水稻白叶枯病菌Harpin_(Xoo)单克隆抗独特型抗体的制备、筛选及其“内影像”特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于革兰氏阴性植物病原细菌染色体上的hrp基因簇决定其在非寄主植物上的过敏反应和在寄主植物上的致病性。Hrp基因簇包括编Ⅲ型泌出通道的基因、调节基因和编码效应蛋白的基因。Harpins是由革兰氏阴性植物病原细菌产生并受hrp基因调节的一类非特异性激发子,具有共同的特征:富含甘氨酸、对热稳定对蛋白酶K敏感。它们通过III型泌出通道分泌到细胞膜外并转运到寄主植物的细胞质中,能够在寄主植物上引起致病性,在非寄主植物上引起过敏反应,诱导植物抗病,抗虫,促生长以及提高作物的产量与改善作物品质。Harpinxoo是由水稻白叶枯病菌Xanthomonas oryzae pv. oryzae的hrfl基因编码的蛋白质,大小为139个氨基酸(15.6 kDa),具有与其它harpins类似的生物学活性,但在结构和组成上,它显示一些其它harpins不具有的独特性质,如含有其它harpins不具备的半胱氨酸等。
     植物拥有一套天然的免疫系统,使得它们能够抵御外界病原物的侵染。高等植物的HR,快速在病原物侵染点形成坏死斑,死亡细胞可以将侵入寄主体内的病原物限制在侵染点周围,阻止病原物的进一步扩展而实现局部抗病性,是植物针对多种病原物的主动防御,可进一步激活植物抗病防卫信号通路,使植物获得对此后侵入的多种类型病原物的系统抗病性(systemic acquired resistance, SAR)。当harpin被注射到非寄主植物叶片中时,最显著的特征就是引起过敏反应,而harpin的活性位点是如何被植物细胞识别,在什么部位识别,目前还不清楚。在本研究中,我们引入了一种研究植物-病原菌互作的新方法,应用基于Jerne的免疫网络学说制备出的单克隆抗独特型抗体模拟harpin的活性位点,探索harpin在非寄主植物中受体。本论文着重对以下几方面进行了研究。
     1 HarpinXoo蛋白的提取与纯化
     在本研究中,作者从水稻白叶枯病菌PX099基因组DNA中扩增出hrfl基因,用Ndel和HindⅢ叹酶切,随后插入到到pET30a(+)载体的NdeⅠ和HindⅢ两酶切位点之间,获得了重组质粒pET30a(+)-hrf1,转化宿主菌BL21 (DE3)表达融合蛋白。表达菌株E. coli BL21/pET-hrf1在37℃,225rpm经1mM IPTG诱导培养3小时后收集菌体,在100℃沸水中煮10分钟,提取Harpinxoo蛋白,离心分离菌体,蛋白溶解在提取缓冲液中。SDS-PAGE电泳分析表明,获得了大小为16.8kDa蛋白质。注射烟草叶片,引起过敏反应,说明提取到的蛋白为Harpin。用Ni柱对粗蛋白进行纯化,最终获得了单一条带的Harpin蛋白。
     2免源多克隆抗-Harpinxoo抗体(Abl)的制备与纯化
     500μg纯化的Harpinxoo溶解于灭菌的PBS中,与等体积的福氏完全佐剂混合乳化后皮下多点注射与肌肉注射交叉免疫新西兰大白兔,随后的加强免疫用200μg抗原与福氏不完全佐剂混合乳化,每两周免疫一次。六周后,采集兔血清用间接ELISA法测定效价,以免疫前三天采集的阴性血清作对照。Protein A/G亲合层析柱纯化兔源多克隆抗血清,获得多克隆抗-Harpinxoo IgG。HarpinXoo注射烟草引起的过敏反应能被兔源多克隆抗体Ab1抑制,甚至完全阻止,说明Ab1结合harpin的一个或多个活性位点,而这些活性位点可能是非寄主植物中受体的结合位点。
     3体外、体内都具有抑制活性的单克隆抗-Harpinxoo抗体的制备
     Balb/c小鼠接受四次免疫注射纯化的Harpinxoo后,选取效价最高的一只小鼠做融合,制备杂交瘤细胞。间接ELISA法筛选,有限稀释法亚克隆,两轮筛选后获得6株单克隆抗Harpinxoo杂交瘤细胞(2A10、3H12、4B2、4F7.6G4、7F11)。ELISA叠加实验表明,Harpinxoo上的四个表位被6株单克隆细胞株所识别,其中被6G4识别的表位为Harpinxoo引起烟草过敏反应活性位点。体外研究表明,6G4能够与烟草叶片总蛋白竞争性地结合Harpinxoo,最重要的是在体内,6G4能够部分抑制Harpinxoo引起的烟草过敏反应。6G4显然为一个非常合适的免疫原来制备具有Harpinxoo活性位点“内影像”特征的抗独特型抗体。阐明6G4在体外、体内的反应特性将有助于鉴定引起烟草过敏反应的harpin的关键区域。
     4具有Harpinxoo"内影像”特征的抗独特型抗体的制备与特性分析
     用固定化的胃蛋白酶消解纯的兔源多克隆抗体Ab1获得F(ab')2片段,具有抗原结合活性的F(ab')2被用作免疫原来制备具有Harpinxoo“内影像”特征的抗独特型抗体。为制备单克隆抗独特型抗体Ab2, F(ab')2片段和福氏佐剂乳化后免疫小鼠。随着免疫次数的增加,小鼠血清中抗独特型抗体的浓度也在增加。Ab2能够抑制Ab1与harpin的结合,当抑制率达到50%时,三只小鼠血清的稀释倍数分别为:鼠1(917)<鼠2(1094)<鼠3(2540)。因此我们选取竞争抑制效果最好的小鼠3进行细胞融合。
     应用间接ELISA法和竞争抑制ELSIA法筛选具有Harpinxoo“内影像”特征的抗独特型抗体。用间接ELISA法初步筛选,获得224株抗Ab1的阳性克隆,进一步用竞争ELSIA法筛选,抑制率达到50%以上的细胞株仅获得23株。经过第一轮筛选,具有全部抗独特型抗体的特征并能稳定分泌抗体的细胞株6B2被筛选出来。竞争ELISA结果表明,6B2与Ab1的结合受harpin抑制,但不受其它无关蛋白如:BSA抑制,这进一步可以说明6B2与Ab1的结合位点可能为独特型结合位点。6B2与Harpinxoo竞争性地结合非寄主植物中推定的harpin受体,这是本研究的关键所在。6B2与受体的结合位点和harpin与受体的结合位点可能为同一个活性位点或非常相近的活性位点。6B2与非寄主植物中推定受体的结合可能是交叉反应的结果,或者受体构象发生改变结果,然而,也有可能是两种机制共同作用的结果。6B2免疫新西兰大白兔进一步诱导出与兔源多克隆抗体Ab1相同或相似活性的Ab3,这就佐证了我们制备的抗独特型抗体6B2确实具有Harpinxoo的“内影像”特征。这些结果表明,6B2具有抗原相似性,即,抗独特型抗体6B2可以充当Harpinxoo抗原的“内影像”,因此,根据Jerne的系统命名法,6B2可以归类为Ab2β。
     总之,应用抗独特型抗体进行抗原模拟是探索生物体内含量非常低的受体的一种可行方法。这种方法涉及到多种学科,如:蛋白质化学、酶学、免疫学以及蛋白质-蛋白质互作,其应用也是非常广泛的,如:功能模拟,用作探针鉴定受体和免疫组织化学定位。
The hrp (hypersensitive response and pathogenicity) gene clusters in Gram-negative phytopathogenic bacteria determine hypersensitive response (HR) in nonhost plants and pathogenicity in host plants of the bacteria. A hrp gene cluster usually contains genes coding for the components of the typeⅢsecretion pathway, effectors and the proteins that regulate the productions and transportations of effectors. Harpins are non-specific elicitors produced from Xanthomonas oryzae pv. oryzae and regulated by hrp genes. They are exported and delivered from the bacteria into the cytosol of host plant cells and have common characters:glycine-rich, heat stable and protease K-sensitive. They function at the bacterial-plant cell surface interface and have the ability to induce pathogenicity in susceptible plants and to elicit a hypersensitive reaction (HR) in nonhost plants or resistant cultivars of host plants. The application of harpins in many plants is to induce disease and insect resistance, trigger many plant-reaction phenotypes, promote plant growth, and enhance yield and quality by activating distinct signaling pathways. HarpinXoo, identified recently, is encoded by hrfl gene from Xanthomonas oryzae pv. oryzae and contains 139 amino acids (15.6kDa). They have similar biological activities with other harpins, while show some unque natures, such as containing cysteine.
     Plants possess an innate immune system enabling them to defend themselves against attacking pathogens. Using a large set of receptors, the immune system has developed different strategies to realize disease resistance. The HR of higher plants, characterized by rapid, localized necrosis of plant cells at the sites of pathogen infection, is an active defense of plants against many pathogens. The dead cells limit pathogen around the sites of infection, and prevent the further expansion of pathogen realizing local disease-resistance. The signaling pathway of pant disease-resistance was further activated, making plants acquire system resistance to many types of pathogens invaded later. The most prominent feature is the event of eliciting a hypersensitive response, when harpin was infiltrated into nonhost plants. To respond to harpin, the presence of harpin must be recognized by the plant cell. How and where harpin's active site is recognized has not been clear completely. Here, we introduced a new strategy to study the problem of plant-pathogen, empolying an anti-idiotypic antibody based on Jerne's immune network to probe harpin receptor(s) in nonhost plant.
     1 Extraction and purification of HarpinXoo protein
     Hrf1 gene amplified from genomic DNA of Xanthomonas oryzae pv. oryzae strain PXO99 was digested with NdeⅠand HindⅢ, subsequently purified, inserted between the NdeⅠand HindⅢsites of the pET30(a+) vector containing an IPTG promoter. The resulting plasmids, named as pET30a(+)-hrf1, were analyzed by restriction enzyme digestion and DNA sequencing, and transformed into E. coli BL21 (DE3) for expression of the fusion proteins. The recombinant E. coli BL21/pET-hrf1 was incubated at 37℃for 3h at 225 rpm under inducing withlmM IPTG, and then the E. coli cells were harvested by centrifugation at 4℃. HarpinXoo fusion protein was extracted from the harvested cells by boiling them for 10 min in 100℃, purified through Ni affinity chromatography and analyzed on SDS-PAGE. The molecular massed of Harpinxoo is 15.6kDa, in consistence with the prediction by a pertinent software program. This result is an essential basis for further studies on functions of the gene and protein in plants.
     2 Preparation and purification of rabbit polyclonal anti-HarpinXoo antibodies (Ab1)
     New Zealand white rabbits were immunized subcutaneously at multiple sites and intramuscularly with 500μg of purified HarpinXoo emulsified with an equal volume of Freund complete adjuvant and boosted at bi-weekly intervals with 200μg of antigen emulsified with Freund incomplete adjuvant. Six weeks later, the rabbits were bled and the anti-HarpinXoo serum titer was determined by the ELISA method with pre-immune sera analyzed in parallel. Protein A/G affinity chromatography was performed on a 2-mL settled gel pre-packed column to purify Ab1. HR induced by Harpinxoo can be inhibited and even completely blocked by Ab1, which further demonstrates that Ab1 binds to one or more harpin's active sites, which are likely to be combining sites of receptor. This makes it an interesting candidate for generating anti-idotypes.
     3 Preparation of monoclonal anti-HarpinXoo antibody with inhibitory activities in vitro and in vivo
     Female Balb/c mice received four times of immunization with purified harpinXoo. The mice with the highest serum antibody titer were selected to produce hybridomas. Six monoclonal harpinXoo hybridomas were selected, subcloned and identified. ELISA additivity tests revealed that four epitopes in harpinXoo are defined by six monoclonal antibodies, of which one epitope recognized by the mAb designated 6G4 was found to part of the functional sites of harpinXoo, depending upon their immunoinactivation properties. In vitro studies showed that 6G4 was able to bind to harpinXoo competing with total protein of tobacco leaves. Most importantly, in vivo,6G4 blocked partially tobacco HR elicited by HaprinXoo.6G4 appear to be a suitable antigen to produce aniti-iditypic antibodies against harpinXoo, which have the properties of the internal images of harpinXoo actives sites. Elucidating the effect of 6G4 in vitro and in vivo will provide more insight into identifying key functional regions in Harpins that induce HR in nonhost plant.
     4 Preparation and characterization of monoclonal Ab2 having the properties of an internal image of HarpinXoo
     F(ab')2 fragments retaining antigen binding activity, which were generated by digesting the purified rabbit polyclonal anti-harpin antibodies (Ab1) using immobilized pepsin, were used to produce mouse anti-idiotypic antibodies having the properties of "internal image" of HarpinXoo- For the preparation of mAb Ab2, mice were immunized with different doses of F(ab')2 fragments in the presence of adjuvant. The concentration of Ab2 in mouse sera increased with an increase in the number of immunizations. When the inhibition rate reached 50%, the order of the three mouse sera dilutions were:mouse 1 (917)< mouse 2 (1094)< mouse 3 (2540). So we selected mouse 3 having the best inhibitory effect on the binding of Ab1 to HarpinXoo to generate hybridomas.
     The anti-idiotypic antibody that has the properties of an internal image of the protein HarpinXoo was screened by using standard ELISA and competitive inhibition ELISA. Clones were screened by indirect ELISA first,224 were positive against Ab1 polyclonal antibody, but only 23 were able to block more than 50% of the binding of Ab1 to Harpinxoo. After a first selection round,6B2 was selected to be fully characterized and to be propagated as a stable cell line. The results from the competition ELISA demonstrate that the binding of 6B2 mAb to the fragments of Ab1 was inhibited by HarpinXoo but not by other proteins, such as BSA, indicating that the binding probably occurred close to or on the combining site of the idiotype. In addition, we showed that 6B2 competes with Harpinxoo for binding to the harpin putative receptor in nonhost plants, which was the crucial point of this study. This fact provides strong evidence that 6B2 binds to the putative receptor at the harpin binding site. The binding of 6B2 to the harpin putative receptor could be the result of cross-linking to the receptor or of the induction of a conformational change in the receptor. However, it is also possible that both mechanisms are active together. Additional evidence for the anti-idiotype nature of 6B2 was provided by the induction of an Ab3 response.6B2 mAb induced a strong response against harpin in rabbits and elicited Ab3 antibodies with the same specificity as the rabbit polyclonal antibodies Ab1. These results implied that 6B2 mAb has ligand-like properties, i.e. that it behaves as the internal image of harpin protein and therefore 6B2 can be classified as Ab2βaccording to Jerne's nomenclature.
     In conclusion, Antigen mimicry by anti-idiotypic antibodies is employed as a reliable strategy to probe receptors that are present in very low concentrations in the organism. This approach calls on knowledge at the crossroads of various fields such as general protein chemistry, enzymology, and immunology, as well as protein-protein interactions, for which the scope of applications is wide, for example:functional mimicry, using as a probe to identify cell surface receptors and immunohistochemical localization.
引文
1. Abood LG, Langone JJ, Bjercke R, Lu X, Banerjee S (1987). Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies. Proc. Natl. Acad. Sci. USA 84:6587-6590
    2. Abrams CS, Ruggeri ZM, Taub R, Hoxie JA, Nagaswami C, Weisel JW, Shattil SJ (1992). Anti-idiotypic antibodies against an antibody to the platelet glycoprotein (GP) Ⅱb-Ⅲa complex mimic GPIIb-IIa by recognizing fibrinogen. J. Biol. Chem.267:2775-2785
    3. Ada GL (1982). Vaccines for the future? Aust. J. Exp. Biol. Med. Sci.60:549-569
    4. Akimitsu K, Hart LP, Walton JD (1993). Immunological evidence for a cell surface receptor of victorin using anti-victorin antiidiotypic polyclonal antibodies. Mol. Plant-Microbe Interact. 6:429-433
    5. Alfano JR, Bauer DW, Milos TM, Collmer A (1996). Analysis of the role of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally nonpolar deletion mutations, truncated HrpZ fragments, and hrmA mutations. Mol. Microbiol.19:715-728
    6. Alfano JR, Collmer A (1996) Bacterial pathogens in plants:life up against the wall. Plant Cell 8:1683-1698
    7. Alfano JR, Collmer A (1997). The type Ⅲ (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, avr proteins and death. J. Bacteriol.179:5655-5662
    8. Alfano JR, Collmer A (2004) Type Ⅲ secretion system effector proteins:double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol.42:385-414
    9. An LL, Hudson AP, Prendergast RA, Obrien TP, Stuart ES, Whittum-Hudson JA, Macdonald AB (1997). Biochemical and functional antigenic mimicry by a polyclonal anti-idiotypic antibody for chlamydial exoglycolipid antigen. Pathobiol.65:229-240
    10. Anders EM, Kapaklis-Deliyannis GP, White DO (1989). Induction of immune response to influenza virus with anti-idiotypic antibodies. J. Virol.63:2758-2767
    11. Arlat M, van Gijsegem F, Huet JC, Permollet JC, Boucher, CA (1994). PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. Euro. Mole. Biol. Organization J.13:543-553
    12. Armstrong AC, Dermime S, Allinson G, Bhattacharyya T, Mulryan K, Gonzalez KR, Stern PL, Hawkins R (2002). Immunization with a recombinant adenovirus encoding a lymphoma idiotype: induction of tumor-protective immunity and identification of an idiotype-specific T cell epitope. J. Immunol.,168:3983-3991
    13. Baker CJ, Orlandi EW, Mock NM (1993). Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol.102:1341-1344
    14. Bauer DW, Wei ZM, Beer SV, Collmer A (1995). Erwinia chrysanthemi harpinEch:an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol. Plant-Microbe Interact.8: 484-491.
    15. Bauer DW, Zumoff CH, Theisen TM, Bogdanove AJ, Beer SV (1997). Optimized production of Erwinia amylovora harpin and its use to control plant disease and enhance plant growth. Phytopathology.87:S7
    16. Baxt B, Garmendia AE, Morgan DO (1989). Characterization of anti-idiotypic antibodies generated against foot-and-mouth disease virus neutralizing monoclonal antibodies. Viral. Immunol.2:103-113
    17. Baz A, Hernandez A, Dematteis S, Carol H, Nieto A (1995). Idiotypic modulation of the antibody response of mice to Echinococcus granulosus antigens. Immunology 84:350-354
    18. Beauclair KD, Khansari DN (1990). Protection of mice against Brucella abortus by immunization with polyclonal anti-idiotype antibodies. Immunobiology,180:208-20
    19. Benca R, Quintans J, Kearney JF, Flood PM, Schreiber H (1980). Studies on phosphorylcholine-specific T cell idiotypes and idiotype-specific immunity. Mol. Immunol.17: 823-831
    20. Betakova T, Vareckova E, Kostolansky F, Mucha V, Daniels RS (1998). Monoclonal anti-idiotypic antibodies mimicking the immunodominant epitope of influenza virus haemagglutinin elicit biologically significant immune responses. J. Gen. Virol.79:461-470
    21. Bhattacharya-Chatterjee M, Pride MW, Seon BK, Kohler H (1987). Idiotype vaccines against human T cell acute lymphoblastic leukemia. Ⅰ. Generation and characterization of biologically active monoclonal anti-idiotopes. J. immunol.139:1354-1360
    22. Birebent B, Koido T, Mitchell E, Li W, Somasundaram R, Purev E, Hoey D, Mastrangelo M, Maguire H, Harris DT, Nair S, Cai E, Herlyn D (2001). Anti-idiotypic antibody (Ab2) vaccines: coupling of Ab2 BR3E4 to KLH increases humoral and/or cellular immune responses in animals and colorectal cancer patients. J. Cancer Res. Clin. Oncol.2:R27-33
    23. Bluestone JA, Leo O, Epstein SL Sachs DH (1986). Idiotypic manipulation of the immune response to transplantation antigens. Immunol. Rev.90:5-27
    24. Bogdanove A, Wei ZM, Zhao L, Beer SV (1996). Erwi nia amylovora secretes harpin via a type Ⅲ pathway and contains a homolog of yonN of Yersi nia spp. J. Bacteriol.178:1720-1730.
    25. Bogdanove AJ, Kim JF, Wei Z, Kolchinsky P, Charkowski AO, Conlin AK, Collmer A, Beer SV (1998). Homology and functional similarity of an hrp-linked pathogenicity locus,dspE, of Erwinia amylovora and the avirulence locus avrE of Pesudomonas syringae tomato. Proc. Natl. Acad. Sci. USA 95:1325-1330
    26. Bogdanove AJ, Wei Z, Zhao L, Beer SV (1996). Erwinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. J. Bacteriol.178:1720-1730
    27. Bona C, Kohler H (1984). Anti idiotypic antibodies and internal image. In:Monoclonal and Anti idiotypic Antibodies. Probes for Receptor Structure and Function. Alan R. Liss, New York,141
    28. Bona CA, Mongini PK, Stein KE, Paul WE (1980). Anti-immunoglobulin antibodies. I.Expression of cross-reactive idiotypes and Ir gene control of the response to IgG2a of the b allotype. J. Exp. Med.151:1334-1348
    29. Brito B, Aldon D, Barberis P, Boucher C, Genin S (2002). A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes. Mol. Plant-Microbe Interact.15:109-119
    30. Carneiro J, Coutinho A, Stewart J (1996). A model of the immune network with B-T cell co-operation. Ⅱ. The simulation of ontogenesis. J. Theor. Biol.182:531-547
    31. Cayanis E, Rajagopalan R, Cleveland WL, Edelman IS, Erlanger BF (1986). Generation of an auto-antiidiotypic antibody that binds to glucocorticoid receptor. J Biol Chem.261:5094-5103
    32. Cerny J, Heusser C, Wallich R, Hammerling GJ, Eardley DD (1982). Immunoglobulin idiotopes expressed by T cells. I. Expression of distinct idiotopes detected by monoclonal antibodies on antigen-specific suppressor T cells. J. Exp. Med.156:719-730
    33. Charkowski AO, Alfano JR, Preston G, Yuan J, He SY, Collmer A (1998). The Pseudomonas syringae pv. tomato HrpW protein has domains similar to Harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol.180:5211-5217.
    34. Chen GY, Wang JS (2002). Pathogenicity determinants of plant pathogenic bacteria. Acta of Phytopathologica Sinica.32,1-7 (in Chinese)
    35. Chen GY, Zhang XD, Zhang XM, Wang JS (2000). Chemical mutagenesis of Xanthomonas oryzae pv. oryzicola and hrp mutants restored to the wild phenotype by genomic DNA library complementation. J. Agr. Biotechnol.8:117-122 (in Chinese)
    36. Clackson T, Gusso D, Jones PT (1991). General applications of PCR to gene cloning and manipulation. In PCR. A practical approach, eds M.J.Mcpherson P. Quirke and GR.Taylor, Ch.12 IRL Press, Oxford
    37. Co MS, Gaulton GN, Fields BN, Greene MI (1985). Isolation and biochemical characterization of the mammalian reovirus type 3 cell-surface receptor. Proc. Nati. Acad. Sci. USA 82:1494-1498
    38. Collmer A, Badel JL, Charkowski AO, Deng WL, Fouts DE, Ramos AR, Rehm AH, Anderson DM, Alfano JR (2000). Pseudomonas syringae Hrp type Ⅲ secretion system and effector proteins. Proc. Natl. Acad. Sci. USA 97:8770-8777
    39. Collmer A, Lindeberg M, Petnicki-Ocwieja T, Schneider D, Alfano JR (2002). Genomic mining type Ⅲ secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol.10:462-470
    40. Colucci G, Waksal SD (1987). Interactions between hepatitis B virus and polymeric human albumin. I. Production of monoclonal anti-idiotypes (anti-anti-polymeric human albumin) which recognize hepatitis B virus surface antigen. Eur. J. Immunol.17:365-370
    41. Cornaglia EM, Elazhary YM, Brodeur BR, Talbot BG (1992). Monoclonal anti-idiotype induces antibodies against bovine Q17 rotavirus. J. Virol.66:5763-5769
    42. Couraud PO (1986). Structural analysis of the epitopes recognized by monoclonal antibodies to angiotensin II. J. Immunol.136:3365-3370
    43. Depraetere H, Depla E, Haelewyn J, Ley MD (2000). An anti-idiotypic antibody with an internal image of human interferon-y and human interferon-y-like antiviral activity. Eur. J. Biochem. 267:2260-2267
    44. Desikan R, Hancock J, Ichimura K, Shinozaki K, Neill SJ (2001). Harpin induced activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol. 126:1579-1587
    45. Dong H, Delaney TP, Bauer DW, Beer SV (1999). Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J.20:207-215
    46. Dong HP, Peng JL, Bao ZL, et al (2004). Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol.136(3):3628-3638
    47. Dong HP, Yu HQ, Bao ZL, Guo XJ, Peng JL, Yao Z, Chen GY, Qu SP, Dong HS (2005). The ABI2-dependent abscissic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Plants 221:313-327
    48. El-Maarouf H, Barny MA, Rona JP, Bouteau F (2001). Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett.25:82-84
    49. Emmrich F, Eichmann K, Waltzien HU (1986). The generation of the repertoire of T cell specificities and functions:towards a consistent model. Prog. Immunol. Ⅵ. Toronto,406-417
    50. Fields BN, Greene MI (1982). Genetic and molecular mechanisms of viral pathogenesis:implication for prevention and treatment. Nature (london),300:19-23
    51. Friguet B, Chaffotte AF, Djavadi-Ohaniance L, Goldberg ME (1985). Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J. Immunol. Methods 77:305-319
    52. Fung MS, Sun CR, Liou rs, Goudon W, Chang NT, Chang TW, Sun NC (1990). Monoclonal anti-idiotypic antibody mimicking the principal neutralization site in HIV-1 GP120 induces HIV-1 neutralizing antibodies in rabbits. J. Immunol.145:2199-2206
    53. Galan JE, Collmer A (1999). Type Ⅲ secretion machines:Bacterial devices for protein delivery into host cells. Science.284:1322-1328
    54. Gaudriault S, Malandrin L, Paulin JP, Barny MA (1997). DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via Hrp secretion pathway in a Dsp-depend way. Mol. Microbiol.26:1075-1069
    55. Ghanekar SA, Cecilia D, Kutubuddin M, Goverdhan MK, Dandawate CN, Banerjee K, Ghosh SN (1991). Characterization of&induction of immune response to anti-idiotypic antibodies for JE virus. Indian J. Med. Res.93:131-139
    56. Gijsegem FV, Vasse J, Camus JC, Marenda M, Boucher C (2000). Ralstonia solanacearum produces Hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol. Microbiol.36:249-260
    57. Goldbaum FA, Velikovsky CA, Dall'Acqua W, Fossati CA, Fields BA, Braden BC, Poljak RJ, Mariuzza RA (1997). Characterization of anti-anti-idiotypic antibodies that bind antigen and an anti-idiotype. Proc. Natl. Acad. Sci. USA 94:8697-8701
    58. Gopalan S, Bauer DW, Alfano JR, Lonieilo AO, He SY, Collmer A (1996). Expressian of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Gell 8:1095-1105
    59. Grieder FB, Schultz KT (1990). Antiidiotypic antibody mimicry of a bluetongue virus neutralizing antigen. J. Immunol.144:2627-2631
    60. Grieder FB, Schultz KT (1990). Antiidiotypic antibody mimicry of a bluetongue virus neutralizing antigen. J. Immunol.144:2627-2631
    61. Grzych JM, Capron PH, Lambert H, Dissous C, Torres S, Capron A (1985). An anti-idiotype vaccine against experimental schistosomiasis. Nature 316:74-76
    62. Hacker d, Blum-Oehler G, Muhldorfer I, Ischape H (1997). Pathogenicity islands of virulent bacteria: struture, function and impact on microbial evolution. Mol. Microbiol.23:1089-1097
    63. Hall BL, Zaghouani H, Daian C, Bona CA (1992). A single amino acid mutation in CDR3 of the 3-14-9 L chain abolished expression of the IDA 10-defined idiotope and antigen binding. J. Immunol. 149:1605-1612
    64. Hanham CA, Zhao F, Tignor GH (1993). Evidence from the anti-idiotypic network that the acetylcholine receptor is a rabies virus receptor. J. virol.67:530-542
    65. Harris SL, Park MK, Nahm MH, Diamond B (2000). Peptide mimic of phosphorylcholine, a dominant epitope found on Streptococcus pneumoniae. Infect. Immun.68:5778-5784
    66. Hawkins RE, Winter G, Hamblin TJ, Stevenson FK, Russell SJ (1993). A genetic approach to idiotypic vaccination. J. Immunother.14:273-278
    67. Hayunga EG, Summer MP, Duncan JF, Chakrabarti EK, Webert DW (1992). Production of anti-idiotypic antibodies as potential immunoreagents for the serological diagnosis of bovine cysticercosis. Ann. N. Y. Acad. Sci.653:178-183
    68. He SY (1998). Type Ⅲ protein secretion system in plant and animal pathogenic bacteria. Annu. Rev. Phytopathol.36:363-392
    69. He SY (1998). Type Ⅲ protein secretion systems in plant and animal pathogenic bacteria. Annu. Rev. Phytopathol.36:363-392
    70. He SY, Huang HC, Collmer A (1993). Pseudomonas syri ngae HarpinPss:a protein that secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255-1266
    71. Herlyn D, Somasundaram R, Li W, Maruyama H (1996). Anti-idiotype cancer vaccines:past and future. Cancer Immunol. Immunother.43:65-76
    72. Hoffmann GW (1975). A theory of regulation and self-nonself discrimination in an immune network. Eur. J. Immunol.5:638-664
    73. Homcy CJ, Rockson SG, Haber E (1982). An antiidiotypic antibody that recognizes the β-adrenergic receptor. J. Clin. Invest.69:1147-1154
    74. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989). Engineering hybrid genes without the uses of restriction enzymes:gene splicing by overlap extension. Genev.77:61-68
    75. Hoyos AE, Stanley CM, He SY, Pike S, Pu XA, Novacky A (1996). The interaction of harpinPss with plant cell walls. Mol. Plant-Microbe Interact.9:608-616
    76. Huang T, Campadelli-Fiume G (1996). Anti-idiotypic antibodies mimicking glycoprotein D of herpes simplex virus identify a cellular protein required for virus spread from cell to cell and virus-induced polykaryocytosis. Proc. Natl. Acad. Sci. USA 93:1836-1840
    77. hunkel HG, Mannik M, RC (1963). Williams:Individual antigenic sepcifity of isolated antibodies. Science 140:1218.-1219
    78. Izadyar L, Friboulet A, Remy MH, Roseto A, Thomas D (1993). Monoclonal anti-idiotypic antibodies as functional internal images of enzyme active sites:Production of a catalytic antibody with a cholinesterase activity. Proc Natl Acad Sci USA.90:8876-8880
    79. Jackson RW, Athanassopoulos E, Triamis G, Mansfleld JW (1999). Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the pathogen Pseudomonas syringae pathvar phaseolicola. Proc. Natl. Acad. Sci. USA 96:10875-10880
    80. Jaime F, Martinez-Garcia Monte E, Quail PH (1999). A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant J.20:251-257
    81. Jang YS, Sohn SI, Wang MH (2006). The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta 223:449-456
    82. Jerne N (1974). Toward a network theory of the immune system. Ann Immunol.125c:373-389
    83. Jerne NK(1974a). The immune system:a web of Ⅴ-domains. Harvey Lect.70:93-110
    84. Jerny NK (1974b). Toward a network theory of the immune system. Ann. Immunol.125:373-389
    85. Jin Q, He SY (2001). Role of the Hrp pilus in type Ⅲ protein secretion in Pseudomona syringae. Science 294:2556-2558
    86. Jin Q, Hu W, Brown I, McGhee G, Hart P, Jones AL, He SY (2001). Visualization of secreted Hrp and Avr proteins along the Hrp piles during type Ⅲ secretion in Erwinia amylovora and Pseudomonas syringae. Mod. Mierobiod.40:1129-1139
    87. Jobin D, Kazatchkine M (1992). Intravenous immunoglobulins and anti-idiotypic suppression of auto-immunity. Rev. Med. Interne.13:162-165
    88. John Ellis R, Pinheiro JT (2001). Danger-misfolding proteins. Nature 416:483-484
    89. Kaminski MS, Kitamura K, Maloney DG, Levy R (1987). Idiotype vaccination against B-cell lymphoma. Inhibition of tumor immunity by free idiotype protein. J. immunol.138:1286-1296
    90. Kan WM, Tai HH (1993). Monoclonal anti-idiotypic antibody to a potent thromboxane A2 receptor antagonist and its interaction with thromboxane A2 receptor. J. Biol. Chem.268:6364-70
    91. Keay S, Merigan TC, Rasmussen L (1989). Identification of cell surface receptors for the 86-kilodalton glycoprotein of human cytomegalovirus. Proc. Nati. Acad. Sci. USA 86:10100-10103
    92. Kennedy RC, Melnick JL, Dreesman GR (1984). Antibody to hepatitis B virus induced by injecting antibodies to the idiotype. Science 223:930-931
    93. Kim JF, Beer SV (1998). Hrp W of Erwinia amylovora, a new harpin that is a member of a proposed class of pectate lyases. J. Bacteriol.180:5203-5210
    94. Kim JF, Beer SV (2000). Hrp genes and harpins of Erwinia amylovora:A decade of discovery, in:JL Vanneste (ed), Fire Blight and Its Causative Agent, Erwinia amylovora, CAB International, Wallingford, Uk,141-162
    95. Kim JG, Jeon E, Oh J, Moon JS, Hwang I (2004). Mutational analysis of Xanthomonas Harpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost Plants. J. Bacteriol.186:6239-6247
    96. Kjemtrup S, Nimchuk Z, Dangl JL (2000). Effector proteins of phytopathogenic bacteria: Bifunctional signals in virulence and host recognition. Curr. Opin. Microbiol.3:73-78
    97. Klement Z (1982). Hypersensitivity. in:MS Mount and GH Lacy (eds), Phytopathogenic Prokaryotes, VoⅢ, Academic Press, New York,149-177
    98. Kohler G, Milstein C (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Biotechnology 24:524-526
    99. Kohler H, Kaveri S, Kieber Emmons T, Morrow WJ, Muller S, Raychaudhuri S (1989). Idiotypic networks and nature of molecular mimicry:an overview. Methods Enzymol.178:3-35
    100. Kolesnikov AV, Kozyr AV, Alexandrova ES, Koralewski F, Demin AV, Titov MI, Avalle B, Tramontano A, Paul S, Thomas D, Gabibov AG, Friboulet A (2000). Enzyme mimicry by the antiidiotypic antibody approach. Proc. Natl. Acad. Sci. USA 97:13526-13531
    101. Kombrink E, Schmelzer E (2001). The hypersensitive response and its role in local and systemic disease resistance. Eur. J. Plant. Pathol.107:69-78
    102. Kositskaia LS, Sofronov BN, Bichurina MA, Briantseva EA, Rozaeva NR (1995). The induction of an immune response to influenza virus antigens by anti-idiotypic antibodies. Zh Microbiol. Epidemiol. Immunobiol.1:40-44
    103. Krah DL, Choppin PW (1988). Mice immunized with measles virus develop antibodies to a cell surface receptor for binding virus. Eur. J. Plant. Pathol.62:1565-1572
    104. Kresina TF, Olds GR (1989). Antiidiotypic antibody vaccine in marine Schistosomiasis mansoni comprising the internal image of antigen. J. Clin. Invest.83:912-920
    105. Ku HH, Cleveland WL, Erlanger BF (1987). Monoclonal antibodies to adenosine receptor by an auto-anti-idiotypic approach. J. Immunol.139:2376-2384
    106. Kuo CY, Sun P, Lee CY (1988). Sperm antibodies induced by anti-idiotype antibodies:a strategy in development of immunocontraceptive vaccines. J. Reprod. Immunol.13:193-209
    107. Laby RJ, Wei ZM, Beer SV (2006). Hypersensitive response elicitor fragments eliciting a hypersensitive response and uses thereof. United States Patent.6583107
    108. Lamarre A, Lecomte J, Talbot PJ (1991). Antiidiotypic vaccination against murine coronavirus infection. J. Immunol.147:4256-4562
    109. Lamarre A, Lecomte J, Talbot PJ (1991). Antiidiotypic vaccination against marine coronavirus infection. J. Immunol.147:4256-4562
    110. Lee J, Klessig DF, Nurnberger T (2001). A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell a; 13:1079-1093
    111. Lee J, Klusener B, Tsiamis G, Stevens C, Neyt C, Tampakaki AP, Panopoulos NJ, Noller J, Weiler EW, Cornelis GR, Mansfield JW, Nurnberger T (2001). HrpZPsph from the plant pathogen Pseudomonas syringae pv. Phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc. Natl. Acad. Sci. USA b;98:289-294
    112. Lefranc MP, IMGT (2001). the international ImMunoGeneTics database. Nucleic Acids Res.29, 207-209
    113. Li CM, Haapalainen M, Lee J, Nurnberger T, Romantschuk M, Taira S (2005). Harpin of Pseudomonas syringae pv. Phaseolicola harbors a protein binding site. Mol. Plant-Microbe Interact. 18:60-66
    114. Li CM, Haapalainen M, Lee J. Nurnberger, T. Ronantschuk, M. & Taira, S (2005). Harpin of Pseudononas syringae pv. Phaseolicola harbors a protein binding site. Mol. Plant-Microbe Interact. 18:60-66
    115. Li P, Lu XZ, Shao M, Long JY, Wang JS (2004). Genetic diversity of Harpin from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Sci. China Ser. C:Life Sci.47:461-469
    116. Lindgren PB (1997). The role of hrp genes during plant-bacterial interaction. Annu. Rev. Phytopathol.35:129-152
    117. Lindgren PB, Peet RC, Panopoulos NJ (1986). Gene cluster of Pseudomonas syringae pv. "Phaseolicola" controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J. Bacteriol.168:512-22
    118. Lombes M, Edelman IS, Erlanger BF (1989). Internal image properties of a monoclonal auto-anti-idiotypic antibody and its binding to aldosterone receptors. J. Biol. Chem.264:2528-2536
    119. Lombes M, Farman N, Oblin ME, Baulieu EE, Bonvalet JP, Erlanger BF, Gasc JM (1990). Immunohistochemical localization of renal mineralocorticoid receptor by using an anti-idiotypic antibody that is an internal image of aldosterone. Proc. Nat1. Acad. Sci. USA 87:1086-1088
    120. Lopex-Diaz de Cerio A, Zabalegui N, Rodriguez-Calvillo M, Inoges S, Bendandi M (2007). Anti-idiotype antibodies in cancer treatment. Oncogene.26:3594-3602
    121. Lucas GP, Cambiaso CL, Vaerman JP (1991). Protection of rat intestine against cholera toxi challenge by monoclonal anti-idiotypic antibody immunization via enteral and parenteral routes. Infect. Immun.59:3651-3658
    122. Ludwig DS, Finkelstein RA, Karu AE, Dallas WS, Ashbyt ER, Schoolnik GK (1987). Anti-idiotypic antibodies as probes of protein active sites:Application to cholera toxin subunit B. Proc. Natl. Acad. Sci. USA 84:3673-3677
    123. Ma J, Zhou L, Wang D (2002). Functional Mimicry of an Anti-idiotypic Antibody to Nominal Antigen on Cellular Response. Jpn. J. Cancer Res.93:78-84
    124. Malavaud B, Pedron S, Sordello S, Mazerolles C, Billottet C, Jean-Paul T, Jouanneau J, Ploue J (2004). Direct FGF receptor 1 activation through an anti-idiotypic strategy mimics the biological activity of FGF-2 and inhibits the progression of the bladder carcinoma derived from NBT-II cells. Oncogene.23:6769-6778
    125. McClintock K, Lamarre A, Parsons V Laliberte JF, Fortin MG (1998). Identification of a 37 kDa plant protein that interacts with the turnip mosaic potyvirus capsid protein using anti-idiotypic-antibodies. Plant Mol. Biol.37(2):197-204
    126. McCullough KC, Crowther JR, Butcher RN (1985). Alteration in antibody reactivity with foot-and-mouth disease virus (FMD V) 146S antigen before and after binding to a solid phase or complexing with specific antibody. J. Immunol. Methods.82(1):91-100
    127. McNamara MK, Ward RE, Kohlei H (1984). Monoclonal idiotope vaccine against Streptococcus pneumoniae infection. Science 226:1325-1326
    128. Milgrom F, Dubinski S (1957). Antigenicity of antibodies of the same species. Nature, 179:1351-1352
    129. Monestier M, Debbas ME, Goldenberg DM (1989). Syngeneic anti-idiotype monoclonal antibodies to marine anticarcinoembryonic antigen monoclonal antibodies. Cancer Res.49:123-126
    130. Mons N, Dubourg P, Messier C, Chiavaroli C, Calas A, Geffard M (1991). Polyclonal anti-idiotypic antibodies as internal images of dopamine. Applications for biochemical and morphological studies of DA receptors in the rat brain. J. Hirnforsch.32:617-625
    131. Mukherjee A, Cui Y, Liu Y, Chatterjee AK (1997). Molecular characterization and expression of the Erwinia carotovora HrpNEcc gene, which encodes an elicitor of the hypersensitive reaction. Mol. Plant-Microbe Interact.10 (4):462-471
    132. Niro DR, Sblattero D, Florian F, Stebel M, Zentilin L, Giacca M, Villanacci V, Galletti A, Not T, Ventura A, Marzari R (2008). Anti-idiotypic response in mice expressing human autoantibodies. Mol. Immunol.45:1782-1791
    133. Nisonoff A, Lamoyi E (1981). Implications of the presence of an internal image of the antigen in anti-idiotypic antibodies:possible application to vaccine production. Clin. Immunol. Immunopathol. 21:397-406
    134. Nizan R, Barash I, Valinsky L, Lichter A, Manulis S (1997). The presence of hrp genes on the pathogenicity-associated plasmid of the tumorigenic bacterium Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact.10:677-682
    135. Norton FL, Morrow FR, Leung CY, Benjamin E (1985). The idiotypic characterization of the immune response to a defined epitope of a protein antigen and the specific in vivo suppression of the immune response to this epitope by anti-idiotypic antibodies. J. Immunol.134:3226-3232
    136. Oh CS, Beer SV (2007). AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant physiology 145:426-436
    137. Oosterlaken TA, Harmson M, Jhagjhoor-Singh SS, Ekstijn GL, Kraaijeveld CA, Snippe H (1991). A protective monoclonal anti-idiotypic vaccine to lethal Semliki Forest virus infection in BALB/c mice. J.virol.65:98-102
    138. Orlandi R, Gussow DH, Jones PT (1989). Cloning immunoglobin variable domain for expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86(10):3833-3837
    139. Oudin J, Michel M (1963). A new allotype form of rabbit serum gamma-globulins, apparently associated with antibody function and specificity. C. R. Hebd. Seances. Acad. Sci.257:805-808
    140. Peleshok J, Saragovi HU (2006). Functional mimetics of neurotrophins and their receptors. Biochem. Soc. T.34:612-617
    141. Peng JL, Bao ZL, Dong HS, Ren HY, Wang JS (2004a). Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94:1048-1055
    142. Peng JL, Bao ZL, Ren HY, Wang JS, Dong HS. (2004) Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94:1048-1055
    143. Peng JL, Dong HS, Dong HP, Delaney TP, Bonasera BM, Beer SV (2003). Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol. Mol. Plant Pathol.62:317-326
    144. Perez A, Lombardero J, Mateo C, Mustelier G, Alfonso M, Vazquez AM, Perez R (2001). Immunogenetic analysis of variable regions encoding Ab1 and γ-type Ab2 antibodies from the NeuGc-containing ganglioside family. Hybridoma 20:211-221
    145. Polonelli L, De Bernardis F, Conti S, Boccanera M, Gerloni M, Morace G, Magliani W, Chezzi C, Cassone A (1994). Idiotypic intravaginal vaccination to protect against candidal vaginitis by secretory, yeast killer toxin-like anti-idiotypic antibodies. J. Immunol.152:3175-3182
    146. Poskitt DC, Turnbull S, Macdonald L, Jean-Francois MJ, Yasmeen D (1991). The immune response to anti-idiotype antibodies bearing an internal image epitope of tetanus toxin/toxoid. Ⅰ. Induction of the humoral immune response. Int. Arch. Allergy Appl. Immunol.95:109-121
    147. Potocnjak P, Zavala F, Nussenzweig R, Nussenzweig V (1982). Inhibition of idiotype-anti-idiotype interaction for detection of a parasite antigen:a new immunoassay. Science,215:1637-1639
    148. Powell TJ, Spann R, Nguyenduc M, Lamon EW (1989). Induction of effective immunity to Moloney marine sarcoma virus using monoclonal anti-idiotypic antibody as immunogen. J. Immunol.142:1318-1324
    149. Preston G, Huang HC, He SY, Collmer A (1995), The HrpZ proteins of Pseudomonas syringae pv. syringae, glycinea, and tomato are encoded by elicit the hypersensitive response in tomato but an operon containing Yersinia ysc homologs and not soybean. Mol. Plant-Microbe Interact. 8(5):717-732
    150. Qie D, Clolayton K, Wei ZM (2002). Effects of Messenger on disease resistance and plant growth enhancement in strawberry and cucumber (abstract).Phytopathology.92(6):67
    151. Qiu D, Wei ZM, Bauer DW, Beer SV (1997). Treatment of tomato seed with harpin enhances germination and growth and induces resistance to Ralstonia solanacearum. Phytopathology 87:S80
    152. Reagan KJ, Wunner WH, Wiktor TJ, Koprowski H (1983). Anti-idiotypic antibodies induce neutralizing antibodies to rabies virus glycoprotein. J. Virol.48:660-666
    153. Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona JP, Barny MA, Bouteau F (2007). The HrpNEa harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. Mol Plant Microbe Interact 20:94-100
    154. Reichert E, Mauler R (1975). Effect of neuraminidase on potency of inactivated influenza virus vaccines in mice. Dev. Biol. Stand.28:319-323
    155. Ren HY, Gu GY, Long JY, Yin Q, Wu TQ, Song T, Zhang SJ, Chen ZY, Dong HS (2006). Combinative effects of a bacterial type-Ⅲ effector and a biocontrol bacterium on rice growth and disease resistance. J. Biosci.31:617-627
    156. Rossier O, Wengelnik K, Hahn K, Bonas U (1999). The Xanthomonas Hrp type Ⅲ system secretes proteins from plant and mammalian bacterial pathogens. Proc. Natl. Acad. Sci. USA 96:9368-9373
    157. Sacks DL, Esser KM, Sher A (1982). Immunization of mice against African trypanosomiasis using anti-idiotypic antibodies. J. Exp. Med.155:1108-1119
    158. Salmond GPC, Reeves PG (1993) Membrane traffic wardens and protein-secretion in Gram-negative bacteria. Trends Biochem. Sci.18:7-12
    159. Sambrook J, Fritsch EF, Maniatis T (1989). Molecular Cloning:A laboratory manual. Second Editor, Cold Spring Harbor Lab Press. New York.
    160. Sambrook J, Russell DW (2001). Molecular Cloning:a Laboratory Manual.3rd edn. New York: Cold Spring Harbor Laboratory Press
    161. SchiffC, Boyer C, Milili M, Fougereau M (1979). The idiotypy of the MOPC 173 (IgG2a) mouse myeloma protein:characterization of syngeneic, allogeneic xenogeneic anti-idiotypic antibodies. Contribution of the H and L chains to idiotypic determinants. Eur. J. Immunol.9:831-841
    162. Schreiber AB, Couraud PO, Andre C, Vary B, Strosberg AD (1980). Anti-alprenolol anti-idiotypic antibodies bind to β-adrenergic receptors and modulate catecholamine-sensitive adenylate cyclase. Proc. Natl. Acad. Sci. USA 77:7385-7389
    163. Schreiber JR, Pier GB, Grout M, Nixon K, Patawaran M (1991). Induction of opsonic antibodies to Pseudomonas aeruginosa mucoid exopolysaccharide by an anti-idiotypic monoclonal antibody. J. Infect. Dis.164:507-514
    164. Scofield SR, Tobias GM, Rathjen JP, Chang JH, Lavelle DT,Michelmore RW, Staskawicz BJ (1996). Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato, science 274:2063-2065
    165. Seferian PG, Rodkey LS (1994). Antibody synthesis induced by endogenous internal images. Appl. Biochem. Biotechnol.47:213-226
    166. Sege K, Peterson PA (1978). Use of anti-idiotypic antibodies as cell-surface receptor probes. Proc. Natl. Acad.Sci. USA 75:2443-2447
    167. Seiden MV, Heuckeroth R, Clevinger B, McMillan S, Lerner R, Davie JM (1986). Hypervariable region peptides variably induce specific anti-idiotypic antibodies:an approach to determining antigenic dominance. J. Immunol.136:582-587
    168. Sete A, Hasegawa (1985). Autoanti-allotype antibodies and idiotypic network regulating allotype production in rabbits. Immunol.56:625-63
    169. Shearer MH, Lanford RL, Kennedy RC (1990). Monoclonal anti-idiotypic antibodies induce humoral immune responses specific for simian virus 40 large tumor antigen in mice. J. Immunol. 145(3):932-939
    170. Shoenfeld Y (1994). Idiotypic induction of autoimmunity:a new aspect of the idiotypic network. FASEB J.8:1296-1301
    171. Slater RJ, Ward SM, Kunkel HG (1955). Immunological relationships among the myeloma proteins. J. Med.101:85-108
    172. Staskawicz BJ (2001). Genetics of Plant-Pathogen Interactions Specifying Plant Disease Resistance. Plant Physiology 125:73-76
    173. Stein KE, Soderstrom T (1984). Neonatal administration of idiotype or antiidiotype primes for protection against Escherichia coli K13 infection in mice. J. Exp. Med.160:1001-1011
    174. Stracke S, Kistner C, Yoshida K, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002). A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959-962
    175. Strobel RN, Gopalan JS, Kuc JA, He SY (1996). Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J.9:431-439
    176. Strosberg AD(1984). Anti-idiotypic antibodies as immunological internal image of hormones. Idiotype in Biology and Medicine. Heinz Kohler, Jacgues Urbain, Pierre-Andre Cazenave, eds Acad Press. New York,365
    177. Sutherland AD, Davies RC, Murray J (1993). An experimental anti-idiotype vaccine mimicking lipopolysaccharide gives protection against Pasteurella multocida type A infection in mice. FEMS Immunol. Med. Microbiol.7:105110
    178. Suzan M, Boyer C, Schiff C, Trucy J, Milili M, Preval CU (1982). Monoclonal antibodies reveal three types of idiotypic determinants on MOPC 173:H-L-specific private and public idiotopes, and Vh-specific public idiotopes. Mol. Immunol.19:1051-1062
    179. Swings J. van Den Mooter M, Vauterin, L (1990). Classification of the causal agents of bacterial blight(Xanthomonas campest ris pv. oryzae) and bacterial leaf streak (X. campest ris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae. Int. J. Syst. Bacteriol.40:309-311
    180. Syrengelas AD, Levy R (1999). DNA vaccination against the idiotype of a murine B cell lymphoma: mechanism of tumor protection. J. Immunol.162:4790-4795
    181. Tackaberry ES, Hamel J, Larose Y, Brodeur BR (1993). Antiidiotypic mimicry of a neutralizing epitope on the glycoprotein B complex of human cytomegalovirus. J. Virol.67:6815-6819
    182. Tampakaki AP, Panopoulos, NJ (2000). Elicitation of hypersensitive cell death by extracellularly targeted HrpZPsph produced in planta. Mol. Plant-Microbe Interact.13:1366-1374
    183. Tanaka M, Sasaki N, Seto A (1986). Induction of antibodies against Newcastle
    184. Tang JL., Feng JX, Li QQ, Wen HX, Zhou DL, Wilson TJ, Dow JM, Ma QS, Daniels MJ (1996).CIoning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae involvement in exopolysaccharide production and virulence to rice. Mol. Plant-Microbe Interact. 9:664-666
    185. Truman W, de Torres Zabala M, Grant M (2006). Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defense responses during pathogenesis and resistance. Plant J.46:14-33
    186. Tsuda T, Onodera T, Sugimura T, Murakami Y (1992). Induction of protective immunity and neutralizing antibodies to pseudorabies virus by immunization of anti-idiotypic antibodies. Arch. Virol.124:291-300
    187. Uemura H, Okajima E, Debruyne FM, Oosterwijk E (1994). Internal image anti-idiotype antibodies related to renal-cell carcinoma-associated antigen G250. Int. J. Cancer 56:609-614
    188. Uytdehaag FG, Osterhaus AD (1985). Induction of neutralizing antibody in mice against poliovirus type II with monoclonal antiidiotypic antibody. J. Immunol.134:1225-1229
    189. Van Gijsegem F, Vasse J, Camus JC, Marenda M, Boucher C (2000). Ralstonia solanacearum produces Hrpdependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol. Microbiol.36:249-265
    190. Van Gijsegem F, Vasse J, De Rycke R, Castello P, Boucher C (2002). Genetic dissection of the Ralstonia solanacearum hrp gene cluster reveals that the HrpV and HrpX proteins are required for Hrp pilus assembly. Mol. Microbiol.44:935-946
    191. Villaverde A, Carrio MM (2003). Protein aggregation in recombinant bacteria:biological role of incsion bodies. Biotechnology Letters.25:1385-1395
    192. Wang JS. Molecular Plant Pathology. Beijing:China Agriculture Press,1999. (in Chinese)
    193. Wang X, Li M, Zhang J, Zhang Y, Zhang G, Wang J (2007). Identification of a key functional region in harpins from Xanthomonas that suppresses protein aggregation and mediates harpin expression in E. coli. Mol. Biol. Rep.34:189-198
    194. Wedemayer GJ, Patten PA, Wang LH, Schultz PG, Stevens RC (1997). Structural insights into the evolution of an antibody combining site. Science 276:1665-1669
    195. Wei ZM, Beer SV (1993). HrpI of Erwinia amylouora functions in secretion of harpin and is a number of a new protein family. J. Bacteriol.175:7958-7967
    196. Wei ZM, Beer SV (1996). Harpin from Erwinia amylovora induces plant disease resistance Acta Horticulturae 411:223-225
    197. Wei ZM, Laby RJ, ZumoffCH, Bauer DW, He SY, Collmer A, Beer SV (1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88
    198. Wei ZM, Qiu D, Kropp MJ, Schading RL (1998). Harpin, an HR elicitor, activates both defense and growth systems in many commercially important crops. Phytopathology 88:S96
    199. Wen WG, Shao M, Chen GY, Wang JS (2003). Defense reponse in plants induced by harpinXoo, an elicitor of hypersensitive response from Xanthomonas oryzae pv. Oryzae. J. Agr. Biotechnol. 11:192-197
    200. Wen WG, Wang JS (2001). Cloning and expressing a harpin in gene from Xanthomonas oryzae pv. Oryzae. Acta Phytopathologica Sinica.31(4):295-300 (in Chinese)
    201. Wengelnik K, Bonas U (1996). HrpXv, and AraC-type regulator, acti-vatesexpression of five of the six loci in the hrp cluster of Xanthomonas campestlis pv. vesicatoria. J. Bacteriol.178:3462-3469
    202. Westerink MA, Smithson SL, Hutchins WA, Widera G (2001). Development and characterization of anti-idiotype based peptide and DNA vaccines which mimic the capsular polysaccharide of Neisseria meningitidis serogroup C. Int. Rev. Immunol.20:251-261
    203. Wettendorff M, Iliopoulos D, Tempero M, Kay D, DeFreitas E, Koprowski H, Herlyn D (1989). Idiotypic cascades in cancer patients treated with monoclonal antibody CO17-1 A. Proc. Natl.Acad. Sci. USA,86:3787-3791
    204. Whittum-Hudson JA, Rudy D, Gerard H, Vora G, Davis E, Hailer PK, Prattis SM, Hudson AP, Saltzman WM, Stuart ES (2001). The anti-idiotypic antibody to chlamydial glycolipid exoantigen (GLXA) protects mice against genital infection with a human biovar of Chlamydia trachomatis. Vaccine 19:4061-4071
    205. Willems PM, Hoet RM, Huys EL, Raats JM, Mensink EJ, Raymakers RA (1998). Specific detection of myeloma plasma cells using anti-idiotypic single chain antibody fragments selected from a phage display library. Leukemia 12:1295-1302
    206. Willis DK, Rich JJ, Hrabak EM (1991). Hrp genes of phytopathogenic bacteria. Mol. Plant-Microbe Interact.4:132-138
    207. Xie ZX, Chen ZX (2000). Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol. Plant-Microbe Interact.13:183-190.
    208. Xue W, Minocha HC (1993). Identification of the cell surface receptor for bovine viral diarrhoea virus by using anti-idiotypic antibodies. J. Gen. Virol.74:73-79
    209. Yuhasz SC, Amzel LM (1995). Anti-idotypic antibodies:biological function and structural studies. FASEB J.9:43-49
    210. Zanetti M, Rogers J (1987). Independent expression of a regulatory idiotype on heavy and light chains. A further immunochemical analysis with anti-heavy and anti-light chain antibodies. J. Immunol.139:1965-1970
    211. Zhang S, Klessig DF (2000). Pathogen-induced MAP kinases in tobacco. Results Probl. Cell Differ. 27:65-84
    212. Zhou EM, Chanh TC, Dreesman GR, Kanda P, Kennedy RC (1987). Immune response to human immunodeficiency virus. In vivo administration of anti-idiotype induces an anti-gp160 response specific for a synthetic peptide. J. Immunol.139:2950-2956
    213. Zhou EM, Huang W (1995). Anti-idiotypic antibody as potential serodiagnostic reagent for detection of bluetongue virus infection. J. Clin. Microbiol.33:850-854
    214. Zhu WG, Magbanua MM, White FF (2000). Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J. Bacteriol.182:1844-1853
    215. Zitter TA, Beer SV (1998). Harpin for insect control. Phytopathology.88:S104-S105
    216. Zupko K, Waltenbaugh C, Diamond B (1985). Use of anti-idiotypic antibodies to identify a receptor for the T-cell I-J determinant. Proc. Natl. Acad. Sci. USA 82:7399-7403
    217.包志龙(2005).蛋白质激发子harpins诱导的植物信号通路及其交叉对话.硕士学位论文南京农业大学
    218.陈功友(2000).水稻黄单胞菌(Xanthomonas oryzae) hrp基因克隆与特性研究.博士学位论文南京农业大学
    219.陈琼,陆承平,陈怀青(1994).嗜水气单胞菌HEC毒素单克隆抗独特型抗体研究.南京农业大学学报17:86-90
    220.丁天兵,马文煜,肖毅,宋建华,李元,李别虎,汪海丹,于淑湘,何扬举(2000).日本脑炎病毒内影响组抗独特型单克隆抗体的制备及初步鉴定.细胞与分子免疫学杂志16(6):481-483
    221.董国雄,秦爱建,李俊宝(1992).新城疫病毒的抗独特型单克隆抗体的研制.江苏农学院学报13:7-12
    222.杜念兴,唐建栋,周明龙,肖正国(1999).用抗原免疫构建分泌兔出血症病毒抗独特型抗体的杂交瘤细胞.畜牧与兽医31:3-5
    223.房强,陈伯劝(1989).乙型脑炎抗独特型抗体的研究.中华微生物与免疫学杂志 9:219-221
    224.冯振卿,李玉华,仇镇宁,李芸茜,王祝明(2000).日本血吸虫单克隆抗独特型抗体NP30对山羊的保护性免疫作用.中华医学杂志80:411-412
    225.何永强,盛祖恬,杜青云,倪征(2003).抗猪口蹄疫病毒单克隆抗体的抗原识别位点分析.中国兽医学报23:433-435
    226.李平(2002).水稻黄单胞菌无毒基因avrXa3的克隆与鉴定以及过敏反应激发子Hrf蛋白质遗传多样性和功能域的研究.博士学位论文南京农业大学
    227.李彦敏,李忠润,刘湘涛,韩雪清(1995).猪水疮病病毒的抗独特型抗体的研究-Ab2的制备与鉴定.中国兽医科技25:3-5
    228.李一雷,苏学今,郭树彬,陈远耀,姜云鹏(1998).腺病毒抗独特型单克隆抗体的制备及性质研究.中国免疫学杂志14:378-378
    229.林娇娇,Phillips SM (1994).曼氏血吸虫病抗独特型抗体制备初报.中国兽医寄生虫病2:1-4
    230.林来幸妹,李纪良,常文生,李英杰(1994).恶性疟原虫抗独特型抗体的初步研究.第一军医大学学报14:203-205
    231.彭建令(2003).两类激发子(harpins和核黄素)启动镇物抗病防卫和生一长信号传导的分子遗传学解析.博士学位论文南京农业大学
    232.彭秀玲,袁汉英,谢毅等(1998).王洪海编著.基因工程实验技术.湖南长沙:湖南科学技术出版社.第二版.8-86
    233.萨姆布鲁克,拉塞尔(2002).分子克隆实验指南.北京:科学出版社1109-1112
    234.苏东辉,许伟群,刘梁英,朱革,王依星,郑秀芬(1997).细菌脂多糖单克隆抗体Clone 20的多反应性及其抗独特型抗体的制备与特性.中国人畜共患病杂志13:36-42
    235.王珊珊,肖乐义,汪爱勤,李远贵,陈友绩(1994).乙型肝炎病毒单克隆表面抗体的抗独特型抗体的制备与免疫效果.中国免疫学杂志10:313-315
    236.王祝鸣,冯振卿,仇镇宁,李芸茜,管晓虹(2001).日本血吸虫单克隆anti-anti-id的建株及初步鉴定.中国血吸虫病防治杂志13(4):204-206
    237.闻伟刚(2001).水稻黄单胞菌过敏性反应激发子的研究.博士学位论文南京农业大学
    238.闻伟刚,王金生(2001).水稻白叶枯病菌harpin基因的克隆与表达.植物病理学报31:295-300
    239.夏海滨,金伯泉,马文煜,田方,李恩善(1997).基因免疫诱导9.1C3分子内影像类抗独特型抗体的产生.细胞与分子免疫学杂志13(3):1-5
    240.徐品芳,秦鄂德,司炳银,于曼,杨佩英,阎国珍(1994).分泌抗登革病毒单抗独特型抗体杂交瘤细胞系的建立.单克隆抗体通讯10:31-35
    241.徐日福,柴家前,牛钟相(1998).兔源IBDV抗独特型抗体疫苗的制备及对鸡的初试.湖北农业科学3:59-60
    242.杨汉春,孔繁瑶(1995).伊氏锥虫抗独特型抗体疫苗的研究Ⅱ:伊氏锥虫变异表面糖蛋白抗独特型抗体制备与检测.中国兽医杂志21:3-5
    243.杨润德,冯书章,郑瑞峰,马丛林,张旭升,高轩,李谭清(1997).鸡传染性喉气管炎病毒(ILTV)抗独特型抗体的研究.中国兽医杂志25:15-16
    244.杨雁灵,李开宗,窦科峰(2001).抗独特型抗体对小鼠移植免疫反应的影响.第四军医大学学报22:1569-1971
    245.余晓江(2002)HarpinXoo启动番茄Pto介导的蛋白质激酶级联抗病防卫反应.硕士学位论文南京农业大学
    246.赵立平,梁元存,刘爱新,董汉松(1997).表达harpin基因的大肠杆菌DH5a(PCPP430)诱导抗性研究.高技术通讯7:1-4
    247.朱德淳,李然伟,刘禄成,范海涛,李兆华(2003).抗人膀胱癌抗独特型抗体的制备和鉴定.中国老年学杂志3(23):187-189
    248.朱瑞良,崔治中,赵静(2003).抗IBDV独特型抗体杂交瘤细胞株的建立及其产物生物学特性的测定.生物工程学报19:462-465
    249.邹华松(2002).水稻黄单胞菌(Xanthomonas oryzae) pig和hrp基因的克隆与鉴定.博士学位论文南京农业大学
    250.左冬梅,杨守纯,周继文,罗清华(1990).抗乙肝病毒核心抗体的抗独特型抗体的研究Ⅱ.制备抗人HbcAb抗独特型抗体的探讨.中华实验和临床病毒学杂志5(2):186-189