新型毛细管电动微分离材料和方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电动微分离方法包括毛细管电泳(CE)和毛细管电色谱(CEC)。本文针对CE和CEC在生物物质如蛋白质、氨基酸等分离应用中存在的问题,提出了相应的解决方法。
     首先针对蛋白质CE中蛋白质尤其是碱性蛋白质与管壁硅羟基非特异性吸附这一问题,制备了新型的聚乙烯醇涂层毛细管柱。制得的管柱可有效屏蔽蛋白质与管壁的非特异性吸附,分离柱效一般在600 000理论板/米以上,且具有较好的分离结果重现性。例如,对三种碱性蛋白质进行100次分离得到的保留时间的相对标准偏差均小于1.0%。
     提出了两端进样蛋白质CE方法。该方法可在中性pH值的条件下,通过一次CE操作,同时分离带有正电荷和负电荷的蛋白质。此外,进一步提出了电渗泵辅助式蛋白质CE方法,该方法同时分离带正电荷、负电荷和不带电的蛋白质。
     针对开管CEC(OTCEC)低相率、低配基容量这一缺点,本文提出了采用触须式聚合物作为OTCEC固定相的设想,研制了金属螯合触须式聚合物涂层管柱,并将其用于氨基酸及嘌呤类衍生物的微分离。与单层配基修饰管柱相比,触须柱的金属离子螯合量提高了近900倍,可显著增加分析物的保留因子和分离度。
     为建立适用于修饰各种色谱配基的触须式聚合物涂层管柱,本文研制了以甲基丙烯酸缩水甘油酯为接枝聚合单体的管柱制备方法。制得的管柱内壁含有大量环氧基,可用于修饰各种色谱配基。以苯丙氨酸为修饰配基,将制得的苯丙氨酸触须柱用于苯类化合物、氨基酸混合物以及蛋白质混合物的微分离。
     针对毛细管电动微分离方法检测灵敏度较低的缺点,制备了阴离子触须式聚合物接枝涂层管柱,并将其用于蛋白质在线萃取、富集分离。阴离子触须柱可有效的增加蛋白质的吸附容量,提高富集倍数,对肌红蛋白的富集倍数高达1500倍。该富集方法还可用于蛋白质混合物的富集分离。
Capillary electro-kinetic microseparation method includes capillary electrophoresis (CE) and capillary electrochromatography (CEC). The thesis focuses on solving the problems meet in the separations of biological molecules such as proteins, amino acids and so on with CE and CEC.
     A novel method for the fabrication of poly(vinyl alcohol) coated capillary column was developed to avoid the irreversible adsorption between proteins and capillary inner wall. The prepared column can promise high protein separation efficiency (generally higher than 600,000 plates/m), and excellent reproducibility. For example, relative standard deviations for the migration time of three basic proteins were smaller than 1.0% within 100 injections.
     A“both-ends-sample-injections”method was designed to simultaneous separation of both negatively and positively charged proteins with the running buffer of a neutral pH. Besides, electroosmotic pump-assisted protein CE was also developed for the separation of cationic, anionic and neutral proteins in a single run.
     To solve the problem (low phase ratio and low ligand capacity resulting in poor resolution) in open tubular CEC (OTCEC), tentacle-type polymer was designed as the OTCEC stationary phase. A tentacle-type metal-chelating polymer coated capillary column was introduced and used for the separation of amino acids and purine derivatives in this thesis. Immobilized metal capacity of the prepared tentacle-type column was nearly 900 times higher than that of mono-layer metal-chelating group modified one. Besides, the tentacle-type capillary can obviously increase the retention factor and resolution of analytes.
     To prepare a tentacle-type polymer coating easily functionalized with different ligand, a new method for grafting glycidyl methacrylate to the capillary inner wall was thus developed. The prepared polymer coated column could be easily modified with different chromatographic ligand by a ring-opening reaction of the epoxy groups. In this study, phenylalanine was selected as the ligand. Benezene derivatives, amino acids as well as protein mixtures were then separated, respectively.
     To improve the detection sensitivity in capillary electrokinetic microseparation methods, a novel negatively charged tentacle-type polymer-coated capillary column was fabricated and applied for on-line extraction and preconcentration of proteins. The prepared tentacle-type polymer coating can efficiently increase the protein adsorption capacity, thereby increasing the sensitivity enhancement factor. In this work, over 1500-fold sensitivity enhancement was realized for myoglobin. The developed method also promised for enrichment and separation of protein mixture.
引文
[1]何忠效,张树政,电泳,北京:科学出版社,1999
    [2]陈义,毛细管电泳技术及应用,北京:化学工业出版社,2006
    [3]夏其昌,张祥民,周仲驹,阮宏强,蛋白质电泳技术指南,北京:化学工业出版社,2007
    [4] Jorgenson J W, Lukacs K D. Zone electrophoresis in open-tubular glass capillaries. Anal Chem, 1981, 53: 1298-1320
    [5]杨先碧,阮慎康,高效液相色谱发展史,化学通报,1998,11:56-60
    [6]于世林,高效液相色谱方法及应用,北京:化学工业出版社,2005
    [7]邹汉法,刘震,叶明亮,张玉奎,毛细管电色谱及其应用,北京:科学出版社,2001
    [8] Jorgenson J W, Lukaca K D. High-resolution separations based on electrophoresis and electroosmosis. J Chromatogr, 1981, 218: 209-216
    [9]罗国安,王义明,陈令新,梁琼麟,毛细管电色谱及其在生命科学中的应用,北京:科学出版社,2005
    [10]张维冰,毛细管电色谱理论基础,北京:科学出版社,2006
    [11] Li S, Capillary electrophoresis: principles, practice and application. Amsterdam: Elsever, 1992
    [12] Hayes M A, Kheterpal I, Ewings A G, Effects of buufer pH on electroosmotic flow control by an applied redial voltage for capillary zone electrophoresis. Anal Chem, 1993, 65: 27-31
    [13] Schwer C, Kenndler E, Electrophoresis in fused-silica capillary: the influence of organic solvents on the electroosmotic velocity and the Zeta potential. Anal Chem, 1991, 63: 1801-1807
    [14] Choudhary G, Horvath C, Dynamics of capillary electrochromatography experimental study on the electroosmotic flow and conductance in open and packed capillaries. J Chromatogr A, 1997, 781: 161-183
    [15] Sui Z, Schlenoff J B, Controlling electroosmotic flow in microchannels with pH-responsic polyelectrolyte multilayers. Langmuir, 2003, 19: 7829-7831
    [16] Qiao R, He P, Modulation of electroosmotic flow by neutral polymers, Langmuir, 2007, 23: 5810-5816
    [17] Dong X, Dong J, Ou J, Zou H, Capillary electrochromatography with zwitterionic stationary phase on the lysine-bonded poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary column,Electrophoresis, 2006, 27: 2518-2525
    [18] Hu J, Xie C, Tian R, He Z, Zou H, Separation of basic and acidic compounds by capillary electrochromatography using monolithic silica capillary columns with zwitterionic stationary phase. J Sep Sci, 2007, 30: 891-899
    [19] Huang G, Lian Q, Zeng W, Xie Z, Preparation and evaluation of a lysine-bonded silica monolithic as polar stationary phase for hydrophilic interaction pressurized capillary. Electrophoresis, 2008, 29: 3896-3904
    [20] Stevens T S, Cortes H J, Electroosmotic propulsion of eluent through silica-based chromatographic media. Anal Chem, 1983, 55: 1362-1370
    [21] Huang X, Gordon M J, Zare R N, Current-monitoring method for measureing the electroosmotic flow rate in capillary zone electrophoresis. Anal Chem, 1988, 60: 1837-1838
    [22] Wanders B J, Van de Goor A A A M, Everaerts F M, Methods for on-line determination and control of electroendosmosis in capillary electrchromatography and electrophoresis. J Chromatgr, 1989, 470: 89-93
    [23] Williams B A, Vigh G, Fast, accurate mobility determination method for capillary electrophoresis, Anal Chem, 1996, 68: 1174-1180
    [24]孙彦,生物分离工程(第二版),北京:化学工业出版社,2005
    [25] Knox J H, Grant I H, Miniaturisation in pressure and electroendosmeatically driven liquid chromatography: some theoretical considerations. Chromatographia, 1987, 24: 135-143
    [26] Knox J H, Grant I H, Electrochromatography in packed tubes using 1.5 to 50μm silica gels and ODS bonded silica gels. J Chromatogr, 1992, 593: 313-319
    [27] Terabe S, Otsuka K, Ando T, Band broadening in electrokinetic chromatography with miellar solutions and open-tubular capillaries. Anal Chem, 1989, 61: 251-260
    [28] Hutterer K M, Jorgenson J W, Ultrahigh-voltage capillary zone electrophoresis, Anal Chem, 1999, 71: 1293-1297
    [29] Tsuda T, Sweedler J V, Zare R N, Rectangular capillaries for capillary zone electrophoresis, Anal Chem, 1990, 62: 2149-2152
    [30] Dose E V, Guiochon G A, Internal standardization technique for capillary zone electrophoresis, Anal Chem, 1991, 63: 1154-1158
    [31] Huang X, Zare R N, Sloss S, Ewing A G, End-column detection for capillary zone electrophoresis, Anal Chem, 1991, 63: 189-192
    [32] Terabe S, Peer Reviewed: Micellar electrokinetic chromatography, Anal Chem, 2004, 76: 240-246
    [33] Foley J P, Optimization of micellar electrokinetic chromatography, Anal.Chem, 1990, 62: 1302-1308
    [34] Chen N, Terabe S, A quantitative study on the effect of organic modifiers in micellar electrokinetic chromatography, Electrophoresis, 1995, 16: 2100-2103
    [35] McDonnell T, Pawliszyn J, Capillary isotachophoresis with concentration gradient detection, Anal Chem, 1991, 63: 1884-1889
    [36] Pospichal J, Gebauer P, Bocek P, Measurement of mobilities and dissociation constants by capillary isotachophoresis, Chem Rev, 1989, 89: 419-430
    [37] Hjerten S, High-performance electrophoresis:the electrophoretic counterpart ofhigh-performance liquid chromatography, J Chromatogr, 1983, 270: 1-6
    [38] Hjerten S, Zhu M D, Adaptation of the equipment for highperformance electrophoresis to isoelectric focusing, J Chromatogr, 1985, 327: 157-159
    [39] Swerdlow H, Zhang J Z, Chen DY, et al. Three DNA sequencing methods using capillary gel electrophoresis and laser-induced fluorescence. Anal Chem, 1991, 63(24): 2835-2841
    [40] Kilar F, Recent applications of capillary isoelectric focusing, Electrophoresis, 2003, 24: 3908-3916
    [41] Hjerten S, Zhu M D, Adaptation of the equipment for high-performance electrophoresis of ioselectric focusing, J Chromatogr, 1985, 326: 265-270
    [42] Stover F S, Haymore B L, McBeath R J, Capillary zone electrophoresis of histidine-containing compounds. J Chromtogr, 1989, 470: 241-250
    [43] Emmer A, Jansson M, Roeraade J, Improved capillary zone electrophoretic separation of basic proteins, using a fluorosurfactant buffer additive. J Chromatogr, 1991, 547: 544-550
    [44] Yao X W, Wu D, Regnier F E, Manipulation of electroosmotic flow in capillary electrophoresis. J Chromatogr, 1993, 636: 21-29
    [45] Huang X, Luckey J A, Gordon M J, Zare R N, Quantitative determination of low molecular weight carboxylic acids by capillary zone electrophoresis/conductivity detection. Anal Chem, 1989, 61(7): 766-770
    [46] Mansfield E, Ross E E, Aspinwall C A, Preparation and characterization of cross-linked phospholipid bilayer capillary coatings for protein separation. Anal Chem, 2007, 79: 3135-3141
    [47] Yang R, Shi R, Peng S, Zhou D, Liu H, Wang Y, Cationized hydroxyethylcellulose as a novel, adsorbed coating for basic protein separation by capillary electrophoresis. Electrophoresis, 2008, 29: 1460-1466
    [48] Erim F B, Cifuentes A, Poppe H, Kraak J C, Performance of a physically adsorbed high-molecular-mass polyethyleneimine layer as coating for the separation of basic proteins and peptides by capillary electrophoresis. J.Chromtogr A, 1995, 708: 356-361
    [49] Moritani T, Yoon K, Chu B, DNA capillary electrophoresis using poly(vinyl alcohol). 1. Inner capillary coating. Electrophoresis, 2003, 24: 2764-2771
    [50] Cobb K A, Dolnik V, Novotny M, Electrophoretic separations of proteins in capillaries with hydrolytically stable surface structures
    [51] Moritani T, Yoon K, Chu B, DNA capillary electrophoresis using poly(vinyl alcohol). 2. Separation media. Electrophoresis, 2003, 24: 2772-2778
    [52] Wan H, Ohman M, Blomberg L G, Bonded dimethylacrylamide as a permanent coating for capillary electrophoresis. J Chromatogr A, 2001, 924: 59-71
    [53] Figeys D, Aebersold R, Capillary electrophoresis of peptides and proteins at neutral pH in capillaries covalently coated with polyethyleneimine. J Chromatogr B, 1997, 695: 163-168
    [54] Tan Z J, Remcho V T, Preparation and evaluation of bonded linear polymethacrylate stationary phases for open tubular capillary electrokinetic chromatography. Anal Chem, 1997, 69: 581-586
    [55] Hjerten S, High performance electrophoresis: Elimination of electroendosmosis and solute adsorption. J Chromatogr A, 1985, 347: 191-198
    [56] Righetti P G, Gelfi C, Sebastiano R, Citterio A, Surfing silica surfaces superciliously. J Chromatogr A, 2004, 1053: 15-26
    [57] Liu C Y, Stationary phases for capillary electrophoresis and capillary electrochromatography. Electrophoresis, 2001, 22: 612-628
    [58] Horvath J, Dolnik V, Polymer wall coatings for capillary electrophoresis, Electrophoresis, 2001, 22: 644-655
    [59] Burns N L, Alstine J M V, Alstine V, Harris J M, Poly(ethylene glycol) grafted to quartz: analysis in terms of a site dissociation model of electroosmotic fluid flow. Langmuir, 1995, 11: 2768-2776
    [60] McCormick R M, Capillary zone electrophoretic separation of peptides and proteins using low pH buffers in modified silica capillaries. Anal Chem, 1988, 60: 2622-2328
    [61] Cunliffe J M, Baryla N E, Lucy C A, Phospholipid bilayer coatings for the separation of proteins in capillary electrophoresis. Anal Chem, 2002, 74: 776-783
    [62] Cordova E, Gao J, Whitesides G M, Noncovalent polycationic coatings for capillaries in capillary electrophoresis of proteins. Anal Chem, 1997, 69: 1370-1379
    [63] Song L, Liang D, Fang D, Chu B, Fast DNA sequencing up to 1000 bases bycapillary electrophoresis using poly(N, N-dimethylacrylamide) as a separation medium. Electrophoresis, 2001, 22: 1987-1996
    [64] Song L, Liang D, Chen Z, Fang D, Chu B, DNA sequencing by capillary electrophoresis using mixtures of polyacrylamide and poly(N, N-dimethylacrylamide). J Chromatogr A, 2001, 915: 231-239
    [65] Yeung K K C, Lucy C A, Suppression of electroosmotic flow and prevention of wall adsorption in capillary zone electrophoresis using zwitterionic surfactants. Anal Chem, 1997, 69: 3435-3441
    [66] Liu S, Gao L, Pu Q, Lu J .J, Wang X, Comprehensive protein profiling by multiplexed capillary zone electrophoresis using cross-linked polyacrylamide coated capillaries. J Proteome Res, 2006, 5: 323-329
    [67] Gao L, Liu S, Cross-linked polyacrylamide coating for capillary isoelectric focusing. Anal Chem 2004, 76: 7179-7186
    [68] Lu J J, Liu S, Pu Q, Replaceable cross-linked polyacrylamide for high performance separation of proteins. J Proteome Res, 2005, 4: 1012-1016
    [69] Kang S H, Gong X, Yeung E S, High-throughput comprehensive peptide mapping of proteins by multiplexed capillary electrophoresis. Anal Chem, 2000, 72: 3014-30210
    [70] Srinivasan K, Pohl C, Avdalovic N, Cross-linked polymer coatings for capillary electrophoresis and application to analysis of basic proteins, acidic proteins, and inorganic ions. Anal Chem, 1997, 69: 2798-2805
    [71] Kitagawa F, Inoue K, Hasegawa T, Kamiya M, Okamoto Y, Kawase M, Otsuka K, Chiral separation of acidic drug components by open tubular electrochromatography using avidin immobilized capillaries. J Chromatogr A, 2006, 1130: 219-226
    [72] Wu X, Liu H, Liu H, Zhang S, Haddad P R, Preparation and characterization of p-tert-butylcalix[8]arene bonded capillaries for open-tubular capillary electrochromatography. Anal Chim Acta, 2003, 478: 1919-197
    [73] Jr L W D, Swinteck B J, McGown L B, Albumins as a model system for investigating separations of closely related proteins on DNA stationary phases in capillary electrochromatogarphy. Anal Chim Acta, 2004, 519: 197-205
    [74] Vo T U, McGown L B, Selectivity of quadruplex DNA stationary phases toward amino acids in homodipeptides and alanyl dipeptides. Electrophoresis, 2004, 25: 1230-1236
    [75] Lin S Y, Wang G R, Huang Q P, Liu C Y, Speciation of selenium compounds by open tubular capillary electrochromatography inductively coupled plasma mass spectrometry. Electrophoresis, 2006, 27: 4257-4265.
    [76] Charvatova J, Kasicka V, Deyl Z, Kral V, Influencing electroosmotic flow and selectivity in open tubular electrochromatography by tetrakis(pentafluorophenyl) porphyrin as capillary wall modifier. J Chromatogr A, 2003, 990: 111-119
    [77] Rehder-Silinski M A, McGown L B, Capillary electrochromatography separation of bovine milk proteins using a G-quartet DNA stationary phase. J Chromaotgr A, 2003, 1008: 233-245
    [78] Krenkiova J, Kleparnik K, Foret F, Capillary electrophoresis mass spectrometry coupling with immobilized enzyme electrospray capillaries. J Chromatogr A, 2007, 1159: 110-118
    [79] Pai Y F, Liu C Y, Capillary electrochromatography separation of non-steroidal anti-inflammatory drugs with a histidine bonded phase. J Chromatogr A, 2002, 982: 293-301
    [80] Clark S L, Remcho V T, Electrochromatographic retention studies on a flavin binding RNA aptamer sorbent. Anal Chem, 2003, 75: 5692-5696
    [81] Han N Y, Hautala J T, Bo T, Wiedmer S K, Riekkola M L, Immobilization of phospholipid-avidin on fused-silica capillaries for chiral separation in open-tubular capillary electrochromatography. Electrophoresis, 2006, 27: 1502-1509
    [82] Pesek J J, Matyska M T, Open tubular capillary electrokinetic chromatography in etched fused-silica tubes. J Chromatogr A, 2000, 887: 31-41
    [83] Yang Y, Boysen R I, Matyska M T, Pesek J J, Hearn M T W, Open-tubular capillary electrochromatography coupled with electrospray ionization mass spectrometry for peptide analysis. Anal Chem, 2007, 79: 4942-4949
    [84] Pesek J J, Matyska M T, Dawson G B, Chen J I C, Boysen R I, Hearn M T W, Open tubular capillary electrochromatography of synthetic peptides on etched chemically modified columns. Anal Chem, 2004, 76: 23-30
    [85] Pesek J J, Matyska M T, Dawson G B, Chen J I C, Boysen R I, Hearn M T W, Open-tubular electrochromatographic characterization of synthetic peptides. Electrophoresis, 2004, 25: 1211-1218
    [86] Dawson G B, Matyska M T, Pesek J J, Seipert R R, Electrochromatographic studies of etched capillaries modified with a cyano pentoxy biphenyl liquid crystal. J Chromatogr A, 2004, 1047: 299-303
    [87] Pesek J J, Matyska M T, Krishnamoorthi V, Separation of polyethylene glycol-modified proteins by open tubular capillary electrochromatography. J Chromatogr A, 2004, 1044: 317-322
    [88] Matyska M T, Pesek J J, Comparison of silanization/hydrosilation andorganosilanization modification procedures on etched capillaries for electrokinetic chromatography. J Chromatogr A, 2005, 1079: 366-371
    [89] Pesek J J, Matyska M T, Velpula S, Open tubular capillary electrochroamtography migration behavior of enkephalins in etched chemically modified fused silica capillaries. J Chromatogr A, 2006, 1126: 298-303
    [90] Pesek J J, Matyska M T, Velpula S, Use of inorganic salts during the etching process in the fabrication of chemically modified capillaries for open tubular capillary electrochromatography. J Sep Sci, 2005, 28: 746-750
    [91] Huang T, Mi J Q, Zhang X X, Capillary electrochromatography of amino acids with a protein-bonded porous-layer open tubular column. J Sep Sci, 2006, 29: 277-281
    [92] Chuang S C, Chang C Y, Liu C Y, Polystyrene monolithic column functionalized with copper-iminodiacetate complex as a stationary phase for open tubular capillary electrochromatography. J Chromatogr A, 2004, 1044: 229-236
    [93] Eeltink S, Svec F, Frechet J M, Open-tubular capillary columns with a porous layer of monolithic polymer for highly efficient and fast separations in electrochromatography. Electrophoresis, 2006, 27: 4249-4256
    [94] Tian Y, Li H, Zeng Z, A novel sol-gel calix[4]arene-modified capillary column for open-tubular capillary electrochromatography. Electrophoresis, 2006, 27: 3381-3390
    [95] Yang L, Guihen E, Glennon J D, Alkylthiol gold nanoparticles in sol-gel-based open tubular capillary electrochromatography. J Sep Sci, 2005, 28: 757-766
    [96] Freitag R, Conatantin S, Investigation of factors influencing the performance of open tubular stationary phases in capillary electrochromatography. J Sep Sci, 2003, 26: 835-843
    [97] Mahony T O, Owens V P, Murrihy J P, Guihen E, Holmes J D, Glennon J D, Alkylthiol gold nanoparticles in open-tubular capillary electrochromatography. J Chromatogr A, 2003, 1004: 181-193
    [98] Kuldvee R, D’ulivo L, Yohannes G, Lindenburg P W, Laine M, Oorni K, Kovanen P, Riekkola M L, Open tubular capillary electrochromatography: technique for oxidation and interaction studies on human low density lipoproteins. Anal Chem, 2006, 78: 2665-2671
    [99] Hsieh Y L, Chen T H, Liu C Y, Capillary electrochromatographic separation of proteins on a column coated with titanium dioxide nanoparticles. Electrophoresis, 2006, 27: 4288-4294
    [100] Zhang S, Macka M, Haddad P R, Preparation and characterization of dual-layer latex-cated columns for open tubular capillary electrochromatographic preconcentration of cations combined in-line with their separation by capillary electrophoresis
    [101] Vainikka K, Chen J, Metso J, Jauhiainen M, Riekkola M L, Coating of open tubular capillaries with discoidal and spherical high-density lipoprotein particles in electrochromatography. Electrophoresis, 2007, 28: 2267-2274
    [102] Qu Q, Zhang X, Shen M, Liu Y, Hu X, Yang G, Wang C, Zhang Y, Yan C, Open-tubular capillary electrochromatography using a capillary coated with octadecylamine-capped gold nanoparticles. Electrophoresis, 2008, 29: 901-909
    [103] Huang Y C, Lin C C, Liu C Y, Preparation and evaluation of molecularly imprinted polymers based on 9-ethyladenine for the recognition of nucleotide bases in capillary electrochromatography. Electrophoresis, 2004, 25: 554-561
    [104] Schweitz L, Molecularly imprinted polymer coatings for open-tubular capillary electrochromatography prepared by surface initiation. Anal Chem, 2002, 74: 1192-1196
    [105]陈长宝,周杰,吴春辉,分子印迹技术研究进展,化学研究与应用,2006,18:896-902
    [106] Chao H C, Hanson J E, Dendritic polymers as bonded stationary phases in capillary electrochromatography. J Sep Sci, 2002, 25: 345-350
    [107] Xu L, Sun Y, Fabrication and characterization of open-tubular CEC modified with tentacle-type metal-chelating polymer chains. Electrophoresis, 2007, 28: 1658-1667
    [108] Miller M D, Baker, G L, Bruening M L, Polymer-brush stationary phases for open-tubular capillary electrochromatography. J Chromatogr A, 2004, 1044: 323-330
    [109] Xu L, Sun Y, Protein separation by open tubular capillary electrochromatography employing a capillary coated with phenylalanine functionalized tentacle-type polymer under both cathodic and anodic electroosmotic flows. J Chromatogr A, 2008, 1183: 129-134
    [110] Xu L, Sun Y, Novel open tubular CEC with tentacle-type polymer stationary phase functionalized buy phenylalanine. Electrophoresis, 2008, 29: 880-888
    [111] Tang Q, Xin B, Lee M L, Pore flow effects in electrically driven size-eleclusion chromatography, J Chromatogr A, 1999, 837: 3-15
    [112] Stol R, Mazereeuw M, Tjaden U R, van der Greef J, Pseudo-electrokinetic packing of high efficiency columns for capillary electrochromatography. J Chromatogr A, 2000, 873: 293-298
    [113] Maloney T D, Colon L A, A drying step in the protocol to pack capillary columns by centripetal forces for capillary electrochromatography. Electrophoresis, 1999, 20: 2360-2365
    [114] Norton D, Samsi S A, Packed-column capillary electrochromatography and capillary electrochromatography-mass spectrometry using a lithocholic acid stationary phase. Electrophoresis, 2008, 29: 2004-2015
    [115] Tegeler T, Rassi Z Ei, Surfactant-mediated capillary electrochromatography with octadecyl-silica-packed capillary columns for the separation of nonpolar compounds. Case of pyrethroid insecticides. Electrophoresis, 2002, 23: 1217-1223
    [116] Angus P D A, Demarest C W, Catalano T, Srobaugh J F, Evaluation of 1.5μm reversed phase nonporous silica in packed capillary electrochromatography and application in pharmaceutical analysis. Electrophoresis, 1999. 20: 2349-2359.
    [117] Wang Y, Zhang Z, Zhang L, Li F, Chen, L, Wan Q H, Magnetically immobilized beds for capillary electrochromatography, Anal Chem, 2007, 79: 5082-5086
    [118]尤慧艳,毛细管电色谱谱图,北京:科学出版社,2008
    [119] Fujimoto C, Charged polyacrylamide gels for capillary electrochromatographic separations of uncharged, low molecular weight compounds. Anal Chem, 1995, 67: 2050-2053
    [120] Hjerten S, Liao J L, Zhang R, High-performance liquid chromatography on continuous polymer beds. J Chromatogr A, 1989, 473: 273-275
    [121] Ericson C, Hjerten S, Reversed-phase electrochromatography of proteins on modified continuous beds using normal flow and counterflow gradients. Theoretical and practical considerations. Anal Chem, 1999, 71: 1621-1627
    [122] Podgornik A, Barut M, Jancar J, Strancar A, Isocratic separations on thin glycidyl methacrylate-ethylenedimethacrylate monoliths, J Chromatogr A, 1999, 848: 51-60
    [123] Svec F, Frechet J M J, Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal Chem, 1992, 64: 820-822
    [124] Svec F, Frechet J M J, Modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) continuous rod columns for preparative-scale ion-exchange chromatography of proteins. J Chromatogr A, 1995, 702: 89-95
    [125] Seubert A, Klingenberg A, Sulfoacylated macroporous polystyrene-divinylbenzene: a new type of cation exchanger for the analysis of multivalent metal cations. J Chromatogr A, 1997, 782: 149-157
    [126] Moore R E, Licklider L, Schumann D, Lee T D, A microscale electrospray interface incorporating a monolithic, poly(styrene-divinylbenzene) support for on-line liquid chromatography/tandem mass spectrometry analysis of peptides and proteins. Anal Chem, 1998, 70: 4879-4884
    [127] Ou J, Li X, Feng S, Dong J, Dong X, Kong L, Ye M, Zou H, Preparation and evaluation of a molecularly imprinted polymer derivatized silica monolithic column for capillary electrochromatography and capillary liquid chromatography. Anal Chem, 2007, 79: 639-646
    [128] Dulay M T, Quirino J P, Bennett B D, Zare R N, Bonded phase photopolymerized sol-gel monoliths for reversed phase capillary electrochromatography. J Sep Sci, 2002, 25: 3-9
    [129] Wang H F, Zhu Y Z, Lin J P, Yan Z P, Fabrication of molecularly imprinted hybrid monoliths via a room temperature ionic liquid mediated nonhydrolytic sol-gel route for chiral separation of zolmitriptan by capillary electrochromatography. Electrophoresis, 2008, 29: 952-959
    [130] Dulay M T, Chol H N, Zare R N, Visible light-induced photopolymerization of an in situ macroporous sol-gel monolith. J Sep Sci, 2007, 30: 2979-2985
    [131]吴翠明,徐铜文,杨伟华,烷氧基硅烷溶胶-凝胶反应机理,化学进展,2007,19:80-86
    [132] Okanda F M, Rassi Z Ei, Affinity monolithic capillary columns for glycomics/proteomics: 1. Polymethacrylate monoliths with immobilized lectins for glycoprotein separation by affinity capillary electrochromatography and affinity nano-liquid chromatography in either a single column or columns coupled in series. Electrophoresis, 2006, 27: 1020-1030
    [133] Liu Z, Wu R, Zou H, Recent progress in adsorbed stationary phases for capillary electrochromatography. Electrophoresis, 2002, 23:3954-3972
    [134] Gilges M, Kleemiss M H, Schomburg G, Capillary Zone Electrophoresis Separations of Basic and Acidic Proteins Using Poly(vinyl alcohol) Coatings in Fused Silica Capillaries. Anal Chem, 1994, 66(13): 2038-2046
    [135] Belder D, Deege A, Husmann H, Kohler F, Ludwig M, Cross-linked poly(vinyl alcohol) as permanent hydrophilic column coating for capillary electrophoresis. Electrophoresis, 2001, 22: 3813-3818
    [136] Shieh C H, Polyvinyl alcohol (PVA) based covalently bonded stable hydtophilic coating for capillary electrophoresis. Beckman Instruments, Inc, US Patent, US 5,605,613, 1997
    [137] Li W, Fries D, Malik A, Negatively charged sol-gel column with stable electroosmotic flow for online preconcentration of zwitterionic biomolecules in capillary electromigration separations. J Sep Sci, 2005, 28: 2153-2164
    [138] Dasgupta P K, Liu S R, Electroosmosis: A reliable fluid propulsion system for flow injection analysis. Anal Chem, 1994, 66(11): 1792-1798
    [139] Wang X, Wang S, Gendhar B, Cheng C, Byun C K, Li G, Zhao M, Liu S, Electroosmotic pumps for microflow analysis. Trends in Anal Chem., 2009, 28: 64-74
    [140] Pu Q, Liu S, Microfabricated electroosmotic pump for capillary-based sequential injection analysis. Anal Chim Acta, 2004, 511: 105-112
    [141] Lazar I M, Trisiripisal P, Sarvaiya H A, Microfluidic liquid chromatography system for proteomic applications and biomarker screening. Anal. Chem. 2006, 78: 5513-5524
    [142] Chen L, Ma J, Guan Y, Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography. J Chromatogr A, 2004, 1028: 219-226
    [143] Helfferich F, Ligand exchange: a novel separation technique. Nature, 1961, 189: 1001-1002
    [144] Liu C Y, Chen J L, Shiue C C, Liu K T, Synthesis and analytical properties of a novel columnar metallomesogenic polymer. J Chromatogr A, 1999, 862: 65-83
    [145] Liu C Y, Hu C C, Yang C L, Synthesis and characterization of a novel wall coated capillary column for the separation of polycyclic aromatic hydrocarbons. J Chromatogr A, 1997, 773: 199-208
    [146] Liu C Y, Yang S H, Chau M H, Shiue C C, Comparison and evaluation of copper complex-containing siloxane polymers as stationary phases for capillary gas chromatography. J Chromatogr A, 2001, 933: 117-128
    [147] Davankov V A, Enantioselective ligand exchange in modern separation techniques. J Chromatogr A, 2003, 1000: 891-915
    [148] Ma Z Y, Guan Y P, Liu X Q, Liu H Z, Synthesis of magnetic chelator for high capacity immobilized metal affinity adsorption of protein by cerium initiated graft polymerization. Langmuir, 2005, 21(15): 6987-6994
    [149] Chen Z, Hobo T, Chemically L-prolinamide-modified monolithic silica column for enantiomeric separation of dansyl amino acids and hydroxyl acids by capillary electrochromatography andμ-high performance liquid chromatography. Electrophoresis, 2001, 22: 3339-3346
    [150] Chen J L, Metallomesogenic stationary phase for open tubular capillary electrochromatography. Electrophoresis, 2006, 27: 729-735
    [151] Chen C Ye, Chen C Y, Stability constants of polymer-bound iminodiacetate-type chelating agents with some transition-metal ions. J Appl Polym Sci, 2002, 86: 1986-1994
    [152] Chang T C, Shih C C, Yin C P, Chen H B, Wu T R, Characterization of hydrophilic poly(methyl methacrylate)s containing iminodiacetic acid and their complexes. Polym Degrad Stab, 2005, 87: 87-94
    [153] Li Y, Chen Y, Xiang R, Ciuparu D, Pfefferle L D, Horváth C, Wilkins J A, Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase forμ-HPLC and capillary electrochromatography. Anal Chem, 2005, 77: 1398-1406
    [154] Li Y, Xiang R, Horvath, C, Wilkins J A, Capillary electrochromatography of peptides on a neutral porous monolith with annular electroosmotic flow generation. Electrophoresis, 2004, 25: 545-553
    [155] Cikalo M G, Bartle K D, Myers P, Influence of the electrical double-layer on electroosmotic flow in capillary electrochromatography. J Chromatogr A, 1999, 836: 35-51
    [156] Wright P B, Lister A S, Dorsey J G, Behavior and use of nonaqueous media without supporting electrolyte in capillary electrophoresis and capillary electrochromaotgraphy. Anal Chem, 1997, 69: 3252-3259
    [157] George S K, Dipu M T, Mehra U R, Singh P, Verma A K, Ramgaokar J S, Improved HPLC method for the simultaneous determination of allantoin, uric acid and creatinine in cattle urine. J Chromatogr B, 2006, 832: 134-137
    [158] Geldart S E, Brown P R, Separation of purine and pyrimidine bases by capillary zone electrophoresis with carbonate buffers. J Chromatogr A, 1999, 831: 123-129
    [159] Terzuoli L, Porcelli B, Setacci C, Giubbolini M, Cinci G, Cariucci F, Pagani R, Marinello E, Comparative determination of purine compounds in carotid plaque by capillary zone electrophoresis and high performance liquid chromatography. J Chromatogr B, 1999, 728: 185-192
    [160] Wessel T, Lanvers C, Fruend S, Hempel G, Determination of purines including 2.8-dihydroxyadenine in urine using capillary electrophoresis. J Chromatogr A, 2000, 894: 157-164
    [161] Eeltink S, Svec F, Recent advances in the control of morphology and surface chemistry of porous polymer-based monolithic stationary phases and their application in CEC. Electrophoresis, 2007, 28: 137-147
    [162] Hilder E F, Svec F, Frechet J J, Shielded stationary phases based on porous polymer monoliths for the capillary electrochromatography of highly basic biomolecules. Anal Chem, 2004, 76: 3887-3892
    [163] Kawai T, Saito K, Lee W, Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. J Chromatogr B, 2003, 25: 131-142
    [164] Kavakli P A, Seko N, Tamada M, Güven O, Radiation-induced graft polymerization of glycidyl methacrylate onto PE/PP nonwoven fabric and its modification toward enhanced amidoximation. J Appl Polym Sci, 2007, 105, 1551-1558
    [165] Gupta K C, Sahoo S, Khandekar K, Graft copolymerization of ethyl acrylate onto cellulose using ceric ammonium nitrate as initiator in aqueous medium. Biomacromolecules, 2002, 3: 1087-1094
    [166] Kunita M H, Rinaldi A W, Girotto E M, Radovanovic E, Muniz E C, Rubira A F, Grafting of glycidyl methacrylate onto polypropylene using supercritical carbon dioxide. Eur Polym J, 2005, 41: 2176-2182
    [167] Kawai T, Saito K, Sugita K, Sugo T, Misaki H, Immobilization of ascorbic acid oxydase in multilayers onto porous hollow-fiber membrane. J Memb Sci, 2001, 191: 207-213
    [168] Sun G Y, Shi Q H, Sun Y, Novel biporous polymeric stationary phase for high-speed protein chromatography. J Chromatogr A, 2004, 1061: 159-165
    [169] Huang X, Zhang J, Horváth C, Capillary electrochromatography of proteins and peptides with porous-layer open tubular columns. J .Chromatogr A, 1999, 858: 91-101
    [170] Pesek J J, Matyska M T, Swedberg S, Udivar S, Protein and peptide separations on high surface area capillaries. Electrophoresis, 1999, 20: 2343-2348
    [171] Bandilla D, Skinner C D, Protein separation by monolithic capillary electrochromatography. J Chroamtogr A, 2003, 1004: 167-179
    [172] Varesio E, Rudaz S, Krause K H, Veuthey J L, Nanoscale liquid chromatography and capillary electrophoresis coupled to electrospray mass spectrometry for the detection of amyloid-βpeptide related to Alzheimer’s disease
    [173] Kato M, Kinoshita H, Enokita M, Hori Y, Hashimoto T, et al. Analytical Method forβ-Amyloid Fibrils Using CE-Laser Induced Fluorescence and Its Application to Screening for Inhibitors ofβ-Amyloid Protein Aggregation Anal Chem, 2007, 79: 4887-4891
    [174] Breadmore M C, Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips. Electrophoresis, 2007, 28: 254-281
    [175] Li W, Fries D, Alli A, Malik A, Positively charged sol-gel coatings for on-line preconcentration of amino acids in capillary electrophoresis. Anal Chem, 2004, 76: 218-227
    [176] Qu Q, Liu Y, Tang X, Wang C, Yang G, Hu X, Yan C, Etched barefused-silica capillaries for online preconcentration of amino acids in CE. Electrophoresis, 2006, 27: 4500-4507
    [177] Bessonova E A, Kartsova L A, Shmukov A U, Electrophoretic determination of albumin in urine using on-line concentraton techniques. J Chromatogr A, 2007, 1150: 332-338
    [178] Wang S J, Tseng W L, Lin Y W, Chang H T, On-line concentration of trace proteins by pH junctions in capillary electrophoresis with UV absorption detection. J Chromatogr A, 2002, 979: 261-270
    [179] Armenta J M, Gu B, Humble P H, THulin C D, Lee M L, Design and evaluation of a coupled monolithic preconcentrator capillary zone electrophoresis system for the extraction of immunoglobulin G from human serum. J Chromatogr A, 2005, 1097: 171-178
    [180] Jiang X Y, Bai S, Sun Y, Fabrication and characterization of rigid magnetic monodisperse microspheres for protein adsorption. J Chroamtogr B, 2007, 852: 62-68