复杂背景下的交通标志检测和分类算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通标志检测和分割是未来智能交通的一种重要组成部分,是辅助驾驶和自动驾驶技术的一个重要模块。交通标志检测核心技术在于算法。目前,尽管计算机技术和人工智能技术在飞速发展,目标检测和目标识别的算法在不断的涌现,但交通标志具有多类性、周围环境的多变性和复杂性等特点,导致现有算法应用于研究交通标志检测和分类时存在很大的困难。
     实际交通标志周围环境的复杂性等因素常常导致不完整交通标志出现,这给检测带来巨大的困难,而现有的检测算法并不能很好的处理上述问题。实现交通标志特征的有效选择和提取是交通标志分类的一个关键性前提条件,到目前为止还没有一个学者从理论上证明或者实验上证实最优特征的存在。如何实现交通标志的分类是交通标志识别的另一个关键技术,追求分类算法的鲁棒性和有效性仍然是尚未有效解决的热点问题。
     针对以上不足,本文研究并提出了在复杂背景下基于颜色概率模型和局部模板的交通标志检测算法以及基于隐形状模型的检测算法;研究并提出了基于Gabor小波变换的交通标志特征提取、基于改进的MPCA和改进的MDA的特征选择算法;研究并提出了基于上述特征的AdaBoost分类算法。具体而言,论文的主要研究工作如下:
     (1)在分析现在交通标志检测算法的基础上,提出基于颜色概率模型的方法来处理自然场景下采集的交通标志颜色失真性问题,克服了直接采用各类颜色模型的局限性,提高了交通标志检测的准确率;在分析形状匹配算法基础上,提出了基于局部模板的检测方法,克服了全局模板无法检测不完整交通标志的局限性,达到能检测不完整交通标志的目的。针对上述两个方面,分别进行了对比实验,实验证明了基于颜色概率模型和局部模板方法在检测交通标志方面的可行性和有效性。
     (2)在研究路面交通标志快速检测算法的基础上,针对现在交通标志检测算法在时效性和检测率方面的不足,提出基于隐形状模型的交通标志检测方法。隐形状模型从像素点及其局部出发,克服了常用模板匹配方法在时间开销上的缺陷,大大提高了检测的速度;自上而下的分割方式解决了交通标志常用检测方法在分割过程中容易出现像素误分割的问题,提高了分割的准确率。由于该方法在分割过程中是从局部出发,因此,它还能实现对不完整交通标志的有效分割。最后通过实验验证了此方法在分割过程中的高效性。
     (3)在交通标志实现有效分割的基础上,研究交通标志的频域分布特征,根据Gabor小波变换良好的空间和频率局部化特征以及在多分辨率方面的特性,研究了Gabor小波变换在特征提取方面的效果,考察了Gabor小波变换在提取交通标志频域和空域信息时的特性,重点分析了Gabor小波变换在提取交通标志影像特征过程中分别对边缘、亮度和特征矩等方面的响应,提出了基于Gabor小波变换的特征提取,并计算获取了交通标志的Gabor特征,最后通过实验验证了Gabor特征作为交通标志识别的特征向量的可行性。
     (4)在研究复杂数据消除冗余度和降维过程中,分析了PCA在多线性代数领域的推广形式MPCA在消除冗余度和降维方面的效果,重点考察了MPCA算法的理论基础和算法的迭代实现过程,提出了一种改进的MPCA算法,在理论上证明了改进的MPCA算法在消除冗余度方面更优于原MPCA,在处理速度方面效果更优于原MPCA算法,同时还考察了改进的MPCA算法和PCA算法以及2DPCA算法在处理数据方面的能力。最后分别通过对比实验,验证了改进的MPCA算法在处理速度和消除数据之间的冗余度方面优越性。
     (5)在研究复杂数据消除冗余度和降维的过程中,考虑到数据在特征空间上各类别之间存在的差异性,分析了LDA在多线性代数领域的推广形式MDA在消除冗余度和降维方面的效果,重点考察了MDA算法的理论基础和算法的迭代实现过程,完善了MDA算法的理论基础,充实了MDA算法,提出了一种新的MDA算法,改善了MDA算法的速度;在分析MDA算法的过程中,提出了一种改进的MDA算法,并在理论上证明了改进的MDA算法在消除冗余度方面更优于原MDA,在处理速度方面效果更优于原MDA算法,同时还考察了改进的MDA算法和LDA算法以及2DLDA算法在处理数据方面的能力。最后分别通过对比实验,验证了两类改进的MDA算法在处理速度和消除数据之间的冗余度方面优越性。
     (6)通过分析改进的MPCA算法和改进的MDA算法在消除冗余度方面的效果和区别,研究了改进的MPCA和MDA的融合方法在消除特征相关性方面的特性,提出了一种融合改进的MPCA和MDA的特征选择方法,实现了特征空间数据冗余度的有效消除。最后通过实验验证了该方法在消除交通标志特征数据冗余度和特征提取方面的效果。
     (7)在研究现有分类算法的基础上,从理论和算法的实现角度重点考察了AdaBoost算法的强大分类能力,以及AdaBoost在交通标志分类方面的应用,提出了以BP神经网络作为弱分类器,分别以Gobor特征、改进的MPCA特征、改进的MDA特征、融合改进的MPCA和MDA特征、融合改进的MPCA和MDA提取的Gabor特征作为输入特征的AdaBoost自动分类算法。最后通过对比实验,验证了上述提出的算法的可行性。
Traffic signs detection and segmentation is an important research domain in ITS (Intelligent Transportation System) and part of the key components in Driving Assistance System and automatic driving technology in the future. At present, in the pace of rapid develop of computer technology and artificial intelligence technology, target detection and target recognition algorithm have been brought out and improved. However, because of the many types of traffic signs, the variability and complexity of the surrounding environment and the specific nature of the problem, it is necessary to research the algorithm of traffic signs detection and segmentation.
     Traffic sign data are required to be collected from both sides of the actual road. The complexity of environment and any various factors may lead to emergement of incomplete traffic sign and the existing detection algorithm can't handle the issue well. How to achieve effective feature of traffic signs is the key procedure in order to realize the well classification results of traffic sign. So far, the existence of the best have not been proved in the theory or verified by experiment. And the pursuit to robustness and effectiveness of algorithm still is a hot issue in the traffic signs classification. Research in this area has always remained constant development.
     This paper makes the following researches according to the above descriptions and problems.
     (1) Based on the research and analysis of existing algorithm of traffic signs detection, a detection algorithm is proposed base on the color probabilistic model approach. It can been used to rectify the color distortion of traffic sign collected from the natural scene, overcome the limitations of various models and improve the detection accuracy; in the analysis of shape matching templates, a local templates matching method is proposed to overcome the drawback of global templates matching method which incomplete traffic sign is not detected. In response to these aspects proposed, respectively, experiments have proved that the traffic signs detection algorithm based on the color probabilistic model and local templates is feasible and effective.
     (2) In the study of existing algorithm of traffic signs, the Implicit Shape Model(ISM) is proposed to solve the timeliness and lack of detection rate of existing algorithms. The main idea of ISM is to integrate recognition and segmentation into a common probabilistic framework and generate a per-pixel confidence measure specifying the area that supports a hypothesis and how much it can be trusted. It not only overcomes the shortcomings of the inefficiency of previously published detection methods of traffic signs but also has the ability to detect the incomplete traffic signs under significant partial occlusion. Finally, we present the test results which show the proposed method can efficiently detect and segment the traffic signs from the natural scenes.
     (3) The frequency distribution feature of traffic sign is studied after achieving the effective segment. According to the good localization characteristics of Gabor wavelet transform between spatial and frequency, as well as multi-resolution characteristics, effect which Gabor wavelet extracts object feature is focus to study, especially traffic sign object. We mainly emphasis on the edge of the process, the response of intensity and character moments of traffic signs, proposed a feature extraction based on the Gabor wavelet transform, and calculate and obtain the Gabor features of traffic signs. Finally, experiment verifies the Gabor features as the traffic sign recognition feature vector is feasible.
     (4) By studying the process to eliminate redundancy and reduce dimensionality of complex data, MPCA (Multilinear Principal Component Analysis), the extended form of PCA (Principal Component Analysis) in the multilinear algebra field, is studied, and theoretical basis of MPCA algorithm and iterative implementation process of algorithm are emphasized on. A new improved proposed MPCA algorithm is theoretically proved to superior to the original MPCA algorithm in data redundancy elimination, as well as processing speed. At the same time, we also compare to improved MPCA algorithm's ability to process data to PCA and 2DPCA. Finally, by comparing the experiments were to verify the improved MPCA algorithm's superiority in processing speed and eliminating data redundancy.
     (5) By studying the process to eliminate redundancy and reduce dimensionality of complex data based on the distinction between the various categories and between the various samples, MDA (Multilinear Discriminant Analysis), the extended form of LDA (Linear Discriminant Analysis) in the multilinear algebra field, is studied, and theoretical basis of MDA algorithm and iterative implementation process of algorithm are emphasized on. On this basis, the theoretical basis of MDA is enriched and a new iterative process is proposed to improve the speed of the processing. Then, in the in-depth analysis of MDA, a new improved proposed MDA algorithm is theoretically proved to superior to the original MDA algorithm in data redundancy elimination, as well as processing speed. At the same time, we also compare to improved MDA algorithm's ability to process data to LDA and 2DLDA. Finally, by comparing the experiments were to verify two types of improved MDA algorithm's superiority in processing speed and eliminating data redundancy.
     (6) By analyzing the effectiveness and differences of eliminating redundancy and reducing dimensionality between improved MPCA and improved MDA, a new feature selection method, fusion of improved MPCA and improved MDA, is advanced to realize the effective compression of feature space dimension and elimination of redundancy. Finally, experiments show that the proposed method confirms the correctness of the theoretical analysis.
     (7) Based on the study of existing classification algorithms, we notice that an AdaBoost algorithm, one of top 10 classification algorithms, has a very powerful classification capability and little application in the classification of traffic signs. AdaBoost classification in the application of traffic sign is presented, whose weak classifier is BP neural network and whose input feature vectors are Gabor feature, the improved MPCA feature, the improved MDA, the Integration of improved MPCA and improved MDA and Gabor feature of integration of improved MPCA and MDA, respectively. Finally, contrast experiments verify the feasibility of the proposed algorithm.
引文
[1]王武宏.道路交通系统中的驾驶行为理论.2001:北京:科学出版社.
    [2]Warshawsky-Livne, L. and D. Shinar, Effects of uncertainty, transmission type, driver age and gender on brake reaction and movement time. Journal of Safety Research,2002.33(1):p.117-128.
    [3]Arnoul, P., et al. Traffic signs localization for highways inventory from a video camera on board a moving collection van.2002:IEEE.
    [4]Madeira, S., et al. Automatic traffic signs inventory using a mobile mapping system.2005:Citeseer.
    [5]Priese, L., et al. New results on traffic sign recognition. In Intelligent Vehicles '94 Symposium, Proceedings of the.1994.
    [6]Estable, S., et al. A real-time traffic sign recognition system, in Intelligent Vehicles '94 Symposium, Proceedings of the.1994.
    [7]Yong-Jian, Z., W. Ritter and R. Janssen. An adaptive system for traffic sign recognition, in Intelligent Vehicles '94 Symposium, Proceedings of the.1994.
    [8]Priese, L., R. Lakmann and V. Rehrmann, Ideogram identification in a realtime traffic sign recognitionsystem. Intelligent Vehicles' 95 Symposium., Proceedings of the,1995:p.310-314.
    [9]de, E.A., J.M. Armingol and M. Mata, Traffic sign recognition and analysis for intelligent vehicles. Image and Vision Computing,2003.21(3):p.247-258.
    [10]de, E.A., et al., Visual sign information extraction and identification by deformable models for intelligent vehicles. Intelligent Transportation Systems, IEEE Transactions on,2004.5(2):p.57-68.
    [11]de, E.A., J.M. Armingol and M.A. Salichs, TRAFFIC SIGN DETECTION FOR DRIVER SUPPORT SYSTEMS. International Conference on Field and Service Robotics.
    [12]de, E.A., et al., Road traffic sign detection and classification. Industrial Electronics, IEEE Transactions on,1997.44(6):p.848-859.
    [13]de, E.A., et al., Neural traffic sign recognition for autonomous vehicles. Industrial Electronics, Control and Instrumentation,1994. IECON'94.,20th International Conference on,1994.2.
    [14]Ghica, D., S.W. Lu and X. Yuan, Recognition of traffic signs by artificial neural network. Neural Networks,1995. Proceedings., IEEE International Conference on, 1995.3.
    [15]Akatsuka, H. and S. Imai. Road signposts recognition system.1987.
    [16]Kehtarnavaz, N., N.C. Griswold and D.S. Kang, Stop-sign recognition based on color/shape processing. Machine Vision and Applications,1993.6(4):p.206-208.
    [17]Kehtarnavaz, N. and A. Ahmad, Traffic sign recognition in noisy outdoor scenes. Intelligent Vehicles' 95 Symposiums. Proceedings of the,1995:p.460-465.
    [18]Kang, D.S., N.C. Griswold and N. Kehtarnavaz, An invariant traffic sign recognition system based on sequential color processing and geometrical transformation. Image Analysis and Interpretation,1994. Proceedings of the IEEE Southwest Symposium on,1994:p.88-93.
    [19]Estevez, L. and N. Kehtarnavaz, A real-time histographic approach to road sign recognition. Image Analysis and Interpretation,1996., Proceedings of the IEEE Southwest Symposium on,1996:p.95-100.
    [20]Liu, H.X. and B. Ran, Vision-Based Stop Sign Detection and Recognition System for Intelligent Vehicles. Transportation Research Record,2001.1748(-1):p. 161-166.
    [21]Gao, X.W., L. Podladchikova and D. Shaposhnikov, Application of Vision Models to Traffic Sign Recognition. School of Computing Science, Middlesex University,2003.2714:p.1100-1105.
    [22]Gao, X.W., et al., Recognition of traffic signs based on their colour and shape features extracted using human vision models. Journal of Visual Communication and Image Representation,2005.
    [23]Garcia, M.A., M.A. Sotelo and E.M. Gorostiza, Traffic sign detection in static images using Matlab. Emerging Technologies and Factory Automation,2003. Proceedings. ETFA'03. IEEE Conference,2003.2.
    [24]Shaposhnikov, D.G., et al., Road Sign Recognition by Single Positioning of Space-Variant Sensor Window. Red.393(423):p.57-95.
    [25]Priese, L., et al. Traffic Sign Recognition Based On Color Image Evaluationion. in Intelligent Vehicles '93 Symposium.1993.
    [26]Rehrmann, V., R. Lakmann and L. Priese, A parallel system for real-time traffic sign recognition. Proceedings International Workshop on Advanced Parallel Processing Technologies'95 (APPT),1995:p.72-78.
    [27]Rehrmann, V. and L. Priese, Fast and Robust Segmentation of Natural Color Scenes. ACCV(1),1998:p.598-606.
    [28]Zadeh, M.M., T. Kasvand and C.Y. Suen. Localization and recognition of traffic signs for automated vehicle control systems.1998:SPIE.
    [29]De La Escalera, A., et al., Road traffic sign detection and classification. Industrial Electronics, IEEE Transactions on,2002.44(6):p.848-859.
    [30]De La Escalera, A., J.M. Armingol and M. Mata, Traffic sign recognition and analysis for intelligent vehicles. Image and vision computing,2003.21(3):p. 247-258.
    [31]de la Escalera, A., et al., Visual sign information extraction and identification by deformable models for intelligent vehicles. IEEE transactions on intelligent transportation systems,2004.5(2):p.57-68.
    [32]De La Escalera, A., J.M. Armingol and M.A. Salichs. Traffic sign detection for driver support systems.2001.
    [33]De la Escalera, A., et al. Neural traffic sign recognition for autonomous vehicles. 2002:IEEE.
    [34]Ghica, D., S.W. Lu and X. Yuan. Recognition of traffic signs by artificial neural network.2002:IEEE.
    [35]De La Escalera, A., J.M. Armingol and M. Mata, Traffic sign recognition and analysis for intelligent vehicles. Image and vision computing,2003.21(3):p. 247-258.
    [36]Estable, S., et al. A real-time traffic sign recognition system.2002:IEEE.
    [37]Kehtarnavaz, N. and A. Ahmad. Traffic sign recognition in noisy outdoor scenes. 2002:IEEE.
    [38]Lu, S.W. Recognition of traffic signs using a multilayer neural network.2002: IEEE.
    [39]Zheng, Y.J., W. Ritter and R. Janssen. An adaptive system for traffic sign recognition.2002:IEEE.
    [40]Janet, J.A., et al. Pattern analysis for autonomous vehicles with the region-and feature-based neural network:global self-localization and traffic sign recognition. 2002:IEEE.
    [41]Garcia-Garrido, M.A., M.A. Sotelo and E. Martm-Gorostiza. Fast traffic sign detection and recognition under changing lighting conditions.2006:IEEE.
    [42]Zhu, S. Two hierarchy classifier for recognition of traffic signs based on neural network.2004:IEEE.
    [43]Arnoul, P., et al. Traffic signs localisation for highways inventory from a video camera on board a moving collection van.2002:IEEE.
    [44]Krumbiegel, D., K.F. Kralss and S. Schreiber. A connectionist traffic sign recognition system for onboard driver information.1993:Pergamon.
    [45]Kellmeyer, D.L. and H.T. Zwahlen. Detection of highway warning signs in natural video images using color image processing and neural networks.2002:IEEE.
    [46]Besserer, B., et al. Shape classification for traffic sign recognition.1993.
    [47]Besserer, B., S. Estable and B. Ulmer. Multiple knowledge sources and evidential reasoning for shape recognition.2002:IEEE.
    [48]Piccioli, G., et al., Robust road sign detection and recognition from image sequences. Intelligent Vehicles' 94 Symposium, Proceedings of the,1994:p.278-283.
    [49]Piccioli, G., et al., Robust method for road sign detection and recognition. Image and Vision Computing,1996.14(3):p.209-223.
    [50]de Saint Blancard, M. Road sign recognition:A study of vision-based decision making for road environment recognition.1992:Springer-Verlag New York, Inc.
    [51]Hsu, S.H. and C.L. Huang, Road sign detection and recognition using matching pursuit method. Image and Vision Computing,2001.19(3):p.119-129.
    [52]Huang, C.L. and S.H. Hsu. Road sign interpretation using matching pursuit method.2000:Published by the IEEE Computer Society.
    [53]Betke, M. and N.C. Makris, Fast object recognition in noisy images using simulated annealing. Computer Vision,1995. Proceedings., Fifth International Conference on,1995:p.523-530.
    [54]胡勇等.一种基于模拟退火的特征层融合模式识别实现方法.合肥工业大学学报:自然科学版,2004.27(006):第587-591页.
    [55]Hibi, T. Vision based extraction and recognition of road sign region from natural colour image, by using HSL and coordinates transformation.1996.
    [56]Paclik, P. and J. Novovicova. Road sign classification without color information. 2000.
    [57]Pacl, P., et al., Road Sign Classification using Laplace Kernel Classifier. Pattern Recognition Letters,2000.21(13-14):p.1165-1173.
    [58]Pacl, P., J. Novovicov and R.P. Duin, Building Road-Sign Classifiers Using a Trainable Similarity Measure. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2006.7(3):p.309.
    [59]Bahlmann, C., et al., A System for Traffic Sign Detection, Tracking, and Recognition Using Color, Shape, and Motion Information. time,2005.12:p.14.
    [60]Yang, H.M., C.L. Liu and S.M. Huang, Traffic sign recognition in disturbing Environments. Proc. of ISMIS,2003.3:p.28-31.
    [61]Gavrila, D.M., A bayesian, exemplar-based approach to hierarchical shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007:p. 1408-1421.
    [62]Marichal, G.N., et al., An Infrared and Neuro-Fuzzy-Based Approach for Identification and Classification of Road Markings.2006. p.918.
    [63]Sompoch, P., C. Xiaoyangv and K. Michiro,Automatic Recognition and Location of Road Signs from Terrestrial Color Imagery.2001, Map Information Center, Royal Thai Survey Department, Thailand.
    [64]Ritter, W. Traffic sign recognition in color image sequences.2002:IEEE.
    [65]Aoyagi, Y. and T. Asakura. A study on traffic sign recognition in scene image using genetic algorithms and neural networks.2002:IEEE.
    [66]Janet, J.A., et al. Pattern analysis for autonomous vehicles with the region-and feature-based neural network:global self-localization and traffic sign recognition. 2002:IEEE.
    [67]Douville, P., Real-time classification of traffic signs. Real-Time Imaging,2000. 6(3):p.185-193.
    [68]Vitabile, S., A. Gentile and F. Sorbello, A neural network based automatic road signs recognizer. Neural Networks,2002. IJCNN'02. Proceedings of the 2002 International Joint Conference on,2002.3.
    [69]Vitabile, S. and F. Sorbello. Pictogram road signs detection and understanding in outdoor scenes.1998.
    [70]Zhu, S. and L. Liu, Traffic Sign Recognition based on Color Standardization. Information Acquisition,2006 IEEE International Conference on,2006:p.951-955.
    [71]Zhu, S., The classification of traffic sign base on fuzzy characteristics training set. Intelligent Control and Automation,2004. WCICA 2004. Fifth World Congress on, 2004.6.
    [72]Vicen-Bueno, R., et al., Traffic sign classification by image preprocessing and neural networks. Computational and Ambient Intelligence,2007:p.741-748.
    [73]Vicen-Bueno, R., et al., COMPLEXITY REDUCTION IN NEURAL NETWORKS APPLIED TO TRAFFIC SIGN RECOGNITION TASKS.2005.
    [74]VICEN-BUENO, R., et al., Multilayer Perceptrons Applied to Traffic Sign Recognition Tasks. Lecture notes in computer science,2005:p.865-872.
    [75]Cyganek, B., Rotation Invariant Recognition of Road Signs with Ensemble of 1-NN Neural Classifiers.2006. p.558-567.
    [76]Cyganek, B., Road Signs Recognition by the Scale-Space Template Matching in the Log-Polar Domain.2007.
    [77]Cyganek, B., Circular Road Signs Recognition with Affine Moment Invariants and the Probabilistic Neural Classifier.2007. p.508.
    [78]Lopez-Sastre, R.J., et al., Road Sign Analysis Using Multisensory Data. LECTURE NOTES IN COMPUTER SCIENCE,2007.4528:p.251.
    [79]Gil-Jimenez, P., et al., Traffic sign shape classification based on Support Vector Machines and the FFT of the signature of blobs. Intelligent Vehicles Symposium, 2007 IEEE,2007:p.375-380.
    [80]G. Dayan, N.H.,Road sign recognition project based on SVM classification. 2003.
    [81]Li, L., G. Ma and S. Ding, Identification of Degraded Traffic Sign Symbols Using Multi-class Support Vector Machines. Mechatronics and Automation,2007. ICMA 2007. International Conference on,2007:p.2467-2471.
    [82]Sun, Z., G. Bebis and R. Miller, On-road vehicle detection using Gabor filters and support vector machines. Digital Signal Processing,2002. DSP 2002.2002 14th International Conference on,2002.2.
    [83]Lafuente-Arroyo, S., et al., Traffic sign shape classification evaluation I:SVM using distance to borders. Intelligent Vehicles Symposium,2005. Proceedings. IEEE, 2005:p.557-562.
    [84]Lafuente-Arroyo, S., et al., A Tracking System for Automated Inventory of Road Signs. Intelligent Vehicles Symposium,2007 IEEE,2007:p.166-171.
    [85]Lafuente-Arroyo, S., et al., Road Sign Recognition Using Spatial Dimension Reduction Methods Based on PCA and SVMs.2007. p.725.
    [86]Lafuente-Arroyo, S., et al. Traffic sign classification invariant to rotations using support vector machines.2004.
    [87]朱金好,罗晓萍.基于决策树型SVM的交通标志图像识别.长沙理工大学学报:自然科学版,2004.1(002):第13-17页.
    [88]Simon, L., J.P. Tarel and R. Bremond, A new paradigm for the computation of conspicuity of traffic signs in road images. Proceedings of 26 the session of commission international de L'Eclairage,2007.2:p.161-164.
    [89]Kiran, C.G., et al. Traffic sign detection and pattern recognition using support vector machine.2009:IEEE.
    [90]Silapachote, P., et al. Automatic sign detection and recognition in natural scenes. 2005:IEEE.
    [91]Rincon, M., S. Lafuente-Arroyo and S. Maldonado-Bascon, Knowledge Modeling for the Traffic Sign Recognition Task. Mechanisms, Symbols, and Models Underlying Cognition,2005:p.508-517.
    [92]孙即祥,图像分析.2005:科学出版社.
    [93]Leibe, B. and B. Schiele. Interleaved object categorization and segmentation. 2003.
    [94]Leibe, B., A. Leonardis and B. Schiele. Combined object categorization and segmentation with an implicit shape model.2004.
    [95]Leibe, B., A. Leonardis and B. Schiele, Robust Object Detection with Interleaved Categorization and Segmentation. International Journal of Computer Vision,2008. 77(1):p.259-289.
    [96]Leibe, B., E. Seemann and B. Schiele, Pedestrian detection in crowded scenes. 2005.
    [97]Leibe, B. and B. Schiele. Analyzing appearance and contour based methods for object categorization.2003:IEEE.
    [98]Leibe, B. and B. Schiele, Scale-invariant object categorization using a scale-adaptive mean-shift search. Pattern Recognition,2004:p.145-153.
    [99]Leibe, B., K. Schindler and L. Van Gool, Coupled detection and trajectory estimation for multi-object tracking. IEEE ICCV 2007.
    [100]Leibe, B., et al., Coupled object detection and tracking from static cameras and moving vehicles. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2008.30(10):p.1683-1698.
    [101]Harris, C. and M. Stephens. A combined corner and edge detector.1988: Manchester, UK.
    [102]Kenney, C.S., M. Zuliani and B.S. Manjunath. An axiomatic approach to corner detection.2005:IEEE.
    [103]Mikolajczyk, K. and C. Schmid, A performance evaluation of local descriptors. IEEE transactions on pattern analysis and machine intelligence,2005:p.1615-1630.
    [104]Lowe, D.G., Distinctive image features from scale-invariant keypoints. International journal of computer vision,2004.60(2):p.91-110.
    [105]Schmid, C., R. Mohr and C. Bauckhage, Evaluation of interest point detectors. International Journal of computer vision,2000.37(2):p.151-172.
    [106]Lowe, D.G. Object recognition from local scale-invariant features.1999: Published by the IEEE Computer Society.
    [107]Mikolajczyk, K., et al., A comparison of affine region detectors. International journal of computer vision,2005.65(1):p.43-72.
    [108]Ke, Y. and R. Sukthankar, PCA-SIFT:A more distinctive representation for local image descriptors.2004.
    [109]Bay, H., T. Tuytelaars and L. Van Gool, Surf:Speeded up robust features. Computer Vision-ECCV 2006,2006:p.404-417.
    [110]Ashbrook, A.P., et al. Robust recognition of scaled shapes using pairwise geometric histograms.1995:Citeseer.
    [111]Lazebnik, S., C. Schmid and J. Ponce, Sparse texture representation using affine-invariant neighborhoods.2003.
    [112]Belongie, S., J. Malik and J. Puzicha, Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002:p.509-522.
    [113]Fukunaga, K. and L. Hostetler, The estimation of the gradient of a density function, with applications in pattern recognition. Information Theory, IEEE Transactions on,2002.21(1):p.32-40.
    [114]Paletta, L., Detection of Traffic Signs Using Posterior Classifier Combination. Pattern Recognition,2002. Proceedings.16th International Conference on,2002.2.
    [115]Soetedjo, A. and K. Yamada, Fast and Robust Traffic Sign Detection. Systems, Man and Cybernetics,2005 IEEE International Conference on,2005.2.
    [116]Gabor, D., Theory of communication. SPIE MILESTONE SERIES MS,2006. 181:p. 120.
    [117]Daugman, J.G., Two-dimensional spectral analysis of cortical receptive field profiles. Vision research,1980.20(10):p.847-856.
    [118]Daugman, J.G. Image analysis and compact coding by oriented 2-D Gabor primitives.1987.
    [119]Lades, M., et al., Distortion invariant object recognition in the dynamic link architecture. IEEE transactions on Computers,1993.42(3):p.300-311.
    [120]Bastiaans, M.J. Sampling theorem for the complex spectrogram, and Gabor's expansion of a signal in Gaussian elementary signals.1980.
    [121]Bastiaans, M.J., Gabor's signal expansion and degrees of freedom of a signal. Optica Acta,1982.29(9):p.1223.
    [122]Marcelja, S., Mathematical description of the responses of simple cortical cells. Journal of the Optical Society of America,1980.70(11):p.1297-1300.
    [123]Plataniotis, K.N. and A.N. Venetsanopoulos, Color image processing and applications.2000:Springer Verlag Wien.
    [124]Boulgouris, N.V., D. Hatzinakos and K.N. Plataniotis, Gait recognition:a challenging signal processing technology for biometric identification. Signal Processing Magazine, IEEE,2005.22(6):p.78-90.
    [125]Boulgouris, N.V., K.N. Plataniotis and D. Hatzinakos, Gait recognition using linear time normalization. Pattern Recognition,2006.39(5):p.969-979.
    [126]Han, J. and B. Bhanu, Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006:p.316-322.
    [127]Sarkar, S., et al., The humanid gait challenge problem:Data sets, performance, and analysis. IEEE transactions on pattern analysis and machine intelligence,2005:p. 162-177.
    [128]Bowyer, K.W., K. Chang and P. Flynn, A survey of approaches and challenges in 3D and multi-modal 3D+ 2D face recognition. Computer Vision and Image Understanding,2006.101(1):p.1-15.
    [129]Colombo, A., C. Cusano and R. Schettini,3D face detection using curvature analysis. Pattern recognition,2006.39(3):p.444-455.
    [130]Li, S.Z., et al.3D+ 2D face recognition by fusion at both feature and decision levels.2005.
    [131]Chellappa, R., A.K. Roy-Chowdhury and S.K. Zhou, Recognition of humans and their activities using video. Synthesis Lectures on Image, Video & Multimedia Processing,2005.1(1):p.1-173.
    [132]Sahambi, H.S. and K. Khorasani, A neural-network appearance-based 3-D object recognition using independent component analysis. Neural Networks, IEEE Transactions on,2003.14(1):p.138-149.
    [133]Nolker, C. and H. Ritter, Visual recognition of continuous hand postures. Neural Networks, IEEE Transactions on,2002.13(4):p.983-994.
    [134]Green, R.D. and L. Guan, Quantifying and recognizing human movement patterns from monocular video images-part ii:applications to biometrics. IEEE Transactions on Circuits and Systems for Video Technology,2004.14(2):p.191-198.
    [135]Shechtman, E., Y. Caspi and M. Irani, Space-time super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005:p.531-545.
    [136]Shakhnarovich, G. and B. Moghaddam, Face recognition in subspaces. Handbook of Face Recognition,2005:p.141-168.
    [137]Zhang, J., S. Li and J. Wang, Manifold learning and applications in recognition. Intelligent Multimedia Processing with Soft Computing,2005:p.281-300.
    [138]Law, M. and A.K. Jain, Incremental nonlinear dimensionality reduction by manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006:p.377-391.
    [139]Ye, J., R. Janardan and Q. Li. GPCA:an efficient dimension reduction scheme for image compression and retrieval.2004:ACM.
    [140]Lu, H., K.N. Plataniotis and A.N. Venetsanopoulos, MPCA:Multilinear principal component analysis of tensor objects. Neural Networks, IEEE Transactions on,2008.19(1):p.18-39.
    [141]Yan, S., et al., Multilinear discriminate analysis for face recognition. Image Processing, IEEE Transactions on,2006.16(1):p.212-220.
    [142]Yan, S., et al., Discriminant analysis with tensor representation.2005.
    [143]Wu, X., et al., Top 10 algorithms in data mining. Knowledge and Information Systems,2008.14(1):p.1-37.
    [144]Schapire, R.E., The strength of weak learnability. Machine learning,1990.5(2): p.197-227.
    [145]Valiant, L.G., A theory of the learnable. Communications of the ACM,1984. 27(11):p.1134-1142.
    [146]Freund, Y., Boosting a weak learning algorithm by majority. Information and computation,1995.121(2):p.256-285.
    [147]Freund, Y. and R. Schapire. A-theoretic generalization of on-line learning and an application to boosting.1995:Springer.
    [148]Dietterich, T.G. and G. Bakiri, Solving multiclass learning problems via error-correcting output codes. Arxiv preprint cs/9501101,1995.
    [149]Schapire, R.E. Using output codes to boost multiclass learning problems.1997: Citeseer.
    [150]Schapire, R.E. and Y. Singer, Improved boosting algorithms using confidence-rated predictions. Machine learning,1999.37(3):p.297-336.
    [151]Friedman, J., T. Hastie and R. Tibshirani, Additive logistic regression:a statistical view of boosting (With discussion and a rejoinder by the authors). The annals of statistics,2000.28(2):p.337-407.
    [152]Liu, C. and H. Wechsler. Probabilistic reasoning models for face recognition. 2002:IEEE.