E. A new distance between two bodies ofevidence [J]. Information fusion,2001,2(1):91-101.
    [190]Murphy C K. Combining belief functions when evidence conflicts [J]. Decisionsupport systems,2000,29(1):1-9.