数控机床可靠性及维修性的模糊综合分配与预计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控机床是实现装备制造业现代化的关键设备,是装备制造业发展的重中之重。目前,由于国产数控机床的可靠性与国际先进水平存在较大差距,导致中高档数控机床及其数控系统和关键功能部件主要依赖进口。可靠性水平已成为严重制约国产中高档数控机床发展的关键因素,提高国产数控机床的可靠性迫在眉睫。
     对于数控机床这类可修复产品来说,不但要求产品少发生故障,还要在发生故障后能够快速修复,所以需开展既包含可靠性也包含维修性的广义可靠性研究。国内外开展可靠性工作的经验表明:要提高产品的可靠性,关键在于做好产品的可靠性设计工作。其中,可靠性分配和预计作为可靠性设计中的指导性和基础性工作,需要在设计的各个阶段大量运用,从而推动各项可靠性设计工作有效开展,以确保设计并生产出满足规定可靠性指标要求的产品。目前,国内的机床企业虽然开展了一些具体的可靠性设计工作,但由于现有数据的缺失和方法的不完善,多数企业并没有开展有效的可靠性分配和预计工作,从而导致机床各组成部分的可靠性要求不明确。分散的可靠性工作花费了大量的人力和物力,但是效果却并不显著。针对上述情况,本文结合国家科技重大专项课题“高速/精密数控机床可靠性设计与性能试验技术”的任务需求,通过对数控机床设计阶段应开展的广义可靠性(可靠性和维修性)工作进行分析,研究制定了数控机床设计阶段的可靠性和维修性工作流程,将可靠性建模、故障分析、定量指标的制定、可靠性及维修性的分配与预计等工作联系起来,并重点研究了数控机床可靠性及维修性的分配和预计技术。论文的研究工作主要包括以下几个方面:
     (1)根据数控机床设计过程各个阶段的任务分析,制定了相应的可靠性和维修性设计工作流程,归纳了制定数控机床可靠性和维修性指标时需要考虑的因素。结合可靠性工作的特点对数控机床进行了层次划分,明确了各个子系统的结构和组成,为开展故障分析、可靠性分配和预计等工作打下了基础。
     (2)分析了可靠性数据的来源,制定了数控机床现场数据的收集方法,结合该方法对现有同类机床进行了现场可靠性试验,采集了大量的故障和维修数据。基于采集到的故障数据建立了故障间隔时间的分布模型,并通过图形法和解析法两种方法进行了模型检验,得出该批产品故障间隔时间服从尺度参数563.21,形状参数1.057的两参数威布尔分布。通过对产品进行FMECA分析,求出了各个子系统的危害度。其中进给系统是危害度最大的子系统,其次依次为自动换刀系统、电气系统和主轴系统。在新产品研发时应重点分析如何降低这些子系统的故障率。
     (3)结合数控机床的层次划分情况建立了整机的可靠性框图及其数学模型。为了解决数控机床可靠性分配过程中存在多种影响因素,且有些因素难以定量分析的问题,研究了一种将区间分析、模糊综合评判和层次分析法相结合的数控机床可靠性分配方法。综合考虑了故障频繁性、故障危害性、维修性、复杂性、技术水平、费效比等多种影响因素,根据影响程度的大小给每个因素赋予相应的权重;综合利用现场试验信息和专家经验,使用模糊区间数代替实数表达不确定信息,建立了数控机床可靠性分配模型。使用该方法对研制对象进行了可靠性分配。结果表明该方法是可行的,能有效解决目前数控机床可靠性分配中存在的主要问题。
     (4)针对传统相似比较法用于数控机床可靠性预计时,预计对象和相似产品之间可靠性水平的差异程度难以准确评定的问题,提出了一种引入区间层次分析的数控机床可靠性预计方法。首先分析了整机和子系统的可靠性关系,建立了整机的可靠性预计模型。在子系统可靠性预计过程中,充分利用了相似产品的可靠性数据。建立了可靠性修正因子评估模型,从设计、生产、使用、管理、产品结构等方面综合分析了评价对象和相似产品之间的差异,并通过使用区间层次分析法求出了可靠性修正因子,实现了确定性信息和模糊信息的互补。结合四台相似产品进行了主轴部件的可靠性预计,验证了该方法的可行性。
     (5)针对传统的按故障率和设计特性的维修性分配法对所有维修性设计特性等同考虑,且这些设计特性难以定量分析的问题,本文对这一方法进行了改进。在传统方法只考虑故障检测方式、可达性、可更换性、可调整性四种定性因素的基础上,增加了复杂程度和危害程度两种定量因素。综合考虑上述因素,建立了维修性加权因子综合评判模型;按各个因素对维修性影响程度的大小,采用区间层次分析法为各个因素赋予了权重,使用模糊综合评判的方法求出了各个子系统的加权因子;结合各子系统的可靠性分配值和维修性加权因子计算出了各个子系统应分配的维修性指标。使用该方法对研制对象进行了维修性分配,有效解决了传统方法存在不确定性的难题。
     (6)针对现阶段数控机床各子系统的维修数据完整程度存在较大差异的情况,本文提出了一种基于数据完整程度的数控机床维修性预计方法。和传统方法最大的区别是:传统方法针对零部件进行分析,该方法针对具体的故障模式进行分析,相比较来说数据更充分,精确性更高。针对维修数据完整程度不同的子系统,分别采用功能层次预计法和单元对比预计法来进行维修性预计。最后结合实例进行了数控机床的维修性预计。该方法为数控机床领域开展维修性预计提供了一种新思路,有效克服了现阶段维修性数据严重缺乏,单纯使用一种方法预计精度较差的问题。
As the essential equipment to modernize the manufacturing industry, NC machine tools arethe most important parts on the development of equipment manufacturing industry. Atpresent, since a big gap exists between the reliability levels of domestic NC machine toolsand the international advanced level, medium and high-grade NC machine tools and its keyfunction components depend mainly on import. The reliability level has become a key factorrestricting the development of domestic medium and high-grade NC machine tools.Therefore, it is extremely urgent to improve the reliability level of domestic NC machinetools.
     For these repairable products like NC machine tools, it is required that not only lessfaults, but also quick restoration after a fault. Therefore, both reliability and maintainabilityshould be considered in generalized reliability. The experience of domestic and overseasreliability work indicates that the design process determines the reliability level of theproducts. As the guiding and basic work in reliability design, reliability allocation andprediction should to be made full use of in each design stage. At present, some concretereliability design techniques have been applied to NC machine tools. However, due to theexisting data are incomplete and the existing methods are imperfect, most machine toolscompanies don't start the work of reliability allocation and prediction, causing the reliabilityrequirements of various components to be indefinite. The dispersive work costs a great dealof manpower and material resources, yet the effect is not evident. For this case, this paperformulated the work flows in the design stage for NC machine tools reliability andmaintainability, which strung reliability modeling, failure analysis, formulating quantitativeindex, allocating and predicting the reliability and maintainability, and the allocation andprediction for reliability and maintainability are especially researched. These works arebased on the analysis of NC machine tools generalized reliability in the design stage, incombination with the requirement of the National Science and Technology MajorProject-“High Speed/Precision NC Machine Tools Reliability Design and Performance TestTechnology”. The main research contents consist of the following aspects:
     (1) According to the tasks in each design stages of NC machine tools, the reliability andmaintainability design work flow are formulated, and the considering factors of formulatingthe reliability and maintainability index are generalized. According the characteristics of reliability work, the whole machine are divided into several subsystems, and the structureand composition of each subsystem are clarified, thus laying foundation for carrying outthese works like failure analysis, reliability allocation and prediction.
     (2) The source of reliability data are analyzed, the data collecting method for NCmachine tools field test are formulated, and the field reliability test is carried out incombination with the method on similar products, obtaining a great deal of fault date andmaintenance data. Based on the collected fault data, this paper build the distribution modelof the time between failures, and test the models using graphic method and the analyticalmethod. The result shows that the time between failures of these products follows thetwo-paramter Weibull distribution with scale parameter563.21and shape parameter
     1.057. Through appling FMECA to these products, the criticality of each subsystem isobtained, where the feeding system has the greatest criticality, followed the automatic toolchanging system, electrical system and spindle system. The focus should be put on how todecrease the fault rate of these subsystems when we develop new products.
     (3) The reliability block diagram of the whole machine is built according to thesubsystem dividing situation. For the problem that there are many influencing factors inreliability allocating process and some of which are difficult to quantificationally analyze, areliability allocation method is proposed which combines the interval analysis, fuzzycomprehensive evaluation and analytic hierarchy process. According to the influencedegrees, each factor is assigned the corresponding weight, after comprehensively consideringthe factors of failure frequency, failure criticality, complexity, technology level and costeffectiveness. By comprehensive utilizing of field test information and expert experience,and replacing real number by fuzzy interval number to express uncertain information, thereliability allocating model of the NC machine tools is built. Then the allocation method isapplied to allocate reliability to the research object. The result shows that the method isfeasible and effective for reliability allocation of NC machine tools at present.
     (4) While using the conventional similarity comparison method to predict the reliabilitylevel of NC machine tools, it is difficult to judge the discrepancy degree of reliability levelbetween the research object and similar products. In view of this problem, a new reliabilityprediction method for NC machine tools is proposed which adopts the interval analytichierarchy process. Firstly, the relationships between the whole machine and its subsystemsare analysed, and the reliability prediction model for the whole machine is built. In theprocess of predicting the reliability of subsystems, the reliability data of similar products ismade full use. The reliability correction factor evaluation model is built, and the differences between the research object and similar products are analyzed comprehensively in theaspects such as design, manufacturing, using, management, product structure and so on. Thereliability correction factors are obtained using interval analytic hierarchy process, whichcould realize the complementation of assured information and fuzzy information. Incombination with four similar products, this method is applied to predict the reliability ofspindle subsystem, verifying the feasibility of this method.
     (5) Aiming at the problem that the weighted allocation method considering fault rateand design characteristics treats each design characteristic equally, and the designcharacteristics are hard to quantificationally analyze, the method is improved in this paper. After comprehensively considering the six design characteristics: fault detection method,reachability, replaceability, adjustability, complexity and criticality, the weighted factorcomprehensive evaluation model for maintainability is built, and the corresponding weightsfor each factor are assigned by interval analytic hierarchy process. The weighted factor ofeach subsystem is obtained by fuzzy comprehensive evaluation, overcoming the problems inconventional methods effectively. And the maintainability index of each subsystem isobtained by maintainability weighted factors in combination with allocated reliability valueof each subsystem. This method is applied to implement maintainability allocation for theresearch objects, verifying the feasibility of this method.
     (6) Aiming at the situation that the integrity degree of maintainability data of eachsubsystem differs greatly, this paper proposed a maintainability prediction method based ondata integrity degree for NC machine tools. This method differs with the conventionalmethods in that: the conventional analyze components and parts, yet this method analyzesfault modes. Comparatively speaking, the proposed method has enough data and a betteraccuracy. Aiming at these subsystems which integrity degree of maintainability data isdifferent, the functional level prediction method and the unit comparison prediction methodare adopted respectively to implement maintainability prediction. Finally, the maintainabilityprediction is implemented in combination with a case, verifying the feasibility of theproposed method. This method provides a new thinking for NC machine toolsmaintainability prediction, which could overcome the present problems that the maintenancedata is lack and the predicting accuracy is poor while using only one method.
引文
[1]新华网.我国数控机床产业突破关键技术向高端挺进[EB/OL].[2010-09-25]. http://www.nmp.gov.cn/mtjj/201009/t20100925_1935.htm
    [2]世界制造技术与装备市场WMEM.2011年全球机床产值与消费全面增长[EB/OL].[2012-05-25].http://www.c-cnc.com/news/newsfile/2012/5/25/1534121.shtml
    [3]工业和信息化部装备工业司.机床工具行业“十二五”发展规划[R].北京:中国机床工具工业协会,2011.
    [4]中国工业报.2011年机床逆差破百亿美元需中端发力[EB/OL].[2012-02-27]. http://mep128.mofcom.gov.cn/mep/xwzx/cyzx/293959.asp
    [5]赵秋艳.2012年上半年我国金属加工机床进口分析[EB/OL].[2012-07-11]. http://mep128.mofcom.gov.cn/mep/sjtj/297741.asp
    [6]盛伯浩.中国数控机床技术差距与对策[J].中国制造业信息化,2005(3):68-72.
    [7]中国机床工具行业分析报告(2011年1季度)[R].北京:中经网数据有限公司,2011:29.
    [8]中华机械网.2012年中国机床市场展望[EB/OL].[2012-05-13]. http://news.machine365.com/content/2012/0513/362196.html
    [9]郑国伟.机床工具行业进出口形势与2012年展望[R].广州:2011年中国机床工具行业发展论坛,2011.
    [10]中国机床工具行业分析报告(2008年4季度)[R].北京:中经网数据有限公司,2009:12.
    [11]科技日报.数控机床:装备制造从“低端徘徊”向“高端突破”[EB/OL].[2011-03-07]. http://www.nmp.gov.cn/mtjj/201103/t20110309_2271.htm
    [12]国务院办公厅.16个科技重大专项陆续启动[EB/OL].[2007-03-19]. http://www.nmp.gov.cn/mtjj/200902/t20090202_1907.htm
    [13]徐正平.世界机床发展简史[J].机械制造,1990(8):43-44.
    [14]盛伯浩.数控机床功能部件的特点及发展[J].现代制造,2005(04):40-41.
    [15]游有鹏.开放式数控系统关键技术研究[D].南京:南京航空航天大学机械制造及自动化专业,2001:1-2.
    [16]储开宇.21世纪新式数控机床——虚拟轴机床[J].机械工程师,2004(8):15-17.
    [17]汪劲松,黄田.并联机床——机床行业面临的机遇与挑战[J].中国机械工程,1999,10(10):1103-1107.
    [18]盛伯浩.数控机床发展趋势及对策[J].世界制造技术与装备市场,2004(03):18-23.
    [19]孙庚午.论“八五”期间我国机床制造工艺的发展[J].机械制造,1991(09):2-5.
    [20]盛伯浩.机床基础技术发展的35年回顾与展望[J].机床,1991(08):12-17.
    [21]中商情报网.2011年中国机床产量统计分析[EB/OL].[2012-02-01]. http://www.askci.com/news/201202/01/171932_45.shtml
    [22]贾亚洲.实施科技重大专项的重中之重:提高数控机床可靠性[N].机电商报.2009-11-09(A03).
    [23]郑国伟.机床工具进出口情况与需要关注的问题[J].制造技术与机床,2011(7):17-18.
    [24]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[EB/OL].新华社,(2006-02-09),[2011-10-01]. http://www. gov.cn/jrzg/2006-02/09/content_183787.htm
    [25]牟致忠.机械可靠性——理论·方法·应用[M].北京:机械工业出版社,2011:3-5.
    [26]国防科技网.可靠性工程发展动向[EB/OL].[2009-12-18]. http://www.81tech.com/jishu/200912/18/jishu16067.html
    [27]可靠性中心网.可靠性工程发展概述[EB/OL]. http://www.reliacenter.com/26.htm
    [28]林青.国外可靠性技术发展概况[J].自动化仪表,1980(06):7-9.
    [29]刘涌.美国国防部可靠性分析中心简介[J].电子产品可靠性与环境试验,1996(01):72-73.
    [30]周传珍.国外可靠性工程综述[J].质量与可靠性,1994(06):42-45.
    [31]中国可靠性协会.中国可靠性国家标准[EB/OL].[2011-09-08]. http://www.chinarlb.org/Article/guobiao/201109/110.html
    [32]何国伟.国外可靠性标准简述[J].质量与可靠性,1991(03):43-45.
    [33]侯郁.国内外可靠性工程发展概况[J].石油工业技术监督,1996,12(6):24-25.
    [34] A.C.普罗尼科夫.机床的可靠性(二)[J].国外机械加工技术,1987(6):55-58.
    [35] A.C.普罗尼科夫.数控机床的精度与可靠性[M].李昌琪,遇立基,译.北京:机械工业出版社,1987.
    [36] A.C.普罗尼科夫.机器可靠性[M].四川机械工程协会设备维修专业委员会,译.成都:四川人民出版社,1983.
    [37] Vasilev V S. Cost efficiency approach to the selection of NC machine tool reliability standards[J].Soviet Engineering Research,1985,5(9):49-50.
    [38] Chirkov A L, Makarov N V, Gavryushin A I, et al. Enhancing the reliability of NC machines andFMMS by running them in at the manufacturers works[J]. Soviet Engineering Research,1989,9(3):114-115.
    [39] Vershinin B V, Sharin Y S. Ways of increasing the reliability of NC equipment[J]. SovietEngineering Research,1987,7(5):71-71.
    [40] Lapidus A S, Portman V T, Megavoryan L G. Estimating the reliability of NC machine tools inoperation [J]. Machines and Tooling,1978,49(10):9-11.
    [41] Keller A Z, Kamath A R R, Perera U D. Reliability analysis of CNC machine tools[J]. ReliabilityEngineering,1982(3):449-473.
    [42] Ansell J I, Phillips M J. Practical reliability data analysis[J]. Reliability Engineering and SystemSafety,1990,(28):337-356.
    [43] Jones J A, Hayes J A.Use of a field failure database for improvement of product reliability[J].Reliability Engineering and System Safety,1997(55):131-134.
    [44] McGoldrick P F, Kulluk H. Machine Tool Reliability-A Critical Factor in ManufacturingSystems[J]. Reliability Engineering,1986(14):205-221.
    [45] Keller A.Z, Beng C, Kara-Zaitri C. Further applications of fuzzy logic to reliability assessment andsafety analysis [C]//Reliability in Electronicselected, Proceedings of the Seventh Symposium onReliability in Electronics(Electronic'88). Microelectronics Reliability,1988,29(3):399-404.
    [46] Fleming P V, Kara-Zaitri C, Keller A Z. Application of fuzzy reasoning to failure mode and effectanalysis[J].Symposium on the Society of Reliability Engineers,1991(2):288.
    [47]藤井羲也.生产技术の现场では何が起こつてぃるか[J].机械技术,1987,35(15):106-109.
    [48]野中保雄.可靠性数据的收集与分析方法[M].邓中明,译.北京:机械工业出版社,1988.
    [49]贾亚洲,戴怡,张立斌.研究可信性技术提高数控机床的质量与可信性水平[J].世界制造技术与装备市场,2001(03):11-13.
    [50]贾亚洲.提高国产数控机床可靠性水平[J]数控机床市场,2006(5):92-99.
    [51] Marina Karyagina, Water Wong, Ljubica Vlacic. Reliability aspect of CNC machines-are we readyfor integration?[C]//Proceedings of the1995INRIA/IEEE Symposium on Emerging Technologiesand Factory Automation. IEEE Symposium on Emerging Technologies&Factory Automation,1995,3:363-373.
    [52] Lee S W, Choi H Z, Nam S H. Reliability prediction of centerless grinding machine[J]. KeyEngineering Materials,2005, v291-292:151-156.
    [53] Zenkin V A, Bukatkina E V.1. Reliability evaluation of flexible manufacturing cells at the designstage[J]. Soviet engineering research,1987,7(5):69.
    [54] Lapidus A S. Estimating the reliability of NC machine tools in operation[J]. Machines&toolingMelton Mowbray,1978,49(10):9-11.
    [55] Starodubov V S, Ukolov M S. Method for estimating the technological reliability of NC machinetools[J]. Machines&tooling Melton Mowbray,1978,49(10):11-14.
    [56] Kim B S, Kim J S, Lee S H, et al. A study on failure mode analysis of machining center[J]. Journalof the Korean Society of Precision Engineering,2001,18(6):74-79.
    [57] Kim B S, Lee S H, Song J Y, et al. Reliability assessment of machine tools using failure modeanalysis programs[J]. Transactions of the Korean Society of Machine Tool Engineers,2005,14(1):15-23.
    [58] Sung B J, Lee J B. Reliability improvement of machine tool changing servo motor[J]. Journal ofInternational Council on Electrical Engineering,2011,1(1):28-32.
    [59] Kang T H, Kim B S. Development of a web-based analysis program for reliability assessment ofmachine tools[C]//2004,2004:369-374.
    [60]机械电子工业部机床工具司. JB/GQ1153-1990数控车床可靠性的评定方法[S].北京:机械工业出版社,1990.
    [61]成都机床电器研究所. GB10962-89机床电器可靠性通则[S].北京:中国标准出版社,1989.
    [62]于学奎,陈雁军,凌泽润.应用可靠性技术,提升数控装备市场竞争力[J].制造技术与机床,2004(3):21-23.
    [63]盛伯浩.我国数控机床现状与技术发展策略[J].现代制造,2005(15):38-44.
    [64]迟向磊.我国数控机床可靠性研究概况[J].机械工艺师,2001(03):22-23.
    [65]贾亚洲,杨兆军.数控机床可靠性国内外现状与技术发展策略[J].中国制造业信息化,2008(08):35-37.
    [66]“数控机床可靠性设计与可靠性增长技术的研究”项目获机械工业科技进步一等奖[J].吉林工业大学学报(工学版),2002(01):11-12.
    [67]中国数控机床可靠性工程研究的基地——吉林大学数控装备可信性工程研究所[J].中国制造业信息化,2005(03).
    [68]杨兆军,李小兵,许彬彬,等.加工中心时间动态可靠性建模[J].机械工程学报,2012,48(2):16-22.
    [69]许彬彬,杨兆军,陈菲,等.非齐次泊松过程的数控机床可靠性建模[J].吉林大学学报(工学版),2011,41(S2):210-214.
    [70] Jia Zhicheng, Yang Zhaojun, Zhao Hongan, et al. Lifetime Distribution Model and Assessment ofReliability for Domestic-made Machining Center[C]//2010International Conference on BroadcastTechnology and Multimedia Communication(BTMC2010). Chongqing:[s. n.],2010:391-394.
    [71] Yang Zhaojun, Zhu Xiaocui, Jia Yazhou, et al. Fuzzy-comprehensive evaluation of use reliability ofCNC machine tools[C]//Fuzzy-comprehensive evaluation of use reliability of CNC machine tools.Key Engineering Materials,2011,464:374-378.
    [72]罗巍.数控机床故障分析与可靠性评价技术的研究[D].长春:吉林大学机械工程专业,2001.
    [73]陈云雷.面向并行工程的数控车床可靠性研究[D].长春:吉林大学机械工程专业,2004.
    [74]贾亚洲,申桂香,贾志新,等.数控机床可靠性增长技术的应用研究[Z].国家科技成果,2001.
    [75]吉林大学.数控机床可靠性设计与可靠性增长技术研究[Z].国家科技成果,2007.
    [76]卜波.数控车床可靠性增长技术的应用研究[D].长春:吉林大学机械电子工程专业,2008.
    [77]王尧光.基于故障分析的数控车床可靠性增长管理[D].长春:吉林大学机械工程专业,2011.
    [78] Shen Guixiang, Yingzhi Zhang, Chen Bingkun, et al. Research on the Availability Model of NCMachine Tool[C]//2010International Conference on Computer, Mechatronics, Control andElectronic Engineering. IEEE Computer Society,2010,2:526-529.
    [79]魏领会,申桂香,张英芝,等.数控机床可用度建模与仿真[J].吉林大学学报(工学版),2011,41(4):993-997.
    [80]王晓峰,申桂香,张英芝,等.加工中心可靠性与维修性影响度仿真分析[J].吉林大学学报(工学版),2011,41(S1):160-163.
    [81]薛玉霞.数控机床可用性关键技术研究[D].长春:吉林大学机械电子工程专业,2009.
    [82] Yang Zhaojun, Xu Binbin, Chen Fei, et al. A new failure mode and effects analysis model of CNCmachine tool using fuzzy theory[C]//2010IEEE International Conference on Information andAutomation. Harbin: IEEE Computer Society,2010:582-587.
    [83]张海波,贾亚洲,周广文,等.数控系统故障模式、影响及危害度分析(FMECA)[J].中国机械工程,2004,15(06):491-494.
    [84]王桂萍,贾亚洲,申桂香.加工中心冷却系统故障模式危害性模糊评价分析[J].农业机械学报,2008,39(3):171-174.
    [85]许崇文.基于FMEA和重要度分析的数控车床可靠性改进设计[D].长春:吉林大学机械电子工程专业,2008.
    [86] Wang Yiqiang, Jia Yazhou, Qiu Jian, et al. Load spectra of CNC machine tools[J]. Quality andreliability engineering international,2000,16(3):229-234.
    [87]王义强,贾亚洲,于骏一,等.数控车床载荷谱数据库的建立[J].吉林工业大学学报,1998,28(1)34-38.
    [88] Hu Ye, Yang Zhaojun, Zeng Xiaoming, et al. Reliability test platform for high-speed motorizedspindle based on magnetic loading[C]//3rd international Conference on Manufacturing Science andEngineering(ICMSE2012). Advanced Mechanical Design,2012, v479-481:1031-1035.
    [89]许彬彬,杨兆军,陈菲,等.加工中心自动换刀系统可靠性试验台的研制[J].工程与试验,2010,50(4):50-53.
    [90]杨兆军,陈菲,张富,等.具有电液伺服加载装置的数控转塔刀架可靠性试验系统:中国,CN101963548A[P].2011-02-02.
    [91]卢建伟.数控车床转塔刀架可靠性试验台的研制[D].长春:吉林大学机械制造及其自动化专业,2011.
    [92]郝庆波,杨兆军,陈传海,等.基于区间层次分析法的数控机床可靠性预计[J].吉林大学学报(工学版),2012,42(4):845-850.
    [93]杨兆军,郝庆波,陈菲,等.基于区间分析的数控机床可靠性模糊综合分配方法[J].北京工业大学学报,2011,37(3):321-329.
    [94] Wang Y Q, Yam R C M, Zuo M J, et al. A comprehensive reliability allocation method for design ofCNC lathes [J]. Reliability Engineering and System Safety,2001,72(3):247-252.
    [95] Li X B, Yang Z J, Li G F, et al. Posterior probability prediction on the key subsystem of machiningcenter[C]//2011IEEE18th International Conference on Industrial Engineering and EngineeringManagement. IEEE Computer Society,2011:1123-1127.
    [96]于捷,朱志伟,申桂香,等.可靠性预计在数控机床设计中的应用[J].机床与液压,2011,39(15):144-145.
    [97]许彬彬.基于维修程度的数控机床可靠性建模与分析[D].长春:吉林大学机械制造及其自动化专业,2011.
    [98]陈殿生,肖英奎,贾亚洲. CNC车床维修性水平的评价[J].吉林大学学报(工学版),2003,33(2):38-40.
    [99] Hao Qingbo, Yang Zhaojun, Chen Fei, et al. A fuzzy maintainability allocation method for NCmachine tools based on interval analysis[C]//Proceedings of20119th International Conference onReliability, Maintainability and Safety. IEEE Computer Society,2011:889-896.
    [100]薛玉霞,申桂香,张英芝,等.计算机辅助数控机床维修性分析技术[J].机械制造,2009,47(8):9-12.
    [101]科技日报.重型装备和中高档机床性能显著提升[EB/OL].[2011-03-07]. http://www.nmp.gov.cn/mtjj/201103/t20110309_2273.htm
    [102]人民网.“工业母机”技术水平明显提高[EB/OL].(2011-03-17)[2011-03-21]. http://www.nmp.gov.cn/mtjj/201103/t20110321_2308.htm
    [103]北京机床研究所. GB/T23567.1-2009数控机床可靠性评定第1部分:总则[S].北京:中国标准出版社,2009.
    [104]北京机床研究所. GB/T23568.1-2009机床功能部件可靠性评定第1部分:总则[S].北京:中国标准出版社,2009.
    [105]王智明,杨建国,王国强,等.多台数控机床最小维修的可靠性评估[J].哈尔滨工业大学学报,2011,43(7):127-130.
    [106] WANG Zhiming, YANG Jianguo, WANG Guoqiang, et al. Sequential imperfect preventivemaintenance policy with random maintenance quality under reliability limit[C]//Proceedings of theInstitution of Mechanical Engineers. Journal of Mechanical Engineering Science,2011,225(8):1926-1935.
    [107] WANG Zhiming, YANG Jianguo. Reliability assessment of numerical control machine tools usingWeibull mixture models[C]//2010International Conference on Materials Science andTechnology(ICMST2010). Advanced Materials Research,2011, v181-182:161-165.
    [108] WANG Zhiming, YANG Jianguo, WANG Guoqiang, et al. Application of3-parameter Weibullmixture model for reliability assessment of NC machine tools-A case study[C]//Proceedings of theInstitution of Mechanical Engineers. Journal of Mechanical Engineering Science,2011,225(11):2718-2726.
    [109] Yu Naihui, Zhang Zhixiong, Wang Zhuo, et al. Weibull-distribution-based method of bayesianreliability evaluation for machining center[C]//2011International Conference on Advanced Designand Manufacturing Engineering(ADME2011). Advanced Materials Research,2011, v317-319:1949-1953.
    [110] Zhang Xiangpo, Yu Naihui, Shang Jianzhong, et al. Reliability test design for five-axis machiningcenter[C]//2010International Conference on Frontiers of Manufacturing and DesignScience(ICFMD2010). Applied Mechanics and Materials,2011, v44-47:834-838.
    [111] Zhang Xiangpo, Yu Naihui, Shang Jianzhong, et al. Study on reliability test methods of machiningcenter[C]//2010International Conference on Frontiers of Manufacturing and Design Science(ICFMD2010). Applied Mechanics and Materials,2011, v44-47:829-833.
    [112]尚建忠,陈循,王卓,等.一种加工中心电主轴可靠性试验方法及系统:中国, CN102012286A
    [P].2011-04-13.
    [113]张根保,柳剑,王国强.基于任务的数控机床模糊可靠性分配方法[J].计算机集成制造系统,2012,18(4):768-774.
    [114]张根保,王国强,何文辉,等.基于任务的数控机床可靠性分配技术研究[J].中国机械工程,2010,21(19):2269-2273.
    [115] Zhang G B, Liao Z B. Research on Reliability Allocation of Direct-Drive Hobbing Machine[C]//13th International Manufacturing Conference in China(IMCC2009). Materials Science Forum,2009, v628-629:245-250.
    [116] Shilong Wang, Shilong Li, Jie Zhou, et al. Reliability Allocation for CNC Machine Based onImproved Fuzzy Analytic Hierarchy Process[J]. Advances in information Sciences and ServiceSciences,2012,4(1):320-327.
    [117]王庆礼,高建民,陈琨,等.基于相似产品的车床高速主轴系统可靠性预计[J].机床与液压,2011,39(17):128-130.
    [118]张宏斌,贾志新.基于神经网络的电火花线切割机床可靠性预计[J].机械,2009,36(3):1-3.
    [119]张宏斌,贾志新,郗安民.数控机床可靠性分配的模糊决策法[J].制造技术与机床,2009(2):60-63.
    [120]张宏斌,贾志新,郗安民.基于模糊综合评价的电火花线切割机床可靠性预计[J].电加工与模具,2009(S)40-43.
    [121]肖俊,陈志俊,鲁志政,等.数控机床可靠性的模糊分配法[C]//2006年全国机械可靠性学术交流会论文集,2006:54-59.
    [122]黄雷.加工中心可靠性研究[D].沈阳:东北大学安全技术及工程专业,2009.
    [123]任工昌,王党席,苗新强.基于灰色系统理论的数控机床可靠性预计研究[J].机械设计与制造,2010(5):191-193.
    [124]贠海涛,张强. CIMS环境下数控机床可靠性预计系统的研究与开发[J].制造技术与机床,2003(11):26-28.
    [125]余香梅,舒彤.基于神经网络的数控机床可靠性预计研究[J].九江学院学报,2007(06):40-43.
    [126]李太福,王栓虎,解德乾,等.基于模糊理论的高速冲床可靠性分配[J].锻压技术,2011,36(5):71-75.
    [127]程晓民,崔教林.加工中心的可靠性分配与预测[J].机电工程,1997(06):186-187.
    [128]陈丽娟.浅谈数控机床的可靠性与维修性[J].科技资讯,2011(17):31-32.
    [129]李业农.某机床的可维修性研究[J].机械设计与制造,2001(1):12-13.
    [130]陈殿生,王田苗,王敏.数控车床维修性分布数学模型的研究[J].机床与液压,2004(03):25-26.
    [131]郑玉华,王义强. CNC车床维修性及其特征量的统计与分析[J].系统工程理论与实践,1999(8):133-139.
    [132]王太煊.机床设计要重视维修性[J].机床,1986(11):34-35.
    [133]全国电工术语标准化技术委员会. GB/T2900.13-2008电工术语可信性与服务质量[S].北京:中国标准出版社,2008.
    [134]周正伐.可靠性工程基础[M].北京:中国宇航出版社,2009:18-19.
    [135]曾声奎.可靠性设计与分析[M].北京:国防工业出版社,2011:1-2.
    [136]李长娜.基于CompactPCI总线加固机的设计与实现[D].天津:天津大学电气工程专业,2003.
    [137]总装备部电子信息基础部. GJB451A-2005可靠性维修性保障性术语[S].北京:总装备部军标出版发行部,2005.
    [138]王自力.直升机可靠性、维修性指标研究[J].航空学报,1995,16(S):20-27.
    [139]丁定浩,陆军.可靠性、维修性、保障性参数指标体系探讨[J].中国电子科学研究院学报,2011,6(2):170-174.
    [140]申爱云.机电耦合系统的可靠性与维修性预计[D].西安:西北工业大学通信与信息系统专业,2005.
    [141]何国伟.可信性工程:可靠性、维修性、维修保障性(第二版)[M].北京:中国标准出版社,2008.
    [142]王自力.可靠性维修性保障性要求论证[M].北京:国防工业出版社,2011:49-56.
    [143]甘茂治.维修性设计与验证[M].北京:国防工业出版社,1995:25-31.
    [144]国防科学技术工业委员会综合计划部. GJB431-88产品层次、产品互换性、样机及有关术语
    [S].北京:总装备部军标出版发行部,1988.
    [145]侯先勤.数控机床维修与维护[M].北京:清华大学出版社,2010:2-3.
    [146]付承云.数控机床安装调试及维修现场实用技术[M].北京:机械工业出版社,2011:1-4.
    [147]赵宇.可靠性数据分析[M].北京:国防工业出版社,2011:2.
    [148]贾志成,许世蒙,胡仲翔.加工中心寿命分布模型的研究[J].兵工学报,2007,28(3):366-369.
    [149]王松.威布尔分布在寿命分析中的应用[C]//2005年全国机械可靠性学术交流会暨“车辆与工程装备质量与可靠性论坛”论文集.北京:中国机械工程学会可靠性工程分会,2005:26-32.
    [150]蒋仁言,左明健.可靠性模型与应用[M].北京:机械工业出版社,1999:22-23.
    [151]林福泉,林少芬,曾胜斌. FMEA在船舶分油机中的应用[J].舰船科学技术,2009,31(5):113-115.
    [152]刘碧瑶,沈毅.故障模式影响分析在美国医疗风险管理中的应用[J].中华医院管理杂志,2005,21(11):790-792.
    [153]张建国,黄文敏.大型机械产品FMEA和FTA综合分析方法[J].机械设计与制造,2000(1):1-3.
    [154]何茂源.民用飞机系统安全性分析的FMEA方法[J].民用飞机设计与研究,1996(3):31-36.
    [155] Kumar U D, Crocker J, Knezevic J, et al. Reliability, Maintenance and Logistic Support: A LifeCycle Approach[M]. Kluwer Academic Publishers,2000.
    [156]曾声奎,赵廷弟,张建国,等.系统可靠性设计分析教程[M].北京:北京航空航天大学出版社,2001.
    [157]王黎明.介绍一种可靠性指标分配的工程方法——专家评分法[J].质量与可靠性,1988(03):23-25.
    [158]杨双进. AGREE分配方法的应用研究[J].质量与可靠性,1992(05):36-38.
    [159]万毅,丁电宽,邓斌,等.应用模糊综合评判对接触网进行可靠性分配[J].铁道工程学报,2006(6):74-77.
    [160]杜丽,刘宇,黄洪钟,等.基于模糊相似比例与综合评判的发动机可靠性分配[J].航空动力学报,2009,24(2):385-389.
    [161] Lee G L, Lin H J, Yu T W, et al. Optimal Allocation for Improving System Reliability UsingAHP[C]//2008IEEE International Conference on Sustainable Energy Technologies(ICSET2008).Inst. of Elec. and Elec. Eng. Computer Society,2008:159-163.
    [162]彭宝华,赵建印,孙权.复杂系统可靠性分配的层次分析法[J].电子产品可靠性与环境试验,2005(6):58-62.
    [163]王少萍,崔明山,雷利军,等.基于层次分析的液压负载模拟器控制软件可靠性分配[J].机床与液压,2004(10):23-26.
    [164]白晓丽,阮竞兰. AHP在袋装机械可靠度分配中的应用[J].中国制造业信息化,2008,37(21):77-79.
    [165]宋保维,李彩霞,毛昭勇.并联系统可靠性分配的模糊层次分析法[J].火力与指挥控制,2009,34(12):151-154.
    [166]邵旭飞,宋保维,毛昭勇,等.串联系统可靠性分配的模糊层次分析方法[J].弹箭与制导学报,2007,27(1):250-256.
    [167]魏毅强,刘进生,王绪柱.不确定型AHP中判断矩阵的一致性概念及权重[J].系统工程理论与实践,1994,14(4):16-22.
    [168] Zadeh L A. Fuzzy sets[J]. Information and control,1965,8(3):338-353.
    [169]汪培庄.模糊数学简介(I)[J].数学的实践与认识,1980(2):45-59.
    [170] Zhang Hong-bin, Jia Zhi-xin. Complex System Reliability Allocation Based on Fuzzy DecisionMethod[C]//2009International Workshop on Intelligent Systems and Applications, ISA2009. IEEEComputer Society,2009:1-4.
    [171]赵德孜,温卫东.基于模糊综合评判的航空发动机可靠性分配方法[J].航空发动机,2005,31(1):22-27.
    [172]徐泽水,刘海峰.六类不确定型判断矩阵的相容性研究[J].模糊系统与数学,2003,17(2):53-58.
    [173] Saaty T L. The Analytical Hierarchy Process[M]. New York: McGraw-Hill,1980.
    [174] Saaty T L. Modeling unstructured decision problems-the theory of analytical hierarchies[J].Mathematics and Computers in Simulation,1978,20(3):147-158.
    [175]许树柏.层次分析法原理[M].天津:天津大学出版社,1988.
    [176]王莲芬.层次分析法中排序权数的计算方法[J].系统工程理论与实践,1987(2):31-37.
    [177]刘豹,许树柏,赵焕臣,等.层次分析法—规划决策的工具[J].系统工程,1984,2(2):23-30.
    [178] Vaidya O S, Kumar S. Analytic hierarchy process: An overview of applications[J]. EuropeanJournal of Aperational Research,2005,169(1):1-29.
    [179] Vargas L G. An overview of the analytic hierarchy process and its applications[J]. European Journalof Operational Research,1990,48(1):2-8.
    [180]丁香乾,石硕.层次分析法在项目风险管理中的应用[J].中国海洋大学学报,2004,34(1):97-102.
    [181]吴金星,王宗军.基于层次分析法的企业信用评价方法研究[J].华中科技大学学报(自然科学版),2004,32(3):109-111.
    [182] Paulson D, Zajir S. Consequences of uncertainty in the analytic hierarchy process: A simulationapproach[J]. European Journal of Operational Research,1995,87(1):45-56.
    [183]郭秀英.预测决策的理论与方法[M].北京:化学工业出版社,2010:162-176.
    [184]闫东方.可拓层次分析法及其应用[D].大连:大连海事大学应用数学专业,2012:20-21.
    [185]徐玖平,吴巍.多属性决策的理论与方法[M].北京:清华大学出版社,2006:285-287.
    [186] Nakahara Y. User oriented ranking criteria and its application to fuzzy mathematical programmingproblems[J]. Fuzzy Sets and Systems,1998,94(3):275-286.
    [187] Xu J P, Li X. The major optimal and non-inferior programme of multiple attribute decisionmaking[J]. Mathematics in Economics,1996,13(2):26-31.
    [188] Hwang C L, Lai Y J, Liu T Y. A new approach for multiple objective decision making[J].Computers and Operation Research,1993,20(8):889-899.
    [189]郝海,踪家峰.系统分析与评价方法[M].北京:经济科学出版社,2007:33-34.
    [190]王靖,张金锁.综合评价中确定权重向量的几种方法比较[J].河北工业大学学报,2001,30(2):52-57.
    [191] Laarhoven P J M, Pedrycz W. A Fuzzy extension of saaty's priority theory[J]. Fuzzy sets andsystems,1983,11(1-3):199-227.
    [192] Buckley J J. Fuzzy hierachical analysis[J]. Fuzzy sets and systems,1985,17(3):233-247.
    [193]肖峻,王成山,罗凤章.区间层次分析法的权重求解方法初探[J].系统工程与电子技术,2004,26(11):1597-1600.
    [194]王桂萍,贾亚洲,周广文.基于模糊可拓层次分析法的数控机床绿色度评价方法及应用[J].机械工程学报,2010,46(3):141-147.
    [195]魏世孝,周献中.多属性决策理论方法及在C3I系统中的应用[M].北京:国防工业出版社,1998.
    [196]现代实用机床设计手册编委会.现代实用机床设计手册[M].北京:机械工业出版社,2006:10-13.
    [197] Isis Didier Lins, Márcio das Chagas Moura, Enrico Zio, et al. A particle swarm-optimized supportvector machine for reliability prediction[J]. Quality and Reliability Engineering International,2011,28(2):141-158.
    [198] Saleh J H, Marais K. Reliability: How much is it worth? Beyond its estimation or prediction, the(net) present value of reliability[J]. Reliability Engineering and System Safety,2006,91(6):665–673.
    [199] BLISCHKE W R, MURTHY D N P. Reliability: Modeling, Rrediction, and Optimization[M]. NewYork: Wiley,2000:517-519.
    [200] MIL-HDBK-217F, Notice2,.Military handbook: reliability prediction of electronic equipment[S].Washington DC: Department of defense,1995.
    [201] Handbook of217PlusTM: Reliability prediction models[S]. Washington, DC: ReliabilityInformation Analysis Center, Department of defense,2006.
    [202] IEC/TR62380:2004, Reliability data handbook: Universal model for reliability prediction ofelectronics components, PCBs and equipment[S]. Geneva: International ElectrotechnicalCommission,2004.
    [203]总装备部电子信息基础部. GJB/Z299C-2006电子设备可靠性预计手册[S].北京:总装备部军标出版发行部,2007.
    [204] Smith C J, Womack J B. Raytheon assessment of PRISM as a field failure prediction tool[C]//Proceedings of the Annual Reliability and Maintainability Symposium. Los Angeles: Institute ofElectrical and Electronics Engineers Inc.,2004:37-42.
    [205] NSWC-06, Handbook of Reliability Prediction Procedures for Mechanical Equipment[S].Maryland: Naval surface warfare center, Department of defense,2006.
    [206] LEE Seung-woo, LEE Hwa-ki. Reliability prediction system based on the failure rate model forelectronic components[J]. Journal of Mechanical Science and Technology,2008,22(5):957-964.
    [207]赵永翔,王金诺,王少华.机械系统使用可靠性预测的困境与新进展[J].中国机械工程,1997,8(2):107-109.
    [208] Huang Zhaofeng, Jin Yan. Reliability prediction methods: A survey and selection for mechanicaldesign-for-reliability[C]//Proceedings of ASME2009International Design Engineering TechnicalConferences&Computers and Information in Engineering Conference, IDETC/CIE2009.California: American Society of Mechanical Engineers,2009:759-771.
    [209]张增照.以可靠性为中心的质量设计、分析和控制[M].北京:电子工业出版社,2010:51-67.
    [210]陈云霞,谢汶姝,曾声奎.功能分析与失效物理结合的可靠性预计方法[J].航空学报,2008,29(5):1133-1138.
    [211]李永红,徐明. MIL-HDBK-217可靠性预计方法存在的问题及其替代方法浅析[J].航空标准化与质量,2005(4):40-43.
    [212] Liu Chih-Ming, Wang An-Hsiang. Model for predicting the reliability of a man–machine system[J].Quality and Reliability Engineering International,1997,13(3):159-165.
    [213] Bergman B, Ringi M. System reliability prediction using data from non-identical environments[J].Reliability Engineering and System Safety,1997,58(3):185-190.
    [214] Gregoriades Andreas, Sutcliffe Alistair. Workload prediction for improved design and reliability ofcomplex systems[J]. Reliability Engineering and System Safety,2008,93(4):530-549.
    [215]徐泽水. AHP中两类标度的关系研究[J].系统工程理论与实践,1999(7):97-101.
    [216]郭齐胜,董志明,李亮,等.系统建模与仿真[M].北京:国防工业出版社,2007:243-245.
    [217]吴育华,诸为,李新全,等.区间层次分析法——IAHP[J].天津大学学报,1995,28(5):700-705.
    [218]高羡明,洪军,刘瑞萍,等.多准则数控机床模块谱系聚类的划分方法研究[J].西安交通大学学报,2011,45(5):131-136.
    [219] MOORE R, LODWICK W. Interval analysis and fuzzy set theory[J]. Fuzzy Sets and Systems,2003,135(1):5-9.
    [220]吕川.维修性设计分析与验证[M].北京:国防工业出版社,2012:7-8.
    [221] Dhillon B S. Engineering Maintainability: How to Design for Reliability and Easy Maintenance
    [M]. Houston: Gulf Publishing Company,1999:73-74.
    [222] Blanchard B S, Verma D C, Peterson E L. Maintainability: A Key to Effective Serviceability andMaintenance Management[M]. New York: John Wiley and Sons, Inc.,1995.
    [223] AMCP706-133, Maintainability Engineering Theory and Practice[S]. Washington, DC:Department of Defense,1976.
    [224]吴真真,许海宝.系统维修性分配方法的研究[J].航空学报,1995,16(S):56-60.
    [225]萧春来.系统设计中的可靠性与维修性分配方法[J].北方工业大学学报,1997,9(3):45-53.
    [226]总装备部电子信息基础部. GJB/Z57-94维修性分配与预计手册[S].北京:总装备部军标出版发行部,1994.
    [227]刘宗荣,石春和. MTTR的两种预计方法[J].军械工程学院学报,1992,4(2):97-103.
    [228] Hao Jian-ping, Zhou Hong, Gan Mao-zhi. A Maintainability Prediction Method ConsideringEnvironmental Impacts and Cost[J]. International Journal of Plant Engineering and Management,2002,7(4):179-184.