基于计算流体力学的烯烃聚合反应器模型化与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合反应器技术的创新是基于对反应器中的物理传递过程(动量、热量和质量传递)和聚合反应过程的深入理解。通过实验手段解析聚合反应器中的传递和化学反应过程时,装置的建立需要耗费大量精力,实验工作量大,并且因为测量手段的限制,很难对温度分布和产品空间分布等物理量进行测量。通过计算流体力学(CFD)方法可获得非理想反应器中的浓度、速度、温度分布与化学反应过程规律,节省大量的人力物力。然而在烯烃聚合反应器中,体系的复杂性(多相流操作、介质粘度高)、传递与化学反应过程的耦合、聚合反应动力学的复杂性都使CFD模型的建立成为难题。因此对聚合反应器内的传递和化学反应过程进行模型化,促进研究方法论的进步,富有挑战性的同时又具有工业应用前景和十分重要的学术价值。
     论文针对烯烃聚合反应器,采用CFD方法建立耦合混合流动过程、热量传递过程和化学反应过程的CFD模型,并通过模拟研究取得了以下创新性结果:
     (1)针对气相搅拌流化床反应器,建立了基于颗粒动力学理论的双流体模型,并与多重参考坐标系的方法相结合,通过CFD模拟与实验相结合的方法揭示了搅拌桨转动对流态化的影响规律。径向流桨对流化床的床层压降影响不大,但足够大的搅拌速度可以显著减小压力脉动的幅值与气泡尺寸,提高流化质量。按照搅拌对流态化的影响程度不同,可将流化床由下至上分为三个区域:入口区,搅拌流态化区和自由流态化区。气体分布器的作用在入口区占优势,搅拌桨的转动可使搅拌流态化区的流态化质量得到明显改善。对自由流态化区而言,搅拌桨的作用不明显。
     (2)通过CFD模拟及对压力脉动的实验研究,揭示了Geldart D类颗粒在搅拌流化床中的流型转变规律。大粒径的Geldart D类颗粒出现了只有Geldart A类颗粒才具有的散式流态化现象。在搅拌桨的作用下,颗粒的最小流化速度基本不变,而最小鼓泡速度随搅拌桨转动而增加,散式流态化的气速操作范围随搅拌桨转速的增加而变大。由聚式流态化向散式流态化转变的过程是将“搅拌减小气泡尺寸”的量变转化为“无气泡化”的质变的过程。
     (3)通过考察工业尺度乙烯气相聚合流化床反应器内的温度分布与流态化和传热过程的相互关系,揭示反应器内温度分布不均匀性产生的根本原因。基于双流体模型与颗粒动力学理论,通过用户自定义编程(UDF)描述热量传递方程,对流动和传热规律进行考察,发现在流化床底部形成一对颗粒循环流,使气体分布器上方的颗粒主要沿径向运动,轴向方向上的混合质量较差,床层出现了较大的温度梯度。循环流使温度较低的颗粒沿循环流的交汇处上升,形成低温区。
     (4)在以中高粘度流体为介质的搅拌釜式反应器中,通过UDF建立有限速率/涡耗散-卷吸(FR/ED-E)微观混合模型,通过预测平行竞争反应的选择性考察微观混合情况。模拟结果表明,当搅拌槽中流体粘度较低、搅拌桨旋转速度较大以及进料位置处于搅拌桨的排出区时,微观混合质量好,副产物的选择性小。反应区域由于对流、卷吸、变形和扩散等过程而体积膨胀,同时由于化学反应的消耗而体积缩小,两因素共同作用,使反应区域的体积达到最大值后减小。模型参数通过实验值的回归得到,受流体粘度影响较大,而对于同一种非牛顿流体,在不同搅拌桨转速下,模型参数取相同的值即可得到与实验工作相符性较好的反应选择性。可利用此特性进行反应器的设计、放大和优化,从实验室中取得参数值,将其用于预测工业反应器中的传递与化学反应过程。
In-depth understanding of process of mass transfer, momentum transfer, heat transfer and polymerization is necessary for the development of polymerization reactor. The experimental work consumes a large amount of manpower when it is used to investigate process characteristic. Still, it is difficult to obtain relevant physical quantities such as spatial distributions of temperature and components, which can be predicted with the computational fluid dynamic method. In the polymerization reactor, the coupling between transport process and complex polymerization kinetics makes it very difficult to develop CFD models, especially when the process is operated based on multiphase flow or high-viscosity fluid. Therefore, modeling physical and polymerization processes in the polymerization reactors is challenge and valuable in theory and industrial applications.
     This thesis models the mixing, heat transfer and reaction process in three typical polymerization reactors with the application of CFD method, and achieves the following innovative results:
     1. The Eulerian-Eulerian two fluid model based on the kinetic theory of granular flow is coupled with the multiple reference frame method to investigate the fluidization performance in an agitated fluidized bed. The radial type impeller hardly has any effect on the pressure drop. Large enough agitation speed can reduce the bubble size and the amplitude of pressure fluctuation, as a result, the fluidization performance is improved. According to the effect of agitation of frame impeller, the fluidized bed can be divided into three zones:inlet zone, agitated fluidization zone and free fluidization zone. The fluidization in the inlet zone is dominated by the gas distribution. The agitation of frame impeller improves the fluidization performance in the agitated fluidization zone. For the free fluidization zone where no impeller exists, the effect of agitation can be ignored.
     2. The effect of the agitation of impeller on the transition of flow pattern is further studied. The large diameter Geldart D particles perform the transition to particulate fluidization, which commonly happens for Geldart A particles. As the agitation speed increases, the minimum fluidizing velocity keeps constant while the minimum bubbling velocity goes up gradually. The upper limit of gas velocity for particulate fluidization increases with the increasing agitation speed. The agitation of impeller forces the particles to move into the bubbles, reducing the bubble size. Bubbles vanish as soon as the agitation is strong enough.
     3. The relationship among distributions of temperature, volume fraction and velocity of both phases in an industrial fluidized bed reactor for ethylene polymerization is investigated. The user defined function (UDF) helps to finish establishing the numerical model based on the two fluid model and the KTGF. At the bottom of the fluidized bed, there exist a low temperature zone and a region with large temperature gradient. The reason for this uneven distribution of reactor temperature is revealed. There are a pair of particle flow recirculation above the gas distributor, which force the particles here to move in the radial direction instead of the axial direction. As a result, a large temperature gradient is formed here. In addition, particles with low temperature rise along the intersection of the two circulation flow, which results in the formation of the low temperature zone.
     4. The micromixing in a viscous stirred tank is investigated with CFD numerical simulation, by predicting the product selectivity of a parallel competitive reaction system. To include the micromixing effect on the sub grid scale, a new finite rate/eddy dissipation-engulfment (FR/ED-E) model is established, which can predict the reaction process in high-viscosity fluid more accurately. Better micromixing quality prefers the low-viscosity fluid, the large agitation speed and the feeding location in the discharge area. The product selectivity and reaction rate are also impacted by the path of the reaction zone. The volume of reaction zone expands due to the fluid convection, engulfment, deformation and diffusion, and shrinks due to the consumption of chemical reaction, which results in a maximum volume of reaction zone. The model parameter is sensitive to the fluid viscosity but is kept constant when the agitation speed is changed. This characteristic can be used in the design, scale-up and optimization of reactor. The value of model parameter can be measured in the lab scale reactor and then used in the industrial scale one.
引文
[1]John M. Jenkins, I.I.I. S. C. W. V., Russell L. Jones, C. H. N. C., Thomas M. Jones, S. C. W. V., Samil Beret, D. C. A. Method for fluidized bed polymerization. US 4588790,1986.
    [2]John M. Jenkins, I. I. I. S. C. W. V., Russell L. Jones, S. C. W. V., Thomas M. Jones, D. W. V. Fluidized bed reaction systems. US 4543399,1985.
    [3]Eriksson, E. J. G, McKenna, T. F. Heat-transfer phenomena in gas-phase olefin polymerization using computational fluid dynamics. Industrial & Engineering Chemistry Research,2004,43 (23),7251-7260.
    [4]Eriksson, E. J., McKenna, T. F. In A study of particle-surface interactions during olefin polymerisation in gas phase reactors, Macromolecular Symposia,2009, Wiley Online Library:2009,28-34.
    [5]李洪伟.搅拌流化床流化特性及其搅拌功率的研究.硕士学位论文,浙江大学,2000.
    [6]曹湘洪,张爱民.溶液聚合合成橡胶节能技术和节能型橡胶的开发.中国工程科学,2001,3(7),59-63.
    [7]金涌;流态化工程原理.清华大学出版社:2001.
    [8]Kuipers, J. A. M., Li, J. Effect of competition between particle-particle and gas-particle interactions on flow patterns in dense gas-fluidized beds. Chemical Engineering Science,2007,62 (13),3429-3442.
    [9]Li, H. Z., Lu, X. S., Kwauk, M. Particulatization of gas-solids fluidization. Powder Technology,2003,137 (1-2),54-62.
    [10]Li, J., Kuipers, J. A. M. Gas-particle interactions in dense gas-fluidized beds. Chemical Engineering Science,2003,58 (3-6),711-718.
    [11]Li, J., Kuipers, J. A. M. Effect of pressure on gas-solid flow behavior in dense gas-fluidized beds:a discrete particle simulation study. Powder Technology, 2002,127(2),173-184.
    [12]Anderson, T. B., Jackson, R. Fluid mechanical description of fluidized beds. Equations of motion. Industrial & Engineering Chemistry Fundamentals,1967, 6 (4),527-539.
    [13]Verloop, J., Heertjes, P. Shock waves as a criterion for the transition from homogeneous to heterogeneous fluidization. Chemical Engineering Science, 1970,25(5),825-832.
    [14]Rietema, K., Piepers, H. The effect of interparticle forces on the stability of gas-fluidized beds—Ⅰ. Experimental evidence. Chemical Engineering Science, 1990,45 (6),1627-1639.
    [15]Garg, S., Pritchett, J. Dynamics of gas-fluidized beds. Journal of Applied Physics,1975,46(10),4493-4500.
    [16]Rietema, K.; The dynamics of fine powders, Springer:1991.
    [17]Geldart, D. Types of gas fluidization. Powder Technology,1973,7 (5),285-292.
    [18]Mawatari, Y., Kawai, A., Tatemoto, Y., Noda, K. Minimum bubbling velocity and homogeneous fluidization region under reduced pressure for group-A powders. Journal of Chemical Engineering of Japan,2004,37 (1),89-94.
    [19]Geldart, D.; Gas fluidization technology, John Wiley and Sons Inc.,New York, NY:United States,1986; 285.
    [20]Mutsers, S. M. P., Rietema, K. The effect of interparticle forces on the expansion of a homogeneous gas-fluidized bed. Powder Technology,1977,18 (2), 239-248.
    [21]Rietema, K., Application of mechanical stress theory to fluidization. In Proceedings of International Symposium on Fluidization, Drinkenburg, A. A. H., Ed. Amsterdam,1967; 154.
    [22]Sun, G. L., Wang, Z. M., Chen, G. T. The incipient bubbling velocity and voltage of gas-solid particle systems. Journal of Zhejiang University (Engineering Science),1983,4,97-108.
    [23]Puncochar, M., Drahos, J., Cermak, J., Selucky, K. Evaluation of minimum fluidizing velocity in gas-fluidized bed from pressure-fluctuations. Chemical Engineering Communications,1985,35(1-6),81-87.
    [24]Davies, C. E., Krouse, D., Carroll, A. A new approach to the identification of transitions in fluidized beds. Powder Technology,2010,199 (1),107-110.
    [25]Davies, C. E., Carroll, A., Flemmer, R. Particle size monitoring in a fluidized bed using pressure fluctuations. Powder Technology,2008,180 (3),307-311.
    [26]Ye, M., Wang, J. W., van der Hoef, M. A., Kuipers, J. A. M. Two-fluid modeling of Geldart A particles in gas-fluidized beds. Particuology,2008,6(6),540-548.
    [27]Feng, L., Zhang, W., Wang, J., Gu, X., Wang, K. Pressure fluctuation in gas-solid agitated fluidized bed. Journal of Zhejiang University (Engineering Science),2007,41 (3),524-528.
    [28]Wang, J., Zhang, W., Feng, L., Gu, X. Wavelets analysis of pressure fluctuation in agitated fluidized bed. Journal of Chemical Industry and Engineering (China),2006,57 (12),2854-2859.
    [29]Bi, H., Grace, J. Effect of measurement method on the velocities used to demarcate the onset of turbulent fluidization. The Chemical Engineering Journal and The Biochemical Engineering Journal,1995,57 (3),261-271.
    [30]Parise, M., Taranto, O., Kurka, P., Benetti, L. Detection of the minimum gas velocity region using Gaussian spectral pressure distribution in a gas-solid fluidized bed. Powder Technology,2008,182 (3),453-458.
    [31]Bi, H. T. T. A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds. Chemical Engineering Science,2007,62 (13), 3473-3493.
    [32]Jaiboon, O., Chalermsinsuwan, B., Mekasut, L., Piumsomboon, P. Effect of flow pattern on power spectral density of pressure fluctuation in various fluidization regimes. Powder Technology,2013,233,215-226.
    [33]Nelson, B., Briens, C., Bergougnou, M. Pressure fluctuations at individual grid holes of a gas-solid fluidized bed. Powder Technology,1993,77 (1),95-102.
    [34]Van der Schaaf, J., Schouten, J., Johnsson, F., Van den Bleek, C. Non-intrusive determination of bubble and slug length scales in fluidized beds by decomposition of the power spectral density of pressure time series. International Journal of Multiphase Flow,2002,28 (5),865-880.
    [35]Zijerveld, R. C., Johnsson, F., Marzocchella, A., Schouten, J. C., Van den Bleek, C. M. Fluidization regimes and transitions from fixed bed to dilute transport flow. Powder Technology,1998,95 (3),185-204.
    [36]Xie, T., Ghiaasiaan, S., Karrila, S. Artificial neural network approach for flow regime classification in gas-liquid-fiber flows based on frequency domain analysis of pressure signals. Chemical Engineering Science,2004,59 (11), 2241-2251.
    [37]Kage, H., Iwasaki, N., Yamaguchi, H., Matsuno, Y. Frequency analysis of pressure fluctuation in fluidized bed plenum. Journal of Chemical Engineering of Japan,1991,24 (1),76-81.
    [38]Abbasi, M., Sotudeh-Gharebagh, R., Mostoufi, N., Mahjoob, M. Non-intrusive monitoring of bubbles in a gas-solid fluidized bed using vibration signature analysis. Powder Technology,2009,196 (3),278-285.
    [39]Parise, M. R., Silva, C. A. M., Ramazini, M. J., Taranto, O. P. Identification of defluidization in fluidized bed coating using the Gaussian spectral pressure distribution. Powder Technology,2011,206 (1),149-153.
    [40]Su, J. W., Gu, Z. L., Xu, X. Y. Discrete element simulation of particle flow in arbitrarily complex geometries. Chemical Engineering Science,2011,66 (23), 6069-6088.
    [41]Liu, F., Wei, F., Li, G. L., Cheng, Y., Wang, L., Luo, G. H., Li, Q., Qian, Z., Zhang, Q., Jin, Y. Study on the FCC process of a novel riser-downer coupling reactor (Ⅲ):industrial trial and CFD modeling. Industrial & Engineering Chemistry Research,2008,47(22),8582-8587.
    [42]Cheng, Y., Guo, Y. C., Wei, F., Jin, Y, Lin, W. Y. Modeling the hydrodynamics of downer reactors based on kinetic theory. Chemical Engineering Science, 1999,54(13-14),2019-2027.
    [43]Zheng, Y., Wan, X. T., Qian, Z., Wei, F., Jin, Y. Numerical simulation of the gas-particle turbulent flow in riser reactor based on k-epsilon-k(p)-epsilon(p)-Theta two-fluid model. Chemical Engineering Science,2001,56 (24),6813-6822.
    [44]Zheng, Y., Cheng, Y., Wei, F., Jin, Y. CFD simulation of hydrodynamics in downer reactors. Chemical Engineering Communications,2002,189 (12), 1598-1610.
    [45]Zhang, M. H., Chu, K. W., Wei, F., Yu, A. B. A CFD-DEM study of the cluster behavior in riser and downer reactors. Powder Technology,2008,184 (2), 151-165.
    [46]Fan, Y. P., Ye, S., Chao, Z. X., Lu, C. X., Sun, G. G., Shi, M. X. Gas-solid two-phase flow in FCC riser. AIChE Journal,2002,48 (9),1869-1887.
    [47]Gao, J. S., Chang, J., Lan, X. Y, Yang, Y, Lu, C. X., Xu, C. M. CFD Modeling of mass transfer and stripping efficiency in FCCU strippers. AIChE Journal, 2008,54 (5),1164-1177.
    [48]Gao, J. S., Lan, X. Y, Fan, Y. P., Chang, J., Wang, G., Lu, C. X., Xu, C. M. CFD modeling and validation of the turbulent fluidized bed of FCC particles. AIChE Journal,2009,55 (7),1680-1694.
    [49]Wang, S., Yang, Y. C., Lu, H. L., Xu, P. F., Sun, L. Y. Computational fluid dynamic simulation based cluster structures-dependent drag coefficient model in dual circulating fluidized beds of chemical looping combustion. Industrial & Engineering Chemistry Research,2012,51 (3),1396-1412.
    [50]Wang, S., Liu, G D., Lu, H. L., Xu, P.F., Yang, Y. C., Gidaspow, D. A cluster structure-dependent drag coefficient model applied to risers. Powder Technology,2012,225,176-189.
    [51]Wang, S., Liu, G. D., Lu, H. L., Sun, L. Y, Xu, P. F. CFD simulation of bubbling fluidized beds using kinetic theory of rough sphere. Chemical Engineering Science,2012,71, 185-201.
    [52]Wang, S., Hao, Z. H., Lu, H. L., Yang, Y. C., Xu, P. F., Liu, G D. Hydrodynamic modeling of particle rotation in bubbling gas-fluidized beds. International Journal of Multiphase Flow,2012,39,159-178.
    [53]Wang, S. A., Xu, P. F., Lu, H. L., Yang, Y. C., Tin, L. J., Wang, J. X. Simulation of particles and gas flow behavior in a riser using a filtered two-fluid model. Chemical Engineering Science,2011,66(4),593-603.
    [54]Wang, S. A., Lu, H. L., Liu, G. D., Sheng, Z. H., Xu, P. F., Gidaspow, D. Modeling of cluster structure-dependent drag with Eulerian approach for circulating fluidized beds. Powder Technology,2011,208 (1),98-110.
    [55]Yin, L. J., Wang, S. Y, Lu, H. L., Wang, S. A., Xu, P. F., Wei, L. X., He, Y. R. Flow of gas and particles in a bubbling fluidized bed with a filtered two-fluid model. Chemical Engineering Science,2010,65 (9),2664-2679.
    [56]Liu, H. P., Lu, H. L. Numerical study on the cluster flow behavior in the riser of circulating fluidized beds. Chemical Engineering Journal,2009,150 (2-3), 374-384.
    [57]Wang, S. Y, Shen, Z. H., Lu, H. L., Yu, L., Liu, W. T., Ding, Y. L. Numerical predictions of flow behavior and cluster size of particles in riser with particle rotation model and cluster-based approach. Chemical Engineering Science, 2008,63(16),4116-4125.
    [58]Bi, H. T. T., Li, J. H. Multiscale analysis and modeling of multiphase chemical reactors. Advanced Powder Technology,2004,15 (6),607-627.
    [59]Dong, W., Wang, W., Li, J. A multiscale mass transfer model for gas-solid riser flows:Part 1-Sub-grid model and simple tests. Chemical Engineering Science, 2008,63 (10),2798-2810.
    [60]Dong, W., Wang, W., Li, J. A multiscale mass transfer model for gas-solid riser flows:Part Ⅱ-Sub-grid simulation of ozone decomposition. Chemical Engineering Science,2008,63 (10),2811-2823.
    [61]Lu, B., Wang, W., Li, J. H., Wang, X. H., Gao, S. Q., Lu, W. M., Xu, Y. H., Long, J. Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model. Chemical Engineering Science,2007,62 (18-20),5487-5494.
    [62]Wang, W., Li, J. H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach-Extension of the EMMS model to the sub-grid level. Chemical Engineering Science,2007,62 (1-2),208-231.
    [63]Chen, X. Z., Shi, D. P., Gao, X., Luo, Z. H. A fundamental CFD study of the gas-solid flow field in fluidized bed polymerization reactors. Powder Technology,2011,205 (1-3),276-288.
    [64]Jiang, C. W., Zheng, Z. W., Zhu, Y. P., Luo, Z. H. Design of a two-stage fluidized bed reactor for preparation of diethyl oxalate from carbon monoxide. Chemical Engineering Research& Design,2012,90 (7),915-925.
    [65]Luo, Z. H., Su, P. L., You, X. Z., Shi, D. P., Wu, J. C. Steady-state particle size distribution modeling of polypropylene produced in tubular loop reactors. Chemical Engineering Journal,2009,146 (3),466-476.
    [66]Yan, W. C., Li, J., Luo, Z. H. A CFD-PBM coupled model with polymerization kinetics for multizone circulating polymerization reactors. Powder Technology, 2012,231,77-87.
    [67]Yan, W. C., Luo, Z. H., Lu, Y. H., Chen, X. D. A CFD-PBM-PMLM integrated model for the gas-solid flow fields in fluidized bed polymerization reactors. AIChE Journal,2012,58 (6),1717-1732.
    [68]Sun, J. Y, Wang, J. D., Yang, Y. R. CFD simulation and wavelet transform analysis of vortex and coherent structure in a gas-solid fluidized bed. Chemical Engineering Science,2012,71,507-519.
    [69]Sun, J. Y, Zhou, Y. F., Ren, C. J., Wang, J. D., Yang, Y. R. CFD simulation and experiments of dynamic parameters in gas-solid fluidized bed. Chemical Engineering Science,2011,66 (21),4972-4982.
    [70]Deen, N. G., Annaland, M. V., Van der Hoef, M. A., Kuipers, J. A. M. Review of discrete particle modeling of fluidized beds. Chemical Engineering Science, 2007,62 (1-2),28-44.
    [71]Enwald, H., Peirano, E., Almstedt, A. E. Eulerian two-phase flow theory applied to fluidization. Internation Journal of Multiphase Flow,1996,22,21-66.
    [72]Debling, J. A., Han, G C., Kuijpers, F., Verburg, J., Zacca, J., Ray, W. H. Dynamic modeling of product grade transitions for olefin polymerization processes. AIChE Journal,1994,40 (3),506-520.
    [73]Zacca, J. J., Debling, J. A., Ray, W. H. Reactor residence time distribution effects on the multistage polymerization of olefins—Ⅰ. Basic principles and illustrative examples, polypropylene. Chemical Engineering Science,1996,51 (21),4859-4886.
    [74]Wang, Z. L., Kwauk, M., Li, H. Z. Fluidization of fine particles. Chemical Engineering Science,1998,53 (3),377-395.
    [75]Zhang, Y., Grace, J. R., Bi, X., Lu, C., Shi, M. Effect of louver baffles on hydrodynamics and gas mixing in a fluidized bed of FCC particles. Chemical Engineering Science,2009,64 (14),3270-3281.
    [76]Zhou, L., Diao, R. L., Zhou, T., Wang, H., Kage, H., Mawatari, Y. Behavior of magnetic Fe(3)O(4) nano-particles in magnetically assisted gas-fluidized beds. Advanced Powder Technology,2011,22 (3),427-432.
    [77]郝志刚,朱庆山,李洪钟.内构件流化床内颗粒停留时间分布及压降的研究. 过程工程学报,2006,2,359-363.
    [78]Gao, J. S., Chang, J., Xu, C. M., Lan, X. Y, Yang, Y. CFD simulation of gas solid flow in FCC strippers. Chemical Engineering Science,2008,63 (7), 1827-1841.
    [79]Therdthianwong, A., Pantaraks, P., Therdthianwong, S. Modeling and simulation of circulating fluidized bed reactor with catalytic ozone decomposition reaction. Powder Technology,2003,133 (1),1-14.
    [80]Hosseini, S. H., Rahimi, R., Zivdar, M., Samimi, A. The effect of ring baffles on the hydrodynamics of a gas-solid bubbling fluidized bed using computational fluid dynamics. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2009,223 (10),2281-2289.
    [81]辛亮,宋兴龙,刘升芳.流化床内构件研究进展.中国科技博览,2011,(23),155-155.
    [82]周遊,鲁维民,郑冲,秦霁光.多孔挡板导流筒型流化床内构件研究.过程工霍学报,1995,16(2),143.150.
    [83]陈纪忠,阳永荣,侯琳熙,胡晓萍,王靖岱.流化床聚合反应装置. CN2603689.2004.
    [84]阳永荣,王靖岱,黄杏冰,陈纪忠,胡晓萍.冷凝和冷却相结合的气相流化床聚合装置.CN2603689,2003.
    [85]Mawatari, Y., Koide, T., Tatemoto, Y., Uchida, S., Noda, K. Effect of particle diameter on fluidization under vibration. Powder Technology,2002,123 (1), 69-74.
    [86]Mawatari, Y., Tatemoto, Y., Noda, K. Prediction of minimum fluidization velocity for vibrated fluidized bed. Powder Technology,2003,131 (1),66-70.
    [87]Valverde, J. M., Castellanos, A. Effect of vibration on agglomerate particulate fluidization. AIChE Journal,2006,52 (5),1705-1714.
    [88]Tatemoto, Y., Mawatari, Y., Yasukawa, T., Noda, K. Numerical simulation of particle motion in vibrated fluidized bed. Chemical Engineering Science,2004, 59 (2),437-447.
    [89]Tatemoto, Y., Mawatari, Y., Noda, K. Numerical simulation of cohesive particle motion in vibrated fluidized bed. Chemical Engineering Science,2005,60 (18), 5010-5021.
    [90]Morse, R. Sonic energy in granular solid fluidization. Industrial & Engineering Chemistry,1955,47(6),1170-1175.
    [91]Bratu, E., Jinescu, G. Heat transfer in vibrated fluidized layers. Rev. Roum. Chim, 1972,17 (1),49-56.
    [92]Mushtav, V., Korotokov, B. Study on hydrodynamic of a vibrated fluidized bed in the drying dispersal. Chem. Petro. Eng,1979,6,356-360.
    [93]靳海波,张济宇,赵增立,张碧江.振动流化床床层均匀流化行为.化工冶金,1999,20(3),247-254.
    [94]骆振福,樊茂明,陈清如.磁场流化床的稳定性研究.中国矿业大学学报(自然科学版),2001.371.377.
    [95]吕秀菊,曲红波,丛威,欧阳藩.磁场流化床在生化工程中的应用.化工进展,2001,3,7.11.
    [96]Hristov, J. Y. Fluidization of ferromagnetic particles in a magnetic field Part 2: Field effects on preliminarily gas fluidized bed. Powder Technology,1998,97 (1),35-44.
    [97]周涛,葛志强,Dave, R., Pfeffer, R.非磁性粘性颗粒在添加磁性大颗粒磁场 流化床中的流化性能.化学反应工程与工艺,2005,21(1), 22-26.
    [98]Chirone, R., Massimilla, L., Russo, S. Bubble-free fluidization of a cohesive powder in an acoustic field. Chemical Engineering Science,1993,48 (1),41-52.
    [99]韩超.细颗粒声场流态化特性研究.硕士学位论文,浙江大学,2008.
    [100]Levy, E. K., Shnitzer, I., Masaki, T., Salmento, J. Effect of an acoustic field on bubbling in a gas fluidized bed. Powder Technology,1997,90 (1),53-57.
    [101]Herrera, C., Levy, E. Bubbling characteristics of sound-assisted fluidized beds. Powder Technology,2001,119 (2),229-240.
    [102]Zhu, C., Liu, G, Yu, Q., Pfeffer, R., Dave, R. N., Nam, C. H. Sound assisted fluidization of nanoparticle agglomerates. Powder Technology,2004,141 (1), 119-123.
    [103]Guo, Q., Liu, H., Shen, W., Yan, X., Jia, R. Influence of sound wave characteristics on fluidization behaviors of ultrafine particles. Chemical Engineering Journal,2006,119 (1),1-9.
    [104]Reed, T. M., Fenske, M. R. Effects of agitation on gas fluidization of solids. Industrial and Engineering Chemistry,1955,47(2),275-282.
    [105]Rios, G., Gibert, H., Couderc, J. Agitation mecanique des couches fluidisees gazeuses:Ⅰ:Etude mecanique. The Chemical Engineering Journal,1977,13 (2),101-109.
    [106]Leva, M. Pressure drop and power requirements in a stirred fluidized bed. AIChE Journal,1960,6(4),688-692.
    [107]Murthy, J. S. N., Sekhar, P. C., Haritha, K., Balaram, P., Anjani, S. Hydrodynamic characteristics of stirred gas-solid fluidized bed. Journal of the Institute of Engineering (India), Chemical Engineering Division,2003,83, 39-44.
    [108]Murthy, J. S. N., Sekhar, P. C. Studies on hydrodynamics of mechanically stirred fluidized beds-a statistical approach. Indian Chemical Engineer,2004, 46(2),84-89.
    [109]马青山,冯连芳,陈鹏飞,王凯.搅拌流化床搅拌功率研究.化学工程,2001,29(3),20-24.
    [110]李凡,冯连芳,顾雪萍,王凯,刘波.气固搅拌流化床的床层压降.高校化学工程学报,2002,16(4).384-388.
    [111]冯连芳,马青山,陈鹏飞,顾雪萍,王凯.搅拌流化床流化特性实验研究. 化学工程,2000,28(3),33-37.
    [112]Shi, D. P., Luo, Z. H., Guo, A. Y. Numerical simulation of the gas-solid flow in fluidized-bed polymerization reactors. Industrial & Engineering Chemistry Research,2010,49 (9),4070-4079.
    [113]Watano, S., Sato, Y., Miyanami, K., Murakami, T., Nagami, N., Ito, Y, Kamata, T., Oda, N. Scale-up of agitation fluidized bed granulation. Ⅱ. Effects of scale, air flow velocity and agitator rotational speed on granule size, size distribution, density and shape. Chemical & Pharmaceutical Bulletin,1995,43 (7), 1217-1220.
    [114]Watano, S., Sato, Y, Miyanami, K., Ito, Y., Kamata, T., Oda, N. Scale-up of agitation fluidized bed granulation.Ⅲ. Effects of powder feed weight and blade angle on granule size, size distribution, density and shape. Chemical & Pharmaceutical Bulletin,1995,43(7),1224-1226.
    [115]Daud, W. R. W. Fluidized bed dryers-recent advances. Advanced Powder Technology,2008,19 (5),403-418.
    [116]Bait, R., Pawar, S., Banerjee, A., Mujumdar, A., Thorat, B. Mechanically agitated fluidized bed drying of cohesive particles at low air velocity. Drying Technology,2011,29 (7),808-818.
    [117]Beeckmans, J. M., Yu, Z. Continuous separation of solids in a mechanically fluidized-bed. Powder Technology,1992,70(1),77-81.
    [118]Reina, J., Velo, E., Puigjaner, L. Fluidization of waste-wood particles with mechanical agitation of the bed. Industrial & Engineering Chemistry Research, 2001,40(1),393-397.
    [119]Godard, K., Richardson, J. F. The use of slow speed stirring to initiate particulate fluidisation. Chemical Engineering Science,1969,24 (1),194-195.
    [120]Kim, J., Han, G. Y Effect of agitation on fluidization characteristics of fine particles in a fluidized bed. Powder Technology,2006,166 (3),113-122.
    [121]Kim, J., Han, G. Y. Simulation of bubbling fluidized bed of fine particles using CFD. Korean Journal of Chemical Engineering,2006,24 (3),445-450.
    [122]宋乙峰,朱庆山.搅拌流化床中超细氧化铁粉流态化及还原实验研究.过程工程学报,2011,11(3),361.367.
    [123]Molstedt, B., Moser, J. Fluid coking development:a mechanically fluidized reactor. Industrial & Engineering Chemistry,1958,50 (1),21-23.
    [124]Bartels, M., Lin, W., Nijenhuis, J., Kapteijn, F., van Ommen, J. R. Agglomeration in fluidized beds at high temperatures:Mechanisms, detection and prevention. Progress in Energy and Combustion Science,2008,34 (5), 633-666.
    [125]Zacca, J., Debling, J. Particle population overheating phenomena in olefin polymerization reactors. Chemical Engineering Science,2001,56 (13), 4029-4042.
    [126]Behjat, Y, Shahhosseini, S., Hashemabadi, S. H. CFD modeling of hydrodynamic and heat transfer in fluidized bed reactors. International Communications in Heat and Mass Transfer,2008,35 (3),357-368.
    [127]Hamzehei, M., Rahimzadeh, H. Numerical and experimental investigation of a fluidized bed chamber hydrodynamics with heat transfer. Korean Journal of Chemical Engineering,2010,27 (1),355-363.
    [128]Karimi, S., Mansourpour, Z., Mostoufi, N., Sotudeh-Gharebagh, R. CFD-DEM study of temperature and concentration distribution in a polyethylene fluidized bed reactor. Particulate Science and Technology,2011,29 (2),163-178.
    [129]艾元方,戴天红,陈长栋,高胜斌,钱壬章.流化床气固传热特性的实验研究.热能动力工程,1998,4,267-270.
    [130]Chen, X. Z., Luo, Z. H., Yan, W. C., Lu, Y. H., Ng, I. S. Three-dimensional CFD-PBM coupled model of the temperature fields in fluidized-bed polymerization reactors. AIChE Journal,2011,57 (12),3351-3366.
    [131]Dehnavi, M. A., Shahhosseini, S., Hashemabadi, S. H., Ghafelebashi, S. M. CFD simulation of hydrodynamics and heat transfer in gas phase ethylene polymerization reactors. International Communications in Heat and Mass Transfer,2010,37 (4),437-442.
    [132]Armstrong, L., Gu, S., Luo, K. Study of wall-to-bed heat transfer in a bubbling fluidised bed using the kinetic theory of granular flow. International Journal of Heat and Mass Transfer,2010,53 (21),4949-4959.
    [133]Kaneko, Y, Shiojima, T., Horio, M. DEM simulation of fluidized beds for gas-phase olefin polymerization. Chemical Engineering Science,1999,54 (24), 5809-5821.
    [134]Collier, A., Hayhurst, A., Richardson, J., Scott, S. The heat transfer coefficient between a particle and a bed (packed or fluidised) of much larger particles. Chemical Engineering Science,2004,59 (21),4613-4620.
    [135]Scott, S. A., Davidson, J. F., Dennis, J. S., Hayhurst, A. N. Heat transfer to a single sphere immersed in beds of particles supplied by gas at rates above and below minimum fluidization. Industrial & Engineering Chemistry Research, 2004,43 (18),5632-5644.
    [136]Parmar, M., Hayhurst, A. The heat transfer coefficient for a freely moving sphere in a bubbling fluidised bed. Chemical Engineering Science,2002,57 (17),3485-3494.
    [137]Ming-Yen Wey, Chiou-Liang Lin, You, S.-D. Fluidized behavior and heat transfer in a bubbling fluidized bed incinerator. J. Environ. Eng. Manage,2007, 17(3),169-175.
    [138]Basu, P., Nag, P. Heat transfer to walls of a circulating fluidized-bed furnace. Chemical Engineering Science,1996,51 (1),1-26.
    [139]Zhou, Z. Y., Yu, A. B., Zulli, P. Particle scale study of heat transfer in packed and bubbling fluidized beds. AIChE Journal,2009,55 (4),868-884.
    [140]Chang, J., Wang, G., Gao, J., Zhang, K., Chen, H., Yang, Y. CFD modeling of particle-particle heat transfer in dense gas-solid fluidized beds of binary mixture. Powder Technology,2012,217,50-60.
    [141]Zhao, Y. Z., Jiang, M. Q., Liu, Y. L., Zheng, J. Y. Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tube. AIChE Journal,2009,55 (12),3109-3124.
    [142]Kim, S. W., Ahn, J. Y., Kim, S. D., Hyun Lee, D. Heat transfer and bubble characteristics in a fluidized bed with immersed horizontal tube bundle. International Journal of Heat and Mass Transfer,2003,46 (3),399-409.
    [143]Verschuren, I. L., Wijers, J. G, Keurentjes, J. T. Effect of mixing on product quality in semibatch stirred tank reactors. AIChE Journal,2001,47 (8), 1731-1739.
    [144]Gholap, R. V., Petrozzi, S., Bourne, J. R. Influence of viscosity on product distribution of fast competitive chemical reactions. Chemical Engineering & Technology,1994,17(2),102-107.
    [145]Bourne, J., Hilber, C., Petrozzi, S. The influence of viscosity on micromixing in turbulent flows. Chemical Engineering and Processing:Process Intensification,1989,25(3),133-139.
    [146]Bourne, J., Gholap, R. An approximate method for predicting the product distribution of fast reactions in stirred-tank reactors. The Chemical Engineering Journal and The Biochemical Engineering Journal,1995,59 (3), 293-296.
    [147]Baldyga, J., Bourne, J. R.; Turbulent mixing and chemical reactions, Wiley: 1999.
    [148]饶麒,樊建华,王运东,费维扬.搅拌槽内黏性流体流动的DPIV测量与CFD模拟.化工学报,2004,8,1374.1379.
    [149]Fan, L., Mao, Z., Wang, Y. Numerical simulation of turbulent solid-liquid two-phase flow and orientation of slender particles in a stirred tank. Chemical Engineering Science,2005,60 (24),7045-7056.
    [150]Feng, X., Cheng, J., Li, X., Yang, C., Mao, Z. Numerical simulation of turbulent flow in a baffled stirred tank with an explicit algebraic stress model. Chemical Engineering Science,2012,69 (1),30-44.
    [151]Kolhapure, N. H., Tilton, J. N., Pereira, C. J. Integration of CFD and condensation polymerization chemistry for a commercial multi-jet tubular reactor. Chemical Engineering Science,2004,59 (22-23),5177-5184.
    [152]Ohcul, A. A., Janiga, G b., Thevenin, D. Comparison of various micromixing approaches for computational fluid dynamics simulation of barium sulfate precipitation in tubular reactors. Industrial & Engineering Chemistry Research, 2008,48(2),999-1007.
    [153]Baldyga, J., Bourne, J. A fluid mechanical approach to turbulent mixing and chemical reaction, part III computational and experimental results for the new micromixing model. Chemical Engineering Communications,1984,28 (4-6), 259-281.
    [154]Bourne, J. R. Mixing and the selectivity of chemical reactions. Organic Process Research & Development,2003,7 (4),471-508.
    [155]Ottino, J., Ranz, W. E., Macosko, C. W. A lamellar model for analysis of liquid-liquid mixing. Chemical Engineering Science,1979,34 (6),877-890.
    [156]Vicum, L., Ottiger, S., Mazzotti, M., Makowski, L., Baldyga, J. Multi-scale modeling of a reactive mixing process in a semibatch stirred tank. Chemical Engineering Science,2004,59 (8),1767-1781.
    [157]Brucato, A., Ciofalo, M., Grisafi, F., Tocco, R. On the simulation of stirred tank reactors via computational fluid dynamics. Chemical Engineering Science, 2000,55 (2),291-302.
    [158]Fournier, M., Falk, L., Villermaux, J. Anew parallel competing reaction system for assessing micromixing efficiency-experimental approach. Chemical Engineering Science,1996,51 (22),5053-5064.
    [159]Nagaki, A., Togai, M., Suga, S., Aoki, N., Mae, K., Yoshida, J. Control of extremely fast competitive consecutive reactions using micromixing. Selective Friedel-Crafts aminoalkylation. Journal of the American Chemical Society, 2005,127(33),11666-11675.
    [160]Baldyga, J., Makowski, L. CFD modelling of mixing effects on the course of parallel chemical reactions carried out in a stirred tank. Chemical Engineering & Technology,2004,27 (3),225-231.
    [161]Kolhapure, N. H., Fox, R. O. CFD analysis of micromixing effects on polymerization in tubular low-density polyethylene reactors. Chemical Engineering Science,1999,54 (15),3233-3242.
    [162]Marchisio, D. L., Barresi, A. A. CFD simulation of mixing and reaction:the relevance of the micro-mixing model. Chemical Engineering Science,2003,58 (16),3579-3587.
    [163]Tsai, K., Fox, R. O. PDF modeling of turbulent-mixing effects on initiator efficiency in a tubular LDPE reactor. AIChE Journal,2004,42 (10), 2926-2940.
    [164]Liu, Y., Fox, R. O. CFD predictions for chemical processing in a confined impinging-jets reactor. AIChE Journal,2006,52 (2),731-744.
    [165]Liu, Y., Cheng, C. Y, Prud'homme, R. K., Fox, R. O. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chemical Engineering Science,2008,63 (11),2829-2842.
    [166]Marchisio, D. L. Large Eddy Simulation of mixing and reaction in a Confined Impinging jets Reactor. Computers & Chemical Engineering,2009,33 (2), 408-420.
    [167]Liu, Y, Raman, V., Fox, R. O., Harvey, A. D. Scale up of gas-phase chlorination reactors using CFD. Chemical Engineering Science,2004,59 (22-23),5167-5176.
    [168]Gavi, E., Marchisio, D. L., Barresi, A. A. CFD modelling and scale-up of confined impinging jet reactors. Chemical Engineering Science,2007,62 (8), 2228-2241.
    [169]Akiti, O., Armenante, P. M. Experimentally-validated micromixing-based CFD model for fed-batch stirred-tank reactors. AIChE Journal,2004,50 (3), 566-577.
    [170]Wang, L. G, Fox, R. O. Comparison of micromixing models for CFD simulation of nanoparticle formation. AIChE Journal,2004,50 (9), 2217-2232.
    [171]Cheng, J., Yang, C., Mao, Z.-S. CFD-PBE simulation of premixed continuous precipitation incorporating nucleation, growth and aggregation in a stirred tank with multi-class method. Chemical Engineering Science,2012,68 (1), 469-480.
    [172]Kolhapure, N. H., Fox, R. O., Daiss, A., Mahling, F. O. PDF simulations of ethylene decomposition in tubular LDPE reactors. AIChE Journal,2005,51 (2),585-606.
    [173]Serra, C., Schlatter, G., Sary, N., Schonfeld, F., Hadziioannou, G Free radical polymerization in multilaminated microreactors:2D and 3D multiphysics CFD modeling. Microfluidics and Nanofluidics,2007,3 (4),451-461.
    [174]Cherbanski, R., Milewska, A., Molga, E. Safety aspects in batch reactors for styrene suspension polymerization. Industrial & Engineering Chemistry Research,2007,46 (18),5898-5906.
    [175]Zimmermann, S., Taghipour, F. CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors. Industrial & Engineering Chemistry Research,2005,44 (26),9818-9827.
    [176]Chalermsinsuwan, B. P., P.Gidaspow, D. Kinetic theory based computation of PSRI riser:Part Ⅱ-Computation of mass transfer coefficient with chemical reaction. Chemical Engineering Science,2009,64 (6),1212-1222.
    [177]Hansen, K. G., Solberg, T., Hjertager, B. H. A three-dimensional simulation of gas/particle flow and ozone decomposition in the riser of a circulating fluidized bed. Chemical Engineering Science,2004,59 (22-23),5217-5224.
    [178]Papadikis, K., Gu, S., Bridgwater, A. V. CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B:Heat, momentum and mass transport in bubbling fluidised beds. Chemical Engineering Science,2009,64 (5), 1036-1045.
    [179]Papadikis, K., Gu, S., Bridgwater, A. V. Computational modelling of the impact of particle size to the heat transfer coefficient between biomass particles and a fluidised bed. Fuel Processing Technology,2010,91 (1),68-79.
    [180]Xue, Q., Heindel, T., Fox, R. A CFD model for biomass fast pyrolysis in fluidized-bed reactors. Chemical Engineering Science,2011,66 (11), 2440-2452.
    [181]Dou, B., Song, Y. A CFD approach on simulation of hydrogen production from steam reforming of glycerol in a fluidized bed reactor. International Journal of Hydrogen Energy,2010,35 (19),10271-10284.
    [182]Liu, D., Chen, X., Zhou, W., Zhao, C. Simulation of char and propane combustion in a fluidized bed by extending DEM-CFD approach. Proceedings of the Combustion Institute,2011,33 (2),2701-2708.
    [183]Vegendla, S. P., Heynderickx, G., Marin, G. Probability Density Function (PDF) Simulation of Turbulent Reactive Gas-Solid Flow in a Riser. Chemical Engineering & Technology,2009,32 (3),492-500.
    [184]Ahmadzadeh, A., Arastoopour, H., Teymour, F., Strumendo, M. Population balance equations' application in rotating fluidized bed polymerization reactor. Chemical Engineering Research & Design,2008,86 (4),329-343.
    [185]王其成,任金天,斐培,张锴,Brandani, S. CFD simulation of jet penetration depth in gas-solid fluidized bed:comparisons with experiments. Journal of Chemical Industry and Engineering (China),2009,60 (6),1402-1408.
    [186]汤颜菲.丙烯聚合多区流化床反应器内气固流动行为的数值模拟.硕士学位论文,浙江大学,2006.
    [187]于勇,蔡飞鹏,周力行,时铭显.下降管中稠密两相湍流的数值模拟.工程热物理学报,2005,1,117.120.
    [188]王擎,孙佰仲,吕海生,崔玉萍,孙键.循环床炉内气固两相流动特性的数值模拟探讨.东北电力学院学报,2004,2,1.5.
    [189]Gidaspow, D., Bezburuah, R., Ding, J. Hydrodynamics of circulating fluidized beds:kinetic theory approach; Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering:1991.
    [190]Lun, C. K. K., Savage, S. B., Jeffrey, D. J., Chepurniy, N. Kinetic theories for granular flow:inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics,1984,140,223-256.
    [191]Van Wachem, B., Schouten, J., Krishna, R., Van den Bleek, C. Validation of the Eulerian simulated dynamic behaviour of gas-solid fluidised beds. Chemical Engineering Science,1999,54 (13-14),2141-2149.
    [192]Ogawa, S., Umemura, A., Oshima, N. On the equations of fully fluidized granular-materials. Zeitschrift Fur Angewandte Mathematik Und Physik,1980, 31 (4),483-493.
    [193]Schaeffer, D. G Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations,1987,66, 19-50.
    [194]Wen, C. Y., Yu, Y. H. Mechanics of fluidization. Chemical Engineering Progress Symposium Series,1966,62,100-111.
    [195]Gidaspow, D.; Multiphase flow and fluidization:continuum and kinetic theory descriptions, Academic Press:1994.
    [196]Syamlal, M., O'Brien, T. J. Computer simulation of bubbles in a fluidized bed. AIChE Symposium Series,1989,85,22-31.
    [197]DallaValle, J. M.; Micromeritics:the technology of fine particles, Pitman Pub. Corp.:1948.
    [198]Ergun, S. Fluid flow through packed columns. Chemical Engineering Progress, 1952,48(2),89-94.
    [199]Asegehegn, T. W., Schreiber, M., Krautz, H. J. Numerical simulation and experimental validation of bubble behavior in 2D gas-solid fluidized beds with immersed horizontal tubes. Chemical Engineering Science,2011,66 (21), 5410-5427.
    [200]Sanyal, J., Cesmebasi, E. On the effect of various momentum transfer coefficient models on bubble dynamics in a rectangular gas fluidized bed. Chemical Engineering Science,1994,49(23),3955-3966.
    [201]Taghipour, F., Ellis, N., Wong, C. Experimental and computational study of gas-solid fluidized bed hydrodynamics. Chemical Engineering Science,2005, 60(24),6857-6867.
    [202]Ranz, W., Marshall, W. Evaporation from drops. Chem. Eng. Prog,1952,48 (3),141-146.
    [203]Gunn, D. J. Transfer of heat or mass to particles in fixed and fluidised beds. InternationalJournal of Heat and Mass Transfer,1978,21 (4),467-476.
    [204]Wilkinson, D. Determination of minimum fluidization velocity by pressure fluctuation measurement. Canadian Journal of Chemical Engineering,1995, 73 (4),562-565.
    [205]Saxena, S., Waghmare, B. Investigations of pressure fluctuation history records of gas-solid fluidized beds. International Journal of Energy Research,2000, 24 (6),495-502.
    [206]兰静.基于小波变换的鼓泡流化床压力脉动信号分析.硕士学位论文,东南大学,2004.
    [207]Norouzi, H. R., Mostoufi, N., Mansourpour, Z., Sotudeh-Gharebagh, R., Chaouki, J. Characterization of solids mixing patterns in bubbling fluidized beds. Chemical Engineering Research and Design,2011,89 (6),817-826.
    [208]Busciglio, A., Vella, G, Micale, G, Rizzuti, L. Analysis of the bubbling behaviour of 2D gas solid fluidized beds:Part II. Comparison between experiments and numerical simulations via digital image analysis technique. Chemical Engineering Journal,2009,148(1),145-163.
    [209]Hosseini, S. H., Ahmadi, G, Rahimi, R., Zivdar, M., Esfahany, M. N. CFD studies of solids hold-up distribution and circulation patterns in gas-solid fluidized beds. Powder Technology,2010,200 (3),202-215.
    [210]Owoyemi, O., Lettieri, P., Place, R. Experimental validation of Eulerian-Eulerian simulations of rutile industrial powders. Industrial& Engineering Chemistry Research,2005,44 (26),9996-10004.
    [211]Wang, J. W., van der Hoef, M. A., Kuipers, J. A. M. CFD study of the minimum bubbling velocity of Geldart A particles in gas-fluidized beds. Chemical Engineering Science,2010,65 (12),3772-3785.
    [212]秦瑞康,吉仁旺.大型聚乙烯反应器的制造.压力容器,2002,19(10),32.35.
    [213]Krishna, R., Van Baten, J. Using CFD for scaling up gas-solid bubbling fluidised bed reactors with Geldart A powders. Chemical Engineering Journal, 2001,82(1),247-257.
    [214]Asegehegn, T. W., Schreiber, M., Krautz, H. J. Numerical simulation and experimental validation of bubble behavior in 2D gas-solid fluidized beds with immersed horizontal tubes. Chemical Engineering Science,2011,66 (21), 5410-5427.
    [215]Fan, R.; Computational fluid dynamics simulation of fluidized bed polymerization reactors, ProQuest:2006.
    [216]Wang, J., Ren, C., Yang, Y., Hou, L. Characterization of particle fluidization pattern in a gas solid fluidized bed based on acoustic emission (AE) measurement. Industrial & Engineering Chemistry Research,2009,48 (18), 8508-8514.
    [217]Hendrickson, G. Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chemical Engineering Science,2006,61 (4),1041-1064.
    [218]Lim, C., Gilbertson, M., Harrison, A. Bubble distribution and behaviour in bubbling fluidised beds. Chemical Engineering Science,2007,62 (1),56-69.
    [219]王校铮.乙烯气相聚合过程的模型化.硕士学位论文,浙江大学,2007.
    [220]吴钢良.多区循环反应器丙烯聚合与模拟分析.硕士学位论文,浙江大学,2011.
    [221]Read, N. K., Zhang, S. X., Ray, W. H. Simulations of a LDPE reactor using computational fluid dynamics. AIChE Journal,1997,43(1),104-117.
    [222]Zhou, W., Marshall, E., Oshinowo, L. Modeling LDPE tubular and autoclave reactors. Industrial & Engineering Chemistry Research,2001,40 (23), 5533-5542.
    [223]周其凤,胡汉杰;高分子化学,化学工业出版社:2001.
    [224]Tian, Z., Gu, X., Wu, G, Feng, L., Fan, Z., Hu, G. Effects of Switching Frequency of a Periodic Switching Polymerization Process on the Microstructures of Ethylene-Propylene Copolymers in Polypropylene/Poly (ethylene-co-propylene) in-Reactor Alloys. Industrial & Engineering Chemistry Research,2012,51 (5),2257-2270.
    [225]丛海峰,高正明,闵健.搅拌槽内非牛顿流体的微观混合特性.合成橡胶工业,2006,29(1), 14-17.
    [226]Atibeni, R. A.搅拌槽内非牛顿流体粘度对微观混合影响的研究.硕士学位论文,北京化工大学,2005.
    [227]Fluent 6.2 User's guide, Fluent Inc., USA.2005.
    [228]Magnussen, B. F., Hjertager, B. H. In On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symposium (International) on Combustion,1977, Elsevier:1977,719-729.
    [229]Bakker, A., Haidari, A. H., Marshall, E. M. Design reactors via CFD. Chemical Engineering Progress,2001,97 (12),30-39.
    [230]Baldyga, J., Bourne, J., Hearn, S. Interaction between chemical reactions and mixing on various scales. Chemical Engineering Science,1997,52 (4), 457-466.