盐湖水氯镁石制取超细阻燃型氢氧化镁的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢氧化镁是用于聚烯烃无卤阻燃剂中最具有发展前途的阻燃剂之一。本论文对常压下卤水氨法沉镁制备超细阻燃剂级氢氧化镁的方法进行了系统的研究和探讨;并通过对氢氧化镁进行表面改性处理后,将其添加于低密度的聚乙烯中,测定了其阻燃性能;同时还对沉镁反应母液中氨的回收与利用进行了试验和研究。
     首先对卤水制备阻燃型氢氧化镁的制备方法进行了探讨,并从理论上分析了在常压下制备超细氢氧化镁的可能性,对传统的高压卤水氨法制备氢氧化镁的工艺进行了改进。热力学计算结果表明:常压下,在一定温度范围内,卤水氨法沉镁反应的Gibbs自由能变化负的绝对值都大于63kJ/mol。说明在该反应在常压条件下自发进行的趋势大;另一方面,该反应又属于离子沉淀反应,反应速度快。据此确定了常压下制备超细氢氧化镁的工艺流程。
     其次通过大量的试验研究并探讨了卤水氨法沉镁制备超细阻燃剂级氢氧化镁的工艺条件,试验结果表明:反应时采取卤水和氨水同时加入的加料方式效果较好。在卤水Mg~(2+)浓度为4.3mol/L,氨水浓度为28%,反应温度55℃,卤水加入速度为3.3ml/分钟,反应底液pH值为11的试验条件下,沉镁效率达到80.5%;氢氧化镁在溶剂酒精中通过超声波分散,制得的样品平均粒径为200~300nm,比表面积为48.1±0.5 m~2/g,其中98%以上的氢氧化镁粒径均小于1μm;经X-射线衍射和扫描电镜检测,氢氧化镁样品晶形为六方晶系结构,外形为片状。其纯度达到98%以上。
     然后通过对制得的氢氧化镁样品,采用硬脂酸盐等表面改性剂进行表面改性处理,条件为:硬脂酸钠的用量5%,改性时间4小时,改性温度80℃时。经检测,改性后氢氧化镁的接触角为132.6度。表明氢氧化镁改性后由原来的亲水性变成了亲油性,改性效果理想。此外,将其添加于低密度的聚乙烯中,测定了其阻燃性能。当氢氧化镁的添加量为140 phr(phr表示在每100份基体树脂中添加剂的份数)时,其氧指数达到30.5%,能够满足聚合物的对阻燃剂要求。
     最后,对沉镁反应母液中的游离氨和氯化铵的回收与利用进行了试验和探索。试验时采用加入石灰加热蒸发回收氨的方法回收氨,氨的回效率可以达到98%。大大地降低了生产成本,提高经济效益。
Magnesium hydroxide is one of the most promising flame retardant among polyolefine flame retardants without halogen. The preparation of ultra-fine magnesium hydroxide was investigated under the condition of normal pressure from the saline bischofite, and then the fire retardant effect of modified magnesium hydroxide on linear polyethylene with low density was examined. Furthermore, the study concerning the reclamation and utilization of ammonia in mother liquor of the deposition reactor was performed.
    Firstly the paper discussed the preparation technique of the fire retardant magnesium hydroxide from the saline bischofite.And it discussed the feasibility of the preparation of ultra-fine magnesium hydroxide under normal pressure so as to alter traditional synthesis techniques under high temperature and pressure. The thermodynamics study indicated the negatively absolute value changes of Gibbs free energy is more 63kJ/mol as for the reaction of the saline bischofite ammonia under normal pressure, the trend of the reaction is big. In the other hand, the reaction is also belonged to ion-deposited reaction ,getting a high velocity, and the technological flow of ultras-hydroxide magnesium was decided according to the principal.
    Secondly the technics condition of ultra-fine magnesium hydroxide from the saline bischofite was discussed through lots of experimentations. The optimum experimental conditions during the preparation of ultra-fine magnesium hydroxide under normal pressure were explored. The result indicated that the recovery ratio is 80.5 % when the bittern and ammonia was added simultaneously, and the concentration of bittern is 4.3mol/L, the concentration of ammonia is 28%, the reaction temperature is 55C, the joining velocity of saline bischofite is 3.3 ml/minute, the pH of substrate liquid is about 11. Under ultrasonic dispersing with alcohol solvent, the result showed that the mean particle size of the magnesium hydroxide was 200~300nm and the specific surface area was 48.1+0.5m2/g, among which whose volume percentage with particle size
    
    
    less than 1um is more 98%. The samples assume the shape of platelet and belongs to the hexagonal crystalline system. The purity of the samples was more 98 %.
    Then the magnesium hydroxide after preparation was modified with stearic acid salt. The retarded experimental results demonstrate that the optimum experiment condition is as follows: the modifying additive is sodium stearate, the modification time is 4 hours, the dosage of sodium stearate is 5%, and the modification temperature is 70C. The study discover the angle of contact is 132.6 degree after surface modification,and indicate the magnesium hydroxide of polarity is changed from hydrophilicity to hydrophobicity, and the result is good. Then the samples of linear polyethylene with low density were prepared by liquation method. The oxygen index of the linear polyethylene with low density was 30.5 % when 140 shares of modified magnesium hydroxide was added(usually polymer with an oxygen index more than 27 was called retarded materials).It can satisfy the requirement for the flame retardant of magnesium hydroxide.
    Finally it also studied the ammonia recovery and reclamation in mother liquor of deposit magnesium hydroxide experiment. The once evaporation method by adding calcium oxide was adopted. The recovered ammonia was returned into experimental process. It indicated that the once conversion is about 98% .So it can considerably reduce production cost and boost economic benefit.
引文
[1]雷铭主编. 电力设备诊断手册. 北京:中国电力出版社,2000
    [2]赵家礼,张庆达. 变压器故障诊断与修理. 北京:机械工业出版社,1998
    [3]Horst Ahlers(Hrsg.)著,王磊等译,多传感器技术及其运用. 北京:国防工业出版社,2001
    [4]周东华,叶银忠,现代故障诊断与容错控制. 北京:清华大学出版社,2000
    [5]中华人民共和国国家标准局.变压器油中溶解气体分析和判断导则. 中华人民共和国国家标准,GB7252-87,国家标准局发布,1987
    [6]郭宗军,严璋,刘少宇,等. 变电设备管理及绝缘诊断专家系统的开发.高压电器,2002,38(1):1~3
    [7]李洪志. 信息融合技术. 北京:国防工业出版社,1996 .
    [8]王道平,张义忠.故障智能诊断系统的理论与方法. 北京:冶金工业出版社.2001
    [9]Islam S M, Wu T, Ledwich G A novel fuzzy logic approach to transformer fault diagnosis. IEEE Transactions on Dielectrics and Electrical Insulation, 2002,7(2):177-186
    [10]电力工业设备诊断技术专业协会.变压器故障诊断典型案例汇编.中国电力企业管理,1994
    [11]周建华,胡敏强.基于思维模式融合故障诊断的专家系统与神经网络,电工技术学报,1999(4):1~4
    [12]胡文平,尹项根,张哲.等.变压器故障诊断与多传感器信息融合. 高电压技术,2002,28(2):32~33
    [13]王楠,律方成,王欣,等,绝缘在线监测系统中图形系统的设计.高电压技术,2002,28(3):31~33
    [14]胡玉峰,尹项根,陈德树,等.信息融合技术在电力系统中的应用研究(一)基本原理与方法. 继电器,2003,31(1):17~22
    [15]Duval M, Langdeau F, Gervais P, et al. Acceptable gas-in-oil levels in generation and transmission power transformers, electrical insulation and dielectric. Annual Report, Conferrnce on 1990
    [16]尚勇,闫春江,严璋,等. 基于信息融合的大型油浸电力变压器故障诊断.中国电机工程学报,2002,22(7):115~118
    [17]胡玉峰,尹项根,陈德树,等.信息融合技术在电力系统中的应用研究(二)发展现状与应用前景. 继电器,2003,31(1):17~22
    [18]刘少宇,郭宗军,董明,等. 专家系统在变电站设备诊断中的应用. 高电
    
    压技术,2001,27(5):17~19
    [19]阳少军,肖登明,潘勇斌,等.变压器色譜在线监测的新型传感器. 高电压技术,2002,28(1):30~31
    [20]何宏群 油中溶解气体分析值得注意得问题.变压器2001,38(3):41~44
    [21]陈寅,林良明,颜国正. D-S证据推理在信息融合应用中的存在问题及改进.系统工程与电子技术,2000,22(11):69~71
    [22]变压器制造技术丛书编审委员会编.变压器装配工艺. 北京:机械工业出版社,1998
    [23]杨莉,刘杰.基于客户机/服务器的绝缘诊断及管理专家系统的开发.电网技术,1998,22(10):5~7
    [24]魏民祥,董龙雷,王晓云,等. 基于不确定性推理原理的机组振动信息融合技术.中国电机工程学报,2000,20(9):64~66
    [25]黄建华,金园,何青.电容型设备绝缘在线监测系统及其选用原则.高电压技术,2001,27(5):13~16
    [26]张彦铎,姜兴渭.多传感器信息融合及在智能故障诊断中的应用.传感器技术,1999,18(2):18~21
    [27]袁小宏,屈梁生.机械故障诊断中的信息融合利用问题研究.振动测试与诊断,1999,19(3):187~191
    [28]夏向阳,罗安,邓宇.信息融合技术在电力变压器故障中的应用.电工技术杂志,2003,(7):79~81
    [29]张安华,张洪才. 设备故障诊断中的信息融合技术.机械科学与技术,1997,16(3):612~615
    [30]王奉涛,马孝江,朱泓,等. 基于Dempster-shafer证据理论的信息融合在设备故障诊断中的应用.大连理工大学学报,2003,43(4):470~474
    [31]张雨,温熙森. 设备故障信息融合问题的思考. 长沙交通学院学报,1999,15(2):22~29
    [32]苏保河. 设备可靠性和故障诊断的综合研究. 电力系统自动化,2002,2(3):28~33
    [33]刘计辉. 设备状态监测和诊断技术的现状与发展动向. 青海电力,2000,2(4):25~27
    [34]李诚. 变压器故障的色譜分析与判断.电力安全技术,2002,4(9):13~14
    [35]韩晓萍,徐建政. 基于综合特征输入的DGA在变压器故障诊断中的应用.山东工业大学学报,2001,31(6):506~510
    [36]杨兵,丁辉,罗为民,等. 基于知识库的变压器故障诊断系统。 中国电
    
    机工程学报,2002,22(10):121~124
    [37]林礼清.两起典型变压器故障的分析与处理.变压器, 2003,41(1):41~43
    [38]李娟, 丁晓群. 基于历史数据的变压器故障诊断。 浙江电力,2002,6:37~45
    [39]夏向阳,罗安,周柯.电力设备状态监测与故障诊断综合管理系统.长沙电力学院学报,2003,18(3):30~33
    [40]张建文.电力变压器故障诊断方法分析. 煤矿机电 1999,3:6~9
    [41]变压器制造技术丛书编审委员会.变压器试验.北京:机械工业出版社,1998
    [42]杨启平,薛伍德. 高新技术在变压器故障诊断中的应用. 上海电力学院学报,2002,18(4):6~10
    [43]李永丽,顾福海,刘志华,等. 神经网络理论在变压器故障中的应用.电力系统自动化, 1999,23(24):20~22
    [44]丁晓群,孙军,王大忠. 模糊诊断电力变压器故障点部位的应用研究.电网技术, 2000,24(5):48~51
    [45]陈世青. 电力变压器故障与处理.变压器, 2000,37(11):40~44
    [46]IEC60599. Mineral oil-impregnated electical equipment in service-guide to the interpretation of dissolved and free gases analysis, second edition. 1999
    [47]陈宗穆. 变压器原理与应用. 长沙:湖南大学出版社,1987
    [48]变压器制造技术丛书编审委员会.变压器装配工艺. 北京:机械工业出版社,1998
    [49]邓宇,罗安,夏向阳.信息融合技术在变压器故障诊断中的应用.高压电器,2003,39(2):39~41
    [50]王霞,李凯. 气相色譜分析在变压器故障中的应用.河南科技,2000,7:22~24
    [51]邓宇.变压器故障在线智能诊断系统:[硕士学位论文]。长沙:中南大学,2003
    [52]杨启平. 人工智能在变压器故障诊断中的应用. 电力自动化设备,2001,21(12):16~18
    [53]Michel Dural, AIfonso de Pablo. Interpretation of gas-in-oilanalysis using new IEC publication 60599 and IEC TCIO databases. IEEE Electrical Insulation Magazine, 2001, (17)2:31
    [54]魏守智. 基于信息融合方法的电力变压器网络在线监测与故障诊断研究.计算机工程与应用, 2002,22:51~54
    
    
    [55]曹丽艳. 基于多信息融合的汽轮发电机组故障诊断方法研究.汽轮机技术,2002,44(3):176~178
    [56]林中杰,张燕,何宏群,等. 浅谈如何应用溶解气体分析法诊断变压器故障. 变压器, 2002,39(3):38~40
    
    
    [1] 刘健,倪建立,邓永辉.配电自动化系统.北京:中国水利水电出版,2003, 1~2、
    [2] 王季梅,钱予圭.论高压真空灭弧室和真空断路器的产品开发,高压电器.2003,39(1):65~67
    [3] 张维明.关于永磁机构真空断路器的特点及应用,农村电气化,2002,(4):33
    [4] Ware B J. Synchronous switching of power systems Rep. 13-205, CIGRE, 1990
    [5] 王章启,李喜桂.关于开关电器的智能化.高压电器,1999,35(3):46~48
    [6] ABB technical catalogue. Microprocessor-driven protection and control unit for the ISM module
    [7] 闫静,卢秋艳,金黎,等。配电自动化开关智能控制器的设计.高压电器,2004,40(1):33~36
    [8] 杨纪明.基于模糊-神经网络的SF_6高压断路器智能操作控制的研究:[博士学位论文].西安:西安交通大学,2000
    [9] 游一民,郑军,罗文科.永磁机构及其发展动态.高压电器,2001,37(1):44~48
    [10] A J W Lammers, P P Leufkens, G C Schoonenbery. MV VacuumSwitchgear Based on Magnetic Actuators. In: IEE Conference Publication. No. 459, 1998. 86~90
    [11] B A R Mcken, Dr C Reuber. Magnets and Vacuum-the Perfect Match. In: IEE Conference Publication. No. 459, 1998. 73~79
    [12] Z. Li, L. A. Renforth, D. W. Auckland andB. Varlow. Computer Aided Optimal Design of Magnetic Actuator for Autorecloser Application. In: IEE Conference Publication. No. 459, 1998. 80~85
    [13] 林莘.现代高压电器技术,北京:机械工业出版社,2002.209~215
    [14] 游一民,陈德桂,罗文科,等.关于永磁机构中永磁工作点的讨论.高压电器,2002,38(4):39~41
    [15] 钱家骊,徐国政,窦晓峰.中压断路器用永磁机构中线圈不同布置的分