高效、高耐久性吸声材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道路隔声屏障在实际中的应用越来越广泛,适合其使用的吸声材料由于要求同时具有良好的吸声性能、耐久性能以及出于环保考虑需要限制使用许多材料体系,从而成为国内外相关领域的研究的重点。
     以香港东部铁路工程对所用吸声材料的各项性能要求为目标,通过对各类吸声材料与结构的吸声机理分析,选择高效无机类多孔性材料体系,应用空腔共振、薄板共振、吸声尖劈等多种吸声结构,按照多孔性吸声材料的吸声机理、材料制备工艺原理以及无机非金属材料的各种耐久性设计原则、防护措施,经过大量材料制备实验和声学测试,研制出一种新型高效、高耐久性吸声材料。
     按照空腔共振结构的微观尺寸对吸声影响的机理,采用发气技术形成这种结构并研制出相应的新型发气剂X。将能够产生发气条件的多种功能组分按照所需比例配合在一起、通过粉磨加工而成的发气剂X,可以在实际生产中简化操作程序、稳定产品吸声性能。
     按照吸声尖劈结构尺寸对吸声的影响以及利用吸声材料背后空气层对吸声的提高作用,通过对模具和混凝土基板的特殊结构设计来实现这些结构。通过对上述各种吸声结构的综合运用,并充分利用膨胀珍珠岩本身固有的空腔共振吸声特性,辅助提高吸声性能。采用半干料压制成型工艺制备出具有连通通道的多孔性吸声材料。通过控制压缩比、颗粒粒径等措施调整孔隙率、结构因子等工艺参数并运用空气流阻、溶液流阻等技术参数来研究结构特点。
     采用Dular纤维和抗碱玻璃纤维增加制品的抗折、抗压强度;采用硫铝酸盐水泥为胶结材料。利用硫铝酸盐水泥的最终水化产物中不含Ca(OH)_2以及低碱、早强、水化热放热集中等特点,来提高材料的耐腐蚀性能、加快模具周转速度以及产生发气剂发挥作用的条件。
     按照薄膜共振吸声原理设计了膨胀珍珠岩的憎水化处理和对制品表面的防水处理措施;通过对搅拌、加水、纤维分散等材料制备工艺过程的研究,确定实际生产技术参数,并为大规模生产设计了长线台座生产线。
     通过对材料吸声性能及耐久性能的提高与改善,研制出的新型吸声材料吸声性能指标经过国家建筑工程质量检测中心和香港东部铁路工程指定的瑞士国家一级实验室EMPA实验室检测,125、250、500、1000、2000、4000Hz等六个频率下的吸声系数分别为:0.21、0.6、0.82、0.9、1.04、0.94,在100~5000Hz
    
    武汉理工大学硕士论文
    摘要
    之间18个1/3倍频程的吸声系数平均值达到0.8以上,其抗压强度、耐火值、
    散火值、冒烟值以及环保等性能指标均符合工程要求;根据科技部西南信息中
    心查新报告,吸声系数指标和利用吸声尖劈结构与其它多种结构复合的应用、
    新型发气剂形成空腔共振吸声结构的技术、采用Dular纤维、玻璃纤维增强措施
    以及采用硫铝酸盐水泥为胶结材料的半干料压缩成型工艺等均未见国内报道。
Road sound insulation barrier is applied more and more abroad in the practice. The material, adapting to it, becomes the emphasis of correlation fields in the world because of the requirement of excellent properties of sound absorption and durability, and limits of some kinds of materials, considering environment-friendly.
    The study is based on the performance request targets of sound absorbing materials used in Eastern Hong Kong railway engineering. By analyzing the sound absorbing mechanism of all kinds of materials and structures, the inorganic and porous effective material is chosen, and multi-structure including cavity resonance sound absorber, ply resonance sound absorber and wedge sound absorber is selected. According to the sound absorbing mechanism of porous sound absorbing materials, the theory of material preparation techniques, the durability design principle and deferrable steps of inorganic-nonmetal materials, and a great deal of material preparation experiments and acoustics tests, a new kind of high effective and durable sound absorbing material is prepared in this paper.
    In term of the relation between the micro-size and cavity resonance sound absorber, the structure is formed through the gas former techniques. And the new type of gas former X, which includes many proportional forming-gas functional components, is prepared by milling. Using X, the operating process of practical produce is simplified and the sound absorbing property is stabilized.
    The size of wedge absorber influences the sound absorbing performance. And the space between the concrete board and the sound absorbing material can enhance the sound absorbing performance. In this paper, the performance of sound absorption is improved through the structure-integration realizing by the special design of the mold and concrete board and inherent cavity resonance sound absorbing property of expanded perlite. The porous material with connected pore is produced by semi-dry stuff compression molding techniques. The compression ratio and the size of granules are controlled to modulate the hole-ratio and the structure gene. The technique parameters of the resistances of airflow and solution, et al. are exerted to study the characteristic of the structure.
    The Durafiber and the alkali-resistance fiberglass are used to increase the bending strength and compress strength. The binding material is Sulfoaluminate cement The corrosion-resistance
    
    
    
    and the speed of pattern turnover is improved and the situation for gas former to exert its function is produced because of the characteristics of Sulfoaluminate cement, such as no Ca(OH)2 in the final hydrated products, lower alkali, earlier strength and the concentration of the hydration heat dissipation.
    The hating-water treatment of expanded perlite and the waterproof measure of products surfaces are designed according to the ply resonance sound absorbing principle. The technical process of the material preparation include mixture, watering and fiber disperse. Through this research, the practical producing parameters are selected, and long dado product line is designed for mass production.
    In this paper, the new type sound absorbing material is manufactured through the enhancing and improving the sound absorbing performance and durability of material. The Quality Test Center of Country Building Engineering and first-degree laboratory
    -EMPA laboratory of Switzerland, appointed by Eastern Hong Kong railway
    engineering, test the sound absorbing performance. The coefficients of sound absorption, tested at frequencies of 125, 250, 500,1000, 2000, 4000Hz, are 0.21, 0.6, 0.82, 0.9, 1.04, 0.94, respectively. The average sound absorption coefficients of 18 1/3-octave from 100 to SOOOHz is beyond 0.8. The other performance targets, such as compress strength, fire-resistance, fire-dissemination, fuming and environmental protection, et al., all conform to the demands of engineering. According to the novelty search report of the Southwest Information Center of Sci-tech Ministry, the researches in this
引文
(1) 郑长聚 环境工程手册 环境噪声控制卷,高等教育出版社,2002.2
    (2) 姚成,我国公路交通环境降噪方法的理论和应用,环境工程,1999.6
    (3) D.H.K.李,环境与健康,陈炎磐 张国高 主译,人民卫生出版社,1986.7
    (4) 张兴容,声屏障用于室内降噪的技术与经济问题,环境工程,1996.6
    (5) 杨满宏,公路交通噪声的污染控制,环境工程,1997.5
    (6) 张海明,影响交通噪声的因素及控制对策,噪声与振动控制,2000(3).42
    (7) 胡华强等,我国隔声材料的发展,噪声与振动控制,1993.3
    (8) 潘仲麟等,中山城市环境噪声暴露,应用声学,1992.11
    (9) Professer P. A. Koushki, Noise from traffic in Kuwiait and attitudes of urban residents, NOISE & VIBBATION WORLDWIDE MARCH, 2001. vol. 32 No. 6
    (10) Noise control in practice, 1999. vol. 30 No. 9, pp22-24
    (11) 张延青,城市高架快速交通的环境影响及防治对策,环境工程,1998.4
    (12) 焦大化,轻轨交通噪声预测方法,噪声与振动控制,1993.2
    (13) 陈秀娟,噪声控制技术(讲座连载),环境工程,1989.1.6
    (14) 秦佑国 王炳麟,建筑声环境,清华大学出版社,1999.8
    (15) 中国建筑科学院等,建筑声学设计手册,中国建筑工业出版社,1987.7
    (16) 胡俊民,吸声材料在改善建筑环境质量中的作用及其发展趋势,噪声与振动控制,1993.3
    (17) 雷彬 于书吉,隔声屏设计中应主要的几个问题,声学技术,1993.12
    (18) 张蓉蓉等,铁路环境噪声对居民冲击影响的模糊综合评价,环境工程,1999.1
    (19) H.库特鲁夫,室内声学,沈(山豪)译,中国建筑工业出版社,1982.11
    (20) L.H.肖丁尼斯基,声音、人、环境,林达悃 李崇理译,中国建筑工业出版社,1985.2
    (21) 蒲心诚,混凝土学,中国建筑工业出版社,1981.2
    (22) 马大猷 沈(山豪),声学手册,科学出版社,1983.1
    (23) 马大猷,噪声控制,科学出版社,1987.7
    
    
    (24) 马大猷,声学名词术语,海洋出版社,1984.3
    (25) 何圣静,声学技术手册,北京出版社,1994.4
    (26) Roadside Noise Reduction-the French Approach, 1999. vol. 30 No. 3
    (27) Roger Kettle, Massud Sadegzadeh. Abrasion resistance of concrete and the new BS 8204: Part2. Concrete. Feb. 2000. Vol. 34. No. 2, pp18
    (28) 国家环保总局,《公路声屏障声学设计规范》(征求意见稿),环境工程,1999.6
    (29) 孙万钢 汪惠义,建筑声学设计,中国建筑工业出版社,1993.2
    (30) 王文奇 江珍泉,噪声控制技术,化学工业出版社,1987.10
    (31) 北京声学学会,工程声学,北京大学出版社,1992.3
    (32) 范德明,吸声泡沫玻璃制品及应用,噪声与振动控制,1993.3
    (33) 沈(山豪),声学测量,科学出版社,1986.1
    (34) L.L.多勒,建筑声学环境,吴伟中 叶恒健译,中国建筑工业出版社,1981.10
    (35) 姜继圣 杨慧玲,建筑功能材料及应用技术,中国建筑工业出版社,1998.4
    (36) 徐家保,建筑材料学,华南理工大学出版社,1995.5
    (37) 任福民 李仙粉,新型建筑材料,海洋出版社,1998.9.
    (38) DERA'S. anechoic EMC test chamber, NOISE & VIBBATION WORLDWIDE MARCH, 2001. vol. 32 No. 3, pp7
    (39) 田中光德 玉井元治他,轻石用多孔质空隙吸湿性,论文集,No.51,1997,pp888~893
    (40) 张雄,建筑功能材料,中国建筑工业出版社,2000.8
    (41) 王异 周兆桐,混凝土手册(第二分册),吉林科学技术出版社 1985.10
    (42) 合编教材,混凝土制品工艺学,中国建筑工业出版社,1981.12.
    (43) 林宝玉,吴绍章,混凝土工程新材料设计与施工,中国水利水电出版社,1998.8.
    (44) 刘伯伦 钟祥璋,提高多孔材料低频性能的探讨,声学技术,1992.11
    (45) Ma Baoguo Zhu Hongbo Dong Rongzhen, Study on High Sound Absorption Material CEMCOM, JOURNAL OF WUHAN UNIVERSITY TECHNOLEDGE, vol. 13 No. 13, 2002, pp
    (46) 马保国 朱洪波 懂荣珍,高效吸声材料的研制,新型建筑材料,2002.5.pp42-4
    
    (ISSN1001-702x)
    (47) 马保国 朱洪波,现浇多功能复合墙体的研究,材料科学与工程,2001(9)增刊
    (48) 王燕谋 苏慕珍 张量,硫铝酸盐水泥,北京工业大学出版社,1999.12
    (49) 胡曙光等,特种水泥,武汉工业大学出版社,1999.2
    (50) 洪平,特种水泥,中国建材工业出版社,1998.3
    (51) 钟祥璋,短尖劈消声室的设计和声学性能,声学技术,1992.11
    (52) 王红乾 马黎黎 缪旭弘,带空腔尖劈吸声器性能的研究,声学技术,1999.4
    (53) 张德,MPC的研究与应用,高效吸声材料的研制,新型建筑材料,1996.8
    (54) 龚益 沈荣熹,杜拉纤维在混凝土工程中的应用,建材产品与应用,2000第6期
    (55) 薛君圩 王赞 阎家骏,玻璃纤维在水泥中的侵蚀机理与防止侵蚀的途径,水泥学术会议论文集,1961,P1305~1321
    (56) 王燕谋,中国玻璃纤维增强强水泥,中国建材工业出版社,2000.6。
    (57) Fujita, Torn; Mitarai, Yoshio; Takeuchi, Yuko. Covering of walls with concrete slurry. Jpn. Kokai Tokkyo Koho JP. 03 Apr, 1987, pp6
    (58) 沈春林 苏立荣 岳志俊,建筑防水材料,化学工业出版社,2000.6。
    (59) 吴宝琨等,建筑材料化学,建筑工业出版社,1984.5.
    (60) 盛胜我 赵松龄,加膜穿孔板声学特性的研究,声学学报,1994.1
    (61) New hemi-anechoic test chamber for general dornestic appliances, NOISE VIBBATION WORLDWIDE MARCH, 2001. vol. 32 No. 4, pp5
    (62) 申爱琴,水泥与水泥混凝土,人民交通出版社,2000.5
    (63) 乔英杰 李家和 宋伟国 曲海涛,特种水泥与新型混凝土,哈尔滨工程大学出版社,1997.12
    (64) Peter Walters, Barriers to noise, NOISE & VIBBATION WORLDWIDE MARCH, 2000. vol. 31 No. 11, pp21-22
    (65) 裴志忠,HA型耐侯吸声板的研制与应用,声学学报,1993.2
    (66) 符江涛,共振空腔消声器的设计与应用,环境工程,2001.6