含氟聚丙烯酸酯无皂乳液的制备、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含氟聚合物具有极佳的耐热和耐化学稳定性、极低的表面能、优异的拒水拒油和自清洁性,在织物整理、功能涂层、生物医用、航空航天以及微电子领域已得到广泛的应用。含氟聚丙烯酸酯既有丙烯酸树脂优异的粘结性能,又有含氟聚合物的耐热、化学稳定性,耐老化,低表面能和防水防油性能,因而备受关注。随着人们资源与环保意识的逐步加强,在水体系中如何高效地合成理想结构和性能的含氟聚丙烯酸酯具有十分重要的理论和现实意义。而常规乳液聚合法所制备的含氟聚丙烯酸酯乳液,体系中含有大量物理吸附的小分子乳化剂,对膜的性能(光、电、表面性能、疏水、粘附力)及环境会产生不良影响。同时,含氟单体的价格昂贵,性能独特,人们希望在满足性能要求的前提下,尽量减少其用量。
     鉴于此,本文采用无皂乳液聚合方法、设计并合成了3种新颖分子结构与粒子形态的含氟丙烯酸酯共聚物无皂乳液,系统地研究了乳液聚合稳定性的影响因素、乳液及其乳胶膜的相关性能;然后,将所制备的乳液应用于织物后整理,并对织物表面的微观膜形貌、化学成分及应用性能进行了深入地研究。论文的研究内容主要包括以下三部分:
     (1)以顺丁烯二酸–乙酯撑基(三甲基氯化铵)–十八烷基聚氧乙烯(20)醚酯(R303)为阳离子可聚合乳化剂,偶氮二异丁基脒盐酸盐(VA-50)为引发剂,利用预乳化半连续种子乳液聚合法将甲基丙烯酸十二氟庚酯(DFMA)、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)及阳离子单体甲基丙烯酸二甲氨基乙酯(DM)进行自由基共聚制得了蓝色荧光的P(DFMA-co-MMA-co-BA-co-DM)阳离子核壳无皂乳液(CFMBD)。同时,以1831/AEO-9复合乳化体系代替R303进行常规乳液聚合,制得了P(DFMA-co-MMA-co-BA-co-DM)阳离子乳液(GFMBD)。研究了可聚合乳化剂R303用量、引发剂用量及含氟单体用量对乳液聚合稳定性、乳胶粒粒径及乳胶膜性能的影响。当R303用量和VA-50用量分别为3%和0.8%(基于总单体质量),DFMA用量为8g,可以制得稳定无凝胶、粒径为136.8nm且分散均匀的CFMBD。
     用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、热重分析仪(TGA)、原子力显微镜(AFM)、X射线光电子能谱仪(XPS)、傅里叶红外光谱仪(FT-IR)及核磁共振谱仪对乳液和乳胶膜性能进行了表征。TEM证实乳胶粒具有核壳结构。CFMBD的表面张力在63.7~67.2mN/m之间,与水的表面张力(72.0mN/m)相近;而GFMBD的表面张力为36.9mN/m,与复合乳化体系(1831/AEO-9)的表面张力(35.6mN/m)很相近。这可说明了CFMBD中的R303分子大部分被键合在共聚物链节中;而1831/AEO-9则物理吸附在乳胶粒表面,容易脱离乳胶粒形成自由态乳化剂分子,使体系表面张力下降。随引入的DFMA量的增加,CFMBD膜的热稳定性增强,表面自由能和吸水率下降,表面水和二碘甲烷的接触角则升高。当DFMA为10g时,CFMBD膜对水和二碘甲烷的接触角分别可达108.5°及91.5°;此时,CFMBD膜的表面能和吸水率分别为12.65mN/m和7.6%。XPS结果表明CFMBD膜中的氟烷基向膜/空气界面迁移并富集,它对膜微观形貌及其疏水性的影响至关重要。AFM研究表明无氟丙烯酸酯膜相对平滑;常温干燥的CFMBD膜(DFMA占总单体27.5wt%)表面仅有少量小乳突,粗糙度略微增加;经热处理后,CFMBD膜表面有大量乳突和小山峰,粗糙度大大增加。这三种膜表面的水接触角也分别为62.5°,102.5°和108.5°。分析上述乳突和山峰应是CFMBD中的氟烷基链节的相分离所致。这也进一步印证了含氟基团具有向表面迁移的趋势和说明了热处理有利于含氟基团向表面的迁移。
     再以CFMBD处理的棉纤维织物作应用研究对象,用CA、白度仪、柔软度测定仪、AFM、FESEM等对CFMBD的应用性能及其在织物表面的成膜形貌进行了研究。用1.0g/100ml H2O的CFMBD处理棉织物后,可使其具有良好的疏水性;不影响织物的白度。但CFMBD用量太大时,可使处理后的棉织物手感变差。耐水洗实验表明,受GFMBD中小分子乳化剂对膜粘附力的不利影响,洗涤后GFMBD处理的棉织物防水性差于CFMBD处理的棉织物。FESEM和AFM研究表明,处理后的棉织物表面明显覆盖有一层膜,织物表面变得较为光滑。
     (2)以烯丙氧基壬基酚聚氧乙烯(10)醚硫酸铵(DNS-86)为阴离子可聚合乳化剂,过硫酸钾(KPS)为引发剂,N-羟甲基丙烯酰胺(NMA)为自交联功能单体,DFMA、MMA、BA为共聚单体,采用预乳化半连续种子乳液聚合法制得了带蓝色荧光的P(DFMA-co-MMA-co-BA-co-NMA)自交联核壳无皂乳液(FMBN)。研究了可聚合乳化剂DNS-86用量、含氟单体DFMA用量及功能单体NMA用量对乳液聚合稳定性、乳胶粒粒径及乳胶膜性能的影响。当DNS-86用量为3%(基于总单体质量),NMA和DFMA用量分别为1.5g和8g时,可以制得稳定的、粒径为116.3nm且分散均匀的FMBN。
     用TEM、SEM、TGA、差示扫描量热仪(DSC)、AFM、XPS、FT-IR及核磁共振谱仪对乳液和乳胶膜性能进行了表征。TEM和DSC研究表明乳胶粒具有核壳结构,而每个FMBN膜都有两个对应于壳相和核相的玻璃化转变温度(Tg)。随引入的DFMA量的增加,FMBN膜的热稳定性增强,壳相Tg升高,膜表面自由能下降,表面水和二碘甲烷的接触角则升高。当DFMA为10g时,FMBN膜对水和二碘甲烷的接触角分别可达117.5°及92.8°;此时,FMBN膜的表面能可达11.47mN/m。XPS、AFM和膜疏水性相关研究表明FMBN膜中的氟烷基有向膜/空气界面迁移的趋势,而经过热处理后这种趋势尤为明显。自交联无皂乳胶膜的疏水性要好于自交联常规乳胶膜和非交联无皂乳胶膜。
     然后,以FMBN处理的棉纤维织物作应用研究对象,用CA、白度仪、柔软度测定仪、AFM、FESEM等对FMBN的应用性能及其在织物表面的成膜形貌进行了研究。用1.0g/100ml H2O的FMBN处理棉织物后,可使其具有良好的疏水性;不影响处理织物的白度;而使织物手感变差。FESEM和AFM研究表明,处理后棉织物表面明显覆盖一层膜,织物表面变得较为光滑。
     (3)以氢氧化钠(NaOH)为催化剂,DNS-86为乳化剂,将甲基丙烯酰氧丙基三甲氧基硅烷(KH-570)于水相中进行水解缩聚先制成聚倍半硅氧烷(PSQ)乳液;再以DNS-86为可聚合乳化剂,KPS为引发剂,PSQ为种子乳液,采用预乳化半连续种子乳液聚合方法使DFMA、MMA、BA及PSQ进行自由基共聚制得了带蓝色荧光的P(DFMA-co-MMA-co-BA-co-PSQ)杂化核壳无皂乳液(FPSQ)。考察了NaOH浓度、DNS-86用量及KH-570用量对PSQ乳液粒径大小的影响。当NaOH浓度为20mmol/L,DNS-86和KH-570用量分别为0.3g和10g,在100g水中经水解缩聚反应制得的PSQ乳液,其平均粒径为66.7nm。
     利用TEM、SEM、TGA、AFM、XPS及FT-IR对乳液和膜的性能进行了表征。FPSQ乳胶粒具有核壳结构。由于引入的PSQ增加了FPSQ膜的微观粗糙度,再辅以低表面能的氟烷基基团的作用,FPSQ膜具有比CFMBD及FMBN更好的疏水性。FPSQ膜的表面自由能随引入的PSQ量的增加先减小后略增加;随引入的DFMA用量的增加呈单调递降趋势。FPSQ膜的热稳定性则随引入的PSQ量的增加而增强。XPS分析表明FPSQ膜中的氟烷基有向膜/空气界面迁移的趋势。AFM研究表明FPSQ膜比PSQ膜粗糙。FTIR证实了合成产物具有预期的结构。
     再以FPSQ处理的棉纤维织物作应用研究对象,用CA、白度仪、柔软度测定仪、FESEM等对FPSQ的应用性能及其在织物表面的成膜形貌进行了研究。用1.0g/100ml H2O的FPSQ处理棉织物后,可使其防水性比CFMBD和FMBN处理后的织物更好;由于引入的硬性PSQ微球,使处理后织物的白度略增加而手感变差。FESEM研究表明,处理后棉织物表面明显覆盖有一层膜且膜下方有纳米微球的存在。
Owing to their low surface free energy, outstanding water-andoil-repellency and self-cleaning properties, high thermal and chemical resistance,etc., fluorine-containing polymers have been widely used in textile finishing,functional coatings, biomedical materials, and aerospace as well asmicroelectronics fields. Fluorinated acrylate copolymers possess both thefavorable adhesion property of acrylate resin and the inherent characteristics offluorine-containing polymers, such as high thermal, chemical, and agingresistance; low surface energy; excellent oil-and water-repellency. Hence, ithas attracted much concern. On basis of the reinforcement of the people’sresource and environmental awareness, how to synthesize fluorinated acryliccopolymers emulsion with anticipated macromolecular structure and propertiesin dispersed phase systems has proved to be a challenge in theoretical researchand products development. Common fluorinated polyacrylate emulsionprepared with traditional emulsion polymerization method contains lots of lowmolecule emulsifiers in physically adsorbed state, which have high mobility andan undesirable effect on the environment and the performance properties of thefilm like optics, electricity, surface property, hydrophobicity, and adhesion.Meanwhile, the relatively high market prices of the fluorinated monomers limittheir use, so researchers always hope to exploit possible polymerization strategyto minimize dose of the fluorinated monomers and simultaneously preserve theexcellent properties.
     Therefore, the soap-free emulsion polymerization method was utilized inthis context to design and synthesize three sorts of fluorine-containing acrylate copolymers soap-free latexes with novel molecular structure and particlemorphology. Some factors influencing the stability of emulsion polymerization,relevant properties of the latexes and their films were systematicallyinvestigated later. Then, the as-prepared latexes were applied in the textilefinishing, and also film morphology and chemical compositions on the cottonsurface as well as its performance properties were researched in depth. Themain research contents are listed as following:
     (1) Cationic fluorinated polyacrylate soap-free latexes (CFMBD) withcore-shell structure and blue fluorescence were synthesized by semi-continuousseeded emulsion polymerization of dodecafluoroheptyl methacrylate (DFMA)with methyl methacrylate (MMA), butyl acrylate (BA), anddimethylaminoethyl methacrylate (DM), maleic acid double ester-octadecylpoly(ethyleneoxy)20ether-ethylene trimethyl ammonium chloride (R303) as thecopolymerisable emulsifier and2,2′-azobis(2-methylpropionamidine)dihydro-Chloride (VA-50) as an initiator. Meanwhile, cationic fluorinated polyacrylatetraditional latex (GFMBD) was also fabricated as control with the sameprocedure and formulas except substituting R303for the1831/AEO-9mixedemulsifying system. Effects of the R303, VA-50and DFMA doses wereinvestigated on the stability of emulsion polymerization, the particle size andproperties of the latex film. The optimal condition for emulsion polymerizationwas that the R303and VA-50doses were3%and0.8%based on the totalmonomers weight, respectively, and the DFMA amount was8g in our recipe.Stable CFMBD latex with the average particle size of136.8nm could beobtained.
     Performance properties of the latex and its film were characterized bytransmission electron microscopy (TEM), scanning electron microscopy (SEM),thermogravimetry analysis (TGA), atomic force microscopy (AFM), X-rayphotoelectron spectroscopy (XPS), contact angle goniometer (CA), Fouriertransform infrared (FTIR) spectrometry, and nuclear magnetic resonancespectrum, etc. Results showed that the latex particles possessed the apparentcore-shell structure by TEM observation. Surface tensions of the CFMBDlatexes were among63.7-67.2mN/m and very close to that of water; whereassurface tension of the control fluorine-containing latex was36.9mN/m and almost equal to that of the mixed emulsifiers system (1831/AEO-9). Theaforesaid facts illustrate that R303copolymerizes with other monomers and isincorporated into the copolymer main chains, however,1830/AEO-9areadsorbed onto the latex particle surface and prone to separate from the body,finally it will freely disperse in water which should heavily lower the surfacetension of the system. Those latex films showed the increasing thermal stabilitybut the decline of surface tension and water absorption with augment of DFMAamount in polymer. When the DFMA dose was employed as10g, CA of wateron latex films could maximally attain108.5°and that of diiodomethane was91.5°while the surface free energy and water absorption were12.65mN/m and7.6%, respectively. XPS analysis indicated the fluoroalkyl groups had thetendency to enrich at the film-air interface, which plays a crucial role in thehydrophobicity and micro-morphology of the latex films. The fluorine-free latexfilm showed the relatively smooth surface morphology in its AFM image,however, there were numerous little protuberances on the film surface of theCFMBD latex from the polymer containing27.5wt%DFMA in total monomersweight dried at room temperature. Especially, after the annealing process, somepeaks and lots of protuberances on that film appeared and the surface roughnesswas greatly increased. Water contact angles (WCAs) of fluorine-free latex film,those of CFMBD film dried at room temperature and after the annealing processcould attain62.5°,102.5°and108.5°, respectively.Those would further confirmthat the fluoroalkyl groups tended to enrich at the film-air interface and theannealing process would be in favor of this tendency.
     Then CFMBD was utilized to treat the cotton fabric, and performanceproperties and surface morphology of the treated fabric were characterized byCA, whiteness meter, flexibility tester, AFM and FESEM. The treated cottonfabric by using the concentration of CFMBD as1.0g/100ml H2O had thefavorable water repellency. CFMBD didn’t influence whiteness of the treatedfabric but would make it slightly stiff at high doses. However, washingdurability of the treated fabric by CFMBD showed improvement compared tothe general emulsion resulting from the disadvantage effect of low molecularemulsifier on the film adhesion. CFMBD could form a smooth resin film on thetreated fabric/fiber surface under FESEM and AFM observations.
     (2) Self-crosslinking fluorinated polyacrylate soap-free latexes (FMBN)with core-shell structure and blue fluorescence were synthesized bysemi-continuous seeded emulsion polymerization of DFMA with MMA, BA,and N-methylolamide (NMA) as self-crosslinkable monomer, ammoniumallyloxtmethylate nonylphenol ethoxylates sulfate (DNS-86) as thecopolymerisable emulsifier and potassium persulphate (KPS) as an initiator.Impacts of the DNS-86, DFMA and NMA doses were investigated on thestability of emulsion polymerization, the particle size and properties of the latexfilm. The optimal condition for emulsion polymerization was that the DNS-86dose was3%based on the total monomers weight, the DFMA and NMAamounts were8g and1.5g in our recipe, respectively. Stable FMBN latex withthe average particle size of116.3nm could be acquired.
     Performance properties of the latex and its film were characterized byTEM, SEM, TGA, differential scanning calorimeter (DSC), AFM, XPS, CA,FTIR, and nuclear magnetic resonance spectrum, etc. Results indicated that thelatex particles possessed the uniform core-shell structure by TEM observation.The films formed from the FMBN latices thus had two Tg. Their thermalstability and Tgof the shell phase increased gradually with the augment of theDFMA amount in polymer. CAs of water and diiodomethane on latex films rosewith the increasing amount of DFMA. When the amount of the DFMA was10g,CA of water on latex film could maximally attain117.5°and that ofdiiodomethane was90.5°while the surface free energy and water absorptionwere11.47mN/m. XPS, AFM and hydrophobicity analyses indicated thefluoroalkyl groups had the tendency to enrich at the film-air interface. Thisenrichment of fluorine at the film-air interface was more evident after theannealing process. Meanwhile, hydrophobicity of the self-crosslinking soap-freelatex film showed some improvement compared to the general one and thenon-crosslinked one.
     Then FMBN was utilized to treat the cotton fabric, and performanceproperties and surface morphology of the treated fabric were characterized byCA, whiteness meter, flexibility tester, AFM and FESEM. The treated cottonfabric by using the concentration of FMBN as1.0g/100ml H2O had thefavorable water repellency. FMBN didn’t influence whiteness of the treated fabric but would make it slightly stiff. FMBN could form a smooth resin film onthe treated fabric/fiber surface under FESEM and AFM observations.
     (3) Polysilsesquioxane (PSQ) emulsions were firstly prepared by thehydrolysis and condensation reaction of methacryloxy propyl trimethoxyl silane(KH-50) in the aqueous phase, sodium hydroxide (NaOH) as catalyst andDNS-86as the emulsifier. Then fluorinated polyacrylate/PSQ hybrid soap-freelatexes (FPSQ) with core-shell structure and blue fluorescence were synthesizedby semi-continuous seeded emulsion polymerization of DFMA with MMA, BA,and PSQ as the seeded latex, DNS-86as the copolymerisable emulsifier andKPS as an initiator. Influences of the catalyst concentration, the DNS-86andKH-570doses were discussed on the particle size of the PSQ latexes. PSQemulsion with the average particle size of66.7nm could be acquired in100gaqueous solution while the concentration of the NaOH, the doses of the DNS-86and the KH-570were controlled as20mmol/L,0.3g and10g, respectively.
     Performance properties of the latex and its film were characterized byTEM, SEM, TGA, AFM, XPS, and FTIR, etc. Results demonstrated that thelatex particles possessed the core-shell structure by TEM observation. TheFPSQ film showed more excellent hydrophobicity than those of CFMBD andFMBN since the micro-roughness of the FPSQ had been enlarged due to theimported PSQ besides the role of the fluoroalkyl groups with low surface freeenergy. Their surface free energies decreased firstly and increased slightly withthe increasing amount of the imported PSQ amounts but showed a unilaterallydecreased trend with augment of the DFMA dose. Thermal stability of the FPSQfilms increased gradually with augment of PSQ amount in polymer. XPSanalysis indicated the fluoroalkyl groups had the tendency to enrich at thefilm-air interface. FTIR confirmed the structure of the as-prepared product.AFM results indicated that the hybrid latex film was coarser than the PSQ latexfilm.
     Then FPSQ was utilized to treat the cotton fabric, and performanceproperties and surface morphology of the treated fabric were characterized byCA, whiteness meter, flexibility tester, and FESEM. The treated cotton fabric byusing the concentration of FPSQ as1.0g/100ml H2O had more favorablehydrophobicity than those treated by CFMBD and FMBN. The treated fabrics became slightly whiter but its handle became worse. FPSQ could form a hybridfilm on the treated fabric/fiber surface under FESEM observation. There weresome nanospheres beneath the hybrid film.
引文
[1] L He, J Y Liang, X Zhao, et al. Preparation and comparative evaluation of well-definedfluorinated acrylic copolymer latex and solution for ancient stone protection[J]. Progressin Organic Coatings,2010,69:352-358.
    [2] K L Xie, A Q Hou, Y Q Shi. Synthesis of fluorine-containing acrylate copolymer andapplication as resins on dyed polyester microfiber fabric [J]. Journal of Applied PolymerScience,2008,108:1778-1782.
    [3] Q H Yang, T Y Zhang, Z J Li. Characterization and application of low surface energyfluorinated polymer in leather finishing [J]. J. Soc. Leath. Tech. Ch.,2010,94:106-110.
    [4]王春磊,沈一丁,费贵强,等.含氟丙烯酸酯乳液的制备及其用作纸张防油剂的研究[J].中国造纸,2008,27(11):25-28.
    [5] V Castelvetro, M Aglietto, F Ciardelli, et al. Structure control, coating properties, anddurability of fluorinated acrylic-based polymers [J]. Journal of Coatings Technology,2002,70:57-66.
    [6] V C Malshe, N S Sangaj. Fluorinated acrylic copolymers Part I: Study of clear coatings[J]. Progress in Organic Coatings,2005,53:207-211.
    [7] R A Iezzi, S Gaboury, K Wood. Acrylic-fluoropolymer mixtures and their use in coatings[J]. Progress in Organic Coatings,2000,40:55-60.
    [8] T Poggio, V Kapeliouchko. Multimodal fluoropolymer dispersions [J]. Progress inOrganic Coatings,2003,48:310-315.
    [9] A Akihiko, U Masao. Water fluoropolymers for paint use [J]. Journal of FluorineChemistry,2000,104(1):47-51.
    [10]王亚琴,张宏伟.燃料电池用含氟质子交换膜的研究现状[J].材料导报,2005,19(3):93-96.
    [11]D H Lyengar, S M Penct, C A Dai. Surface segregation studies of fluorine-containingdiblock copolymers [J]. Macromolecules,1996,29:1229-1234.
    [12]李辰楠,孙公权,任素贞,等.应用于燃料电池的全氟磺酸膜及其改性[J].科学通报,2005,50(19):2049-205.
    [13]J S Forsythe, D J MHill. The use of crosslinking promoters in the γ-Radiolysis ofPoly(tetrafluoroethylene-co-perfluoromethylvinyl ether[J]. Journal of Applied PolymerScience,1999,73:169-175.
    [14]Li Wang, Qiaolong Yuan, Shusen Wu. Preparation and surface properties of fluorinatedacrylates copolymers[J]. Journal of Macromolecular Science, Part B: Physics,2010,49:920-932.
    [15]Qiufeng An, Wei Xu, Lifen Hao, Yongshan Fu, Liangxian Huang. Fabrication ofsuperhydrophobic fabric coating using microphase-separated dodecafluoroheptyl-containing polyacrylate and nanosilica [J]. Journal of Applied Polymer Science,2013,128(5):3050-3056.
    [16]M Hikita, K Tanaka, T Nakamura, T Kajiyama, A Takahara. Aggregation states andsurface wettability in films of poly(styrene-block-2-perfluorooctyl ethyl acrylate)diblock copolymers synthesized by atom transfer radical polymerization[J]. Langmuir,2004,20:5304-5310.
    [17]Juping Yang, Huagang Ni, Xiaofeng Wang, Wei Zhang, Xinping Wang. Creating stablehydrophobic surfaces by poly (butyl methacrylate) end-capped with2-perfluorooctylethyl methacrylate units[J]. Polymer Bulletin,2007,59:105-115.
    [18]Huagang Ni, Xiaofeng Wang, Wei Zhang, Xinping Wang, Zhiquan Shen. Stablehydrophobic surfaces created by self-assembly of poly(methyl methacrylate) end-cappedwith2-perfluorooctylethyl methacrylate units[J]. Surface Science,2007,601:3632-3639.
    [19]Xiaofeng Wang, Huagang Ni, Dongwu Xue, et al. Solvent effect on the film formationand the stability of the surface properties of poly(methyl methacrylate) end-capped withfluorinated units[J]. Journal of Colloid and Interface Science,2008,321:373-383.
    [20]J T Koberstein. Molecular design of functional polymer surfaces [J]. Journal of PolymerScience Part B: Polymer Physics,2004,42(16):2942-2956.
    [21]Jianguo Wang, Guoping Mao, Christopher K Ober, et al. Semifluorinated side groupblock copolymers with stable low energy surfaces: Synthesis, liquid crystallinestructure, and critical surface tension[J]. Macromolecules,1997,30(7):1906-1914.
    [22]M Nomura, H Tobita, K Suzuki. Emulsion polymerization: Kinetic and mechanisticaspects [J]. Advanced Polymer Science,2005,175:1-128.
    [23]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,2000.
    [24]F J Schork,Yingwu Luo,W Smulders,et al. Miniemulsion polymerization[J]. AdvancedPolymer Science,2005,175:129-255.
    [25]W D Harkins. A general theory of the mechanism of emulsion polymerization[J]. Journalof the American Chemical Society,1947,69(6):1428-1444.
    [26]W D Harkins. A general theory of the reaction loci in emulsion polymerization[J]. Journalof Chemical Physics,1946,13:381-382.
    [27]W V Smith. Chain initiation in styrene emulsion polymerization[J]. Journal of theAmerican Chemical Society,1949,71(12):4077-4082.
    [28]W V Smith,R H Ewart. Kinetics of emulsion polymerization[J]. Journal of ChemicalPhysics,1948,13:592-599.
    [29]安秋凤,袁俊敏,亢玲娟,等.氟代丙烯酸酯共聚乳液FSLDH的成膜性、XPS表征与疏水性能[J].精细化工,2010,27(5):486-490.
    [30]刘爽,安秋凤,许伟,等.长链含氟丙烯酸酯乳液的合成及其在皮革防水中的应用[J].化工新型材料,2010,38(9):138-140.
    [31]Chen Wang, Xiaorui Li, Peizhi Li. Effect of cosolvent NMP on properties of cationicfluorocarbon emulsifier-free emulsion[J]. Colloid and Polymer Science,2013,291(5):1271-1278.
    [32]J Ugelstad, M S El-Aasser, J W Vanderhoff. Emulsion polymerization: Initiation ofpolymerization in monomer droplets[J]. J Polym Sei: Polymer Letters Edition,1973,11:503-513.
    [33]J M Asua. Miniemulsion polymerization[J]. Progress in Polymer Science,2002,27:1283-1346.
    [34]Yanjun Chen, Shiyuan Chen, Yifeng Wang, et al. Chemical components and properties ofcore–shell acrylate latex containing fluorine in the shell and their films[J]. Journal ofApplied Polymer Science,2006,99,107-114.
    [35]K Landfester, R Rothe, M Antonietti. Convenient synthesis of fluorinated latexes andcore-shell structures by miniemulsion polymerization[J]. Macromolecules,2002,35(5),1658-1662.
    [36]K Landfester. Polyreactions in miniemulsions[J]. Macromolecular Rapid Communica-tions,2001,22,896-936.
    [37]Qinghua Zhang, Xiaoli Zhan, Fengqiu Chen. Miniemulsion polymerization of a fluorin-ated acrylate copolymer: kinetic studies and nanolatex morphology characterization[J].Journal of Applied Polymer Science,2007,104,641-647.
    [38]Shengdong Xiong, Xiaoli Guo, Ling Li, Shuilin Wu, Paul K Chiu, Zushun Xu. Prepara-tion and characterization of fluorinated acrylate copolymer latexes by miniemulsion poly-merization under microwave irradiation [J]. Journal of Fluorine Chemistry,2010,131:417-425.
    [39]Lijun Chen, Fengqing Wu. Control of particle size and surface properties of fluorinatedacrylate microemulsion[J]. Surface Engineering,2012,28(3):225-229.
    [40]张心亚,瞿金清,蓝仁华,等.核壳聚合和核壳结构聚合物乳液[J].现代化工,2002,22:58-61.
    [41]何卫东,潘才元.核壳聚合物粒子[J].功能高分子学报,1997,10:110-117.
    [42]V Dimonie, A Klein, J W Vanderhoff. Polymerization mechanism and morphologyevolvement of emulsion with core-shell[J]. Polymer Science,1984,173:2197-2199.
    [43]Chaocan Zhang, Yanjun Chen. Investigation of fluorinated polyacrylate latex withcore–shell structure[J]. Polymer International,2005,54:1027-1033.
    [44]Yanjun Chen, Shiyuan Chen, Yifeng Wang, et al. Chemical components and properties ofcore–shell acrylate latex containing fluorine in the shell and their films[J]. Journal ofApplied Polymer Science,2006,99,107-114.
    [45]Jiabing Dai, Xingyuan Zhang, Jing Chao, et al. A new core–shell type fluorinated acrylicand siliconated polyurethane hybrid emulsion[J]. Journal of Coatings Technology andResearch,2007,4(3):283-288.
    [46]Xinyan Xiao, Rui Xu. Preparation and surface properties of core-shell polyacrylate latexcontaining fluorine and silicon in the shell[J]. Journal of Applied Polymer Science,2011,119,1576-1585.
    [47]Ailan Qu, Xiufang Wen, Pihui Pi, et al. Synthesis and characterization of hybridfluoro-emulsion based on silica/copolymer composite particles[J]. Polymer International,2008,57:1287-1294.
    [48]Ailan Qu, Xiufang Wen, Pihui Pi, et al. Synthesis of composite particles throughemulsion polymerization based on silica/fluoroacrylate-siloxane using anionic reactiveand nonionic surfactants[J]. Journal of Colloid and Interface Science,2008,317:62-69.
    [49]Junyan Liang, Ling He, Weidong Li, et al. Synthesis and analysis of properties of a newcore-shell silicon-containing fluoroacrylate latex [J]. Polymer International,2009,58:1238-1290.
    [50]Ling He, Junyan Liang. Synthesis, modification and characterization of core-shellfluoroacrylate copolymer latexes [J]. Journal of Fluorine Chemistry,2008,129:590-597.
    [51]Chengcheng Yang, Valter Castelvetro, Dominique Scalarone, et al. Three differentb-cyclodextrins direct the emulsion copolymerization of a highly fluorinatedmethacrylate toward distinctive nanostructured particle morphologies[J]. Journal ofPolymer Science Part A: Polymer Chemistry,2011,49(21):4518-4530.
    [52]Ruiqin Bai, Teng Qiu, Min Duan, et al. Synthesis and characterization of core-shellpolysilsesquioxane-poly(styrene-butyl acrylate-fluorinated acrylate) hybrid latexparticles[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects2012,396:251-257.
    [53]Ruiqin Bai, Teng Qiu, Cheng Xu, et al. Synthesis and characterization of emulsifier-freetrilayer core-shell polysilsesquioxane/polyacrylate/poly(fluorinated acrylate) hybridlatex particles[J]. Colloid and Polymer Science,2012,290(9):769-776.
    [54]Hidenobu Shimizu, Tomonari Shiraishi, Risei Wada, et al. Fluorinated monomer-styrenecopolymer latex particles: I. kinetic studies in a soap-free aqueous medium[J]. Colloidand Polymer Science,2006,285:107-111.
    [55]马丽.有机氟树脂制备超疏水自清洁氟碳涂料的研究[D].陕西科技大学硕士学位论文,2012.
    [56]蒋银峰,陈洪龄. AA-TFEMA-AC无皂含氟乳液共聚反应动力学的研究[J].涂料工业,2009,39(1):23-26.
    [57]杨晓武.全氟内交联型聚醋酸乙烯酯乳液的制备及其膜耐水性研究[J].胶体与聚合物,2009,27(4):1-5.
    [58]Lijun Chen, Hongxin Shi, Juping Xiang, et al. Preparation of self-crosslinked fluorocarb-on polymer emulsion with core-shell structure by the method of soap-free emulsionpolymerization[J]. Journal of Wuhan University of Technolotgy-Mater. Sci. Ed.,2009,24(4):631-636.
    [59]Xuejun Cui, Shuangling Zhong, Hongyan Wang. Synthesis and characterization ofemulsifier-free core–shell fluorine-containing polyacrylate latex [J]. Colloids andSurfaces A: Physicochem. Eng. Aspects,2007,303:173-178.
    [60]李刚辉,阿尔吐克,何战友,等.含氟无皂乳液纸张防油剂的制备及应用[J].中华纸业,2010,31(12):21-24.
    [61]辛华.含氟丙烯酸酯共聚物乳胶膜性能的研究[J].化工新型材料,2008,36(1):59-61.
    [62]Xiwen Wang, Guilong Xu, Pihui Pi,等. Preparation and characterization of soap-freecationic fluorinated poly-styrene-acrylate latex with core-shell structure[J]. Polymer-Plastics Technology and Engineering,2012,51:734-738.
    [63]Chen Wang, Xiaorui Li, Biao Du,等. Effect of cationic monomer on properties ofcationic fluorocarbon emulsifier-free emulsion[J]. Journal of Polymer Research,2013,20:94, DOI10.1007/s10965-013-0094-8.
    [64]Lijun Chen. Effect of cationic monomer on properties of fluorinated acrylate latex[J].Chinese Chemical Letters,2012,23,736-740.
    [65]唐新,沈一丁,李培枝.阳离子型全氟丙烯酸酯无皂乳液的合成及性能[J].涂料工业,2010,40(3):57-60.
    [66]周文敏,李小瑞,李培枝,等.全氟聚丙烯酸酯纸张防油剂的制备与应用[J].纸和造纸,2010,29(8):35-37.
    [67]周文敏,李小瑞,李培枝,等.全氟丙烯酸酯共聚物无皂乳液的制备与膜表面性能[J].精细化工,2010,27(9):913-917.
    [68]Xuejun Cui, Shuangling Zhong, Yan Gao,等. Preparation and characterization ofemulsifier-free core-shell interpenetrating polymer network-fluorinated polyacrylatelatex particles[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2008,324:14-21.
    [69]Xuejun Cui, Shuangling Zhong, Hongyan Wang. Emulsifier-free core-shell polyacrylatelatex nanoparticles containing fluorine and silicon in shell[J]. Polymer,2007,48:7241-7248.
    [70]Tingting Yang, Hui Peng, Shiyuan Cheng, et al. Surface immobilization of perfluorinatedacrylate copolymers by self-crosslinking[J]. Journal of Fluorine Chemistry,2005,126:1570-1577.
    [71]Chen Wang, Xiaorui Li, Biao Du, et al. Study on the self-assembly properties offluorinated hydrophobically associating polyacrylamide[J]. Journal of Polymer Research,2013,20(12): DOI10.1007/s10965-012-0042-z.
    [72]Chen Wang, Xiaorui Li, Peizhi Li. Study on preparation and solution properties ofhydrophobically associating polyacrylamide by emulsifier-free ultrasonic assistedradical polymerization[J]. Journal of Polymer Research,2012,19:9933, DOI10.1007/s10965-012-9933-2.
    [73]Chen Wang, Xiaorui Li, Biao Du,等. Study on preparation and self-assembly propertiesof hydrophobically associating polyacrylamide by emulsifier-free ultrasonic assistedradical polymerization[J]. Journal of Polymer Research,2013,20:50, DOI10.1007/s10965-012-0050-z.
    [74]Tingting Yang, Li Yao, Hui Peng, et al. Characterization of a low-wettable surface basedon perfluoroalkyl acrylate copolymers[J]. Journal of Fluorine Chemistry,2006,127:1105-1110.
    [75]Tingting Yang, Hui Peng, Shiyuan Cheng, et al. Soap-free emulsion copolymerization ofperfluoroalkyl acrylates in the presence of a reactive surfactant[J]. Journal of AppliedPolymer Science,2007,104:2438-2444.
    [76]彭慧,杨婷婷,廖启金,等.离子型共聚单体参与下的全氟丙烯酸酯无皂乳液共聚[J].应用化学,2005,22(2):17-23.
    [77]Lijun Chen, Fengqing Wu. Surface difference of novel fluorinated polyacrylate latexprepared with different surfactants[J]. Surface Engineering,2012,28(3):220-224.
    [78]Lijun Chen, Fengqing Wu. Structure and properties of novel fluorinated polyacrylatelatex prepared with reactive surfactant[J]. Polymer Science, Ser. B,2011,53(11-12):606-611.
    [79]Lijun Chen, Hongxin Shi, Hongke Wu, et al. Influence of the reactive emulsifier-HPMAon the properties of the acrylate emulsion[J]. Journal of Dispersion Science andTechnology,2011,32:235-240.
    [80]Lijun Chen, Fengqing Wu. BA-MMA-POMA copolymer latexes prepared by usingHMPS polymerizable emulsifier[J]. Journal of Applied Polymer Science,2011,122:819-826.
    [81]Yanjun Chen, Chaocan Zhang, Xinxin Chen. Emulsifier-free latex of fluorinated acrylatecopolymer[J]. European Polymer Journal,2006,42:694-701.
    [82]王艺峰,陈艳军.表面活性单体和丙酮共作用下甲基丙烯酸三氟乙酯无皂乳液聚合研究[J].化学建材,2007,23(5):10-13.
    [83]陈艳军,王艺峰,张超灿.含氟丙烯酸酯共聚物无皂乳液的粒子形态与性能研究[J].涂料工业,2006,36(12):17-20.
    [84]杨秦欢,李正军,张廷有.阳离子型含氟聚丙烯酸酯无皂乳液聚合的研究[J].皮革科学与工程,2009,19(1):5-8.
    [85]G L Xu, Y Liang, X F Wen, et al. Surface immobilization of fluorinated polystyrene-acrylate latex nanoparticles with core-shell structure by crosslinking[J]. CanadianJournal of Chemical Engineering,2012,90:1239-1245.
    [86]Jianhua Zhou, Lin Zhang, Jianzhong Ma. Fluorinated polyacrylate emulsifier-freeemulsion mediated by poly(acrylic acid)-b-poly(hexafluorobutyl acrylate) trithiocarbon-ate via ab initio RAFT emulsion polymerization[J]. Chemical Engineering Journal,2013,223:8-17.
    [87]Guilong Xu, Lili Deng, Xiufang Wen, et al. Synthesis and characterization offluorine-containing poly-styrene-acrylate latex with core–shell structure using a reactivesurfactant[J]. Journal of Coatings Technology and Research,2011,8(3):401-407.
    [88]Xinyan Xiao, Ye Wang. Emulsion copolymerization of fluorinated acrylate in thepresence of a polymerizable emulsifier[J]. Colloids and Surfaces A: Physicochem. Eng.Aspects,2009,348:151-156.
    [89]肖新颜,王叶,万彩霞.可聚合乳化剂合成含氟聚丙烯酸酯无皂乳液[J].华南理工大学学报(自然科学版),2009,37(9):133-138.
    [90]肖新颜,王叶,徐蕊,等.可聚合乳化剂合成含氟聚丙烯酸酯无皂乳液及其性能[J].化工进展,2009,28(4):650-655.
    [91]Jin Wang, Xingrong Zeng, Hongqiang Li. Preparation and characterization of soap-freefluorine-containing acrylate latex[J]. Journal of Coatings Technology and Research,2010,7(4):469-476.
    [92]王金,曾幸荣,欧阳喜仁,等.核壳型无皂含氟丙烯酸酯共聚乳液的合成[J].高分子材料科学与工程,2009,25(4):24-27.
    [93]付冬梅,罗必新,李中华.氟硅改性苯丙无皂乳液的制备和性质研究[J].有机硅材料,2011,25(1):23-27.
    [94]Shouping Xu, Weipu Liu. Synthesis of amphiphilic fluorinated copolymer and the forma-tion of hollow nanotubes[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2008,326:210-213.
    [95]Shouping Xu, Weipu Liu. Synthesis and surface characterization of an amphiphilicfluorinated copolymer via emulsifier-free emulsion polymerization of RAFT[J]. Journalof Fluorine Chemistry,2008,129:125-130.
    [96]陈艳军,周辉,罗文,等.两亲性RAFT试剂存在下丙烯酸六氟丁酯和苯乙烯的无皂乳液聚合[J].高等学校化学学报,2011,32(1):190-195.
    [97]辛华,李小瑞,沈一丁.氟改性阳离子聚氨酯复合乳液制备及其表面施胶应用[J].功能材料,2012,43:908-911.
    [98]J Y Liang, L He, Y S Zheng. Synthesis and property investigation of three core-shellfluoroacrylate copolymer latexes[J]. J. Appl. Polym. Sci.,2009,112:1615-1621.
    [99]X Z Kong, X L Zhu, X B Jiang, et al. Preparation and full characterization of cationiclatex of styrene-butyl acrylate[J]. Polymer,2009,50:4220-4227.
    [100]Wei Xu, Qiufeng An, Lifen Hao, et al. Synthesis, film morphology and performance ofcationic fluorinated polyacrylate emulsion with core-shell structure[J]. Journal ofApplied Polymer Science,2012,125(3):2376-2383.
    [101]Qiufeng An, Wei Xu, Lifen Hao, et al. Cationic fluorinated polyacrylate core-shell latexwith pendant long chain alkyl: Synthesis, film morphology and its performance oncotton substrates[J]. Journal of Applied Polymer Science,2013,127(3):1519-1526.
    [102]秦少雄.纤维素醚稳定的聚丙烯酸酯类乳液合成及其性能与应用研究[D].广州:华南理工大学,2006.
    [103]李小瑞,徐旋,李培枝.阳离子型含氟丙烯酸酯的制备及防水防油性能[J].高分子材料科学与工程,2008,24(11):58-61.
    [104]Ganghui Li, Yiding Shen, Qinghai Ren. Effect of fluorinated acrylate on the surfaceproperties of cationic fluorinated polyurethane-acrylate hybrid dispersions[J]. Journal ofApplied Polymer Science,2005,97(6):2192-2196.
    [105]陈艳军.乳液法制备含氟丙烯酸酯聚合物自组织梯度材料[D].武汉:武汉理工大学,2005.
    [106]Wing Lai Chan, Hua Yana, Yau Shan Szeto. Synthesis of mesoionicside-chain liquidcrystal poly(siloxane)s[J]. Materials Letters,2004,58(6):882-884.
    [107]Jianshe Hu, Baoyan Zhang, Xiaozhi He, et al. Synthesis, structure and characterizationof side chain cholesteric liquid crystalline polysiloxanes[J]. Liquid Crystals,2004,31(10):1357-1366.
    [108]AATCC Test Method22-2001, AATCC Technical Manual,2004:126-130,AmericanAssociation of Textile Chemists and Colorists. Research Triangle Park, NC27709.
    [109]AATCC Test Method118-2002,AATCC Technical Manual,2004:442-445,AmericanAssociation of Textile Chemists and Colorists. Research Triangle Park, NC27709.
    [110]胡志勇,程原,李蕾,等.偶氮二异丁脒盐酸盐的合成新方法[J].化工进展,2007,26:1790-1794.
    [111]王金.含氟丙烯酸酯乳液的制备、结构与性能研究[D].华南理工大学博士学位论文,2009.
    [112]王艳姣.室温自交联丙烯酸树脂乳液制备及涂膜性能[D].陕西科技大学硕士学位论文,2012.
    [113]李昊阳,单国荣.聚合过程中原位生成助稳定剂的细乳液聚合[J].高分子学报,2008,12,1175-1180.
    [114]E Casazza, A Mariani, L Ricco, et al. Synthesis, characterization, and properties of anovel acrylic terpolymer with pendant perfluoropolyether segments[J]. Polymer,2002,43(4),1207-1214.
    [115]Fuchun Zhao, Xingrong Zeng, Hongqiang Li, et al. Preparation of fluorinated polyacryl-ate composite latex with in situ generated nano-silica dispersion and film durability[J].Iranian polymer Journal, DOI:10.1007/s13726-013-0174-y.
    [116]Wei Xu, Qiufeng An, Lifen Hao, et al. Synthesis and properties of cationic fluorinatedpolyacrylate soap-free latex[J]. Journal of Macromolecular Science, part A: Pure andApplied Chemistry,2013,50(6):670-677.
    [117]李刚辉,李小瑞,沈一丁,等.亲水单体对阳离子聚氨酯-含氟丙烯酸酯复合乳液颗粒和表面性能的影响[J].化学学报,2005,63(24):2225-2228.
    [118]Prasad Taranekar, Xiaowu Fan, Rigoberto Advincula. Distinct surface morphologies ofelectropolymerized polymethylsiloxane network polypyrrole and comonomer films[J].Langmuir,2002,18:7943-7952.
    [119]Yuzhi Duan, Elin M, Pearce, et al. Surface enrichment in polymer blends involvinghydrogen bonding[J]. Macromolecules,2001,34:6761~6767.
    [120]安秋凤,李临生,陈孔常.官能基聚硅氧烷的膜形貌形态与定向排列方式[J].纺织学报,2003,24(3):40-42.
    [121]J Peltonen, M Jarn, S Areva, et al. Topographical parameters for specifying athree-dimensional surface[J]. Langmuir,2004,20(22):9428-9431.
    [122]Lifen Hao, Qiufeng An, Wei Xu, et al. Synthesis, film morphology and hydrophobicityof novel fluorinated polyacrylate emulsion and solution on silicon wafer[J]. ColloidSurface A,2012,396:83-89.
    [123]X J Cui, S L Zhong, J Yan, et al. Synthesis and characterization of core-shell SiO2-fluorinated polyacrylate nanocomposite latex particles containing fluorine in the shell[J].Colloid Surface A,2010,360:41-46.
    [124]邱俊英,程艳玲,郭小丽,等.有机氟硅改性丙烯酸酯共聚物乳液的研究[J].涂料工业,2008,38(8):37-39.
    [125]魏海洋,贺文潇,粟小理,等.热处理对超疏水性含氟丙烯酸酯共聚物膜表面性能的影响[J].高等学校化学学报,2009,30(4):821-824.
    [126]付永山.氟代聚丙烯酸酯拒水、拒油整理剂的研究[D].陕西科技大学硕士学位论文,2008.
    [127]窦蓓蕾,安秋凤,马军建,等.聚氨酯改性氟代聚丙烯酸酯易去污整理剂的合成及应用[J].应用化工,2010,39(2):189-192.
    [128]安秋凤,袁俊敏,王前进,等.氟代聚丙烯酸酯的合成与膜形貌及疏水性能[J].高分子材料科学与工程,2011,27(2):16-18.
    [129]Lifen Hao, Qiufeng An, Wei Xu, et al. Synthesis, film morphology and hydrophobicityof novel fluorinated polyacrylate emulsion and solution on silicon wafer[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2012,396:83-89.
    [130]Wei Xu, Qiufeng An, Lifen Hao, et al. Synthesis and characterization ofself-crosslinking fluorinated polyacrylate soap-free latices with core-shell structure[J].Applied Surface Science,2013,268(1):373-380.
    [131]Wei Xu, Qiufeng An, Lifen Hao, et al. Synthesis and characterization of cationic fluo-rinated polyacrylate soap-free latexes with core-shell structure[J]. Journal of PolymerResearch, DOI:10.1007/s10965-012-0069-1.
    [132]W H Ming, L V Ravenstein, R V D Grampel, et al. Low surface energy polymeric filmsfrom partially fluorinated photocurable solventless liquid oligoesters[J]. PolymerBulletin,2001,47(3-4):321-328.
    [133]L V Ravenstein, W H Ming, R V D Grampel, et al. Low surface energy polymeric filmsfrom novel fluorinated blocked isocyanates[J]. Macromolecules,2004,37(2):408-413.
    [134]J R Lee, F L Jin, S J Park, et al. Study of new fluorine-containing epoxy resin for lowdielectric constant[J]. Surface and Coatings Technology,2004,180:650-654.
    [135]P Z Li, Y D Shen, X W Yang, et al. Preparation and properties of waterborne cationicfluorinated polyurethane[J]. Journal of Polymer Research,2012,19:9786-9795.
    [136]T Liu, X M Pan, Y P Wu, et al. Synthesis and characterization of UV-curable waterbornepolyurethane acrylate possessing perfluorooctanoate side-chains[J]. Journal of PolymerResearch,2012,19:9741-9748.
    [137]Y Sun, W Q Liu. Synthesis and properties of cross-linkable block copolymer end-capped with2,2,3,4,4,4-hexafluorobutyl methacrylate[J].Journal of Polymer Research,2012,19:9768-9778.
    [138]X J Cui, Y Gao, S L Zhong, et al. Synthesis and surface properties of semi-interpene-trating fluorine-containing polyacrylate and epoxy resin networks[J]. Journal of PolymerResearch,2012,19:9832-9838.
    [139]M Yu, B W Zhang, B Deng, et al. Preirradiation-induced emulsion graft polymerizationof glycidyl methacrylate onto poly(vinylidene fluoride) powder[J]. Journal of AppliedPolymer Science,2010,117:3575-3581.
    [140]T Nishino, Y Urushihara, M Meguro, et al. Surface properties and structures of diblockcopolymer and homopolymer with perfluoroalkyl side chains[J]. Journal of Colloids andInterfacial Science,2005,283:533-536.
    [141]L Yao, T T Yang, S Y Cheng. Synthesis and characterization of poly(fluorinated acrylate)/silica hybrid nanocomposites[J]. Journal of Applied Polymer Science,2010,115:3500-3507.
    [142]B Fischer, T Autenrieth, J Wagner. Highly charged inorganic-organic colloidal core-shellparticles[J]. Langmuir,2010,26:6201-6205.
    [143]W Zheng, L He, J Y Liang, et al. Preparation and properties of core-shell nanosilica/poly (methyl methacrylate-butyl acrylate-2,2,2-trifluoroethyl methacrylate) latex[J].Journal of Applied Polymer Science,2011,120:1152-1161.
    [144]X Y Xiao, R Xu. Preparation and surface properties of core-shell polyacrylate latexcontaining fluorine and silicon in the shell[J]. Journal of Applied Polymer Science,2011,119:1576-1585.
    [145]L J Chen, F Q Wu. Preparation and characterization of novel self cross-linkingfluorinated acrylic latex[J]. Journal of Applied Polymer Science,2012,123:1997-2002.
    [146]P T Xiong, D P Lu, P Z Chen, et al. Preparation and surface properties of latexes withfluorine enriched in the shell by silicon monomer crosslinking[J]. European PolymerJournal,2007,43:2117-2126.
    [147]D P Lu, P T Xiong, P Z Chen, et al. Preparation of acrylic copolymer latex modified byfluorine, silicon, and epoxy resin[J]. Journal of Applied Polymer Science,2009,112:181-187.
    [148]J Ramos, J Forcada. The role of cationic monomers in emulsion polymerization[J].European Polymer Journal,2010,46(5):1106-1110.
    [149]L J Chen, H X Shi, H K Wu, et al. Preparation and characterization of a novelfluorinated acrylate resin[J]. Journal of Fluorine Chemistry,2010,131:731-737.
    [150]Q H Zhang, X L Zhan, F Q Chen, et al. Block copolymers of dodecafluoroheptylmethacrylate and butyl methacrylate by RAFT miniemulsion polymerization[J]. Journalof Polymer Science Part A: Polymer Chemistry,2007,45(9):1585-1594.
    [151]R N Wenzel. Resistance of solid surfaces to wetting by water[J]. Industrial andEngineering Chemistry,1936,28:988-994.
    [152]N A Patankar. Mimicking the lotus effect: Influence of double roughness structures andslender pillars[J]. Langmuir,2004,20:8209-8213.
    [153]X Y Song, J Zhai, Y L Wang, et al. Fabrication of superhydrophobic surfaces byself-Assembly and their water-adhesion properties[J]. The Journal of Physical ChemistryB,2005,109:4048-4052.
    [154]S D Xiong, X L Guo, L Li, et al. Preparation and characterization of fluorinated acrylatecopolymer latexes by miniemulsion polymerization under microwave irradiation[J].Journal of Fluorine Chemistry,2010,131:417-425.
    [155]C Sanchez, B Julian, P Belleville, et al. Applications of hybrid organic-inorganicnanocomposites[J]. Journal of Materials Chemistry,2005,15(35-36):3559-3592.
    [156]Y Y Yu, C Y Chen, W C Chen. Synthesis and characterization of organic-inorganichybrid thin films from poly(acrylic) and monodispersed colloidal silica[J]. Polymer,2003,44:593-601.
    [157]K Schmidtke, G Lieser, M Klapper, et al. Complex inorganic/organic core-shellarchitectures via an inverse emulsion process[J]. Colloid Polym Sci,2010,288:333-339.
    [158]M Ji, H L Liu, X L Yang. Synthesis of monodisperse SiO2/P(DVB-SO3H)/SiO2/P(DVB-SO3H) tetra-layer polyelectrolyte microspheres and the corresponding hollow P(DVB-SO3H) polyelectrolyte microspheres with a shell-in-shell structure[J]. PolymerChemistry,2011,2(1):148-156.
    [159]L Y Li, D B Qin, X L Yang, et al. Synthesis of titania/polymer core-shell hybridmicrospheres[J]. Colloid Polym Sci,2010,288(2):199-206.
    [160]I Sondi, T H Fedynyshyn, R Sinta, et al. Encapsulation of nanosized silica by in situpolymerization of tert-butyl acrylate monomer[J]. Langmuir,2000,16(23):9031-9034.
    [161]J L Luna-Xavier, E Bourgeat-Lami, A Guyot. The role of initiation in the synthesis ofsilica/poly(methyl methacrylate) nanocomposite latex particles through emulsionpolymerization[J]. Colloid and Polymer Science,2001,279(10):947-958.
    [162]F C Zhao, X R Zeng, H Q Li, et al. Preparation and characterization of nano-SiO2/fluo-rinated polyacrylate composite latex via nano-SiO2/acrylate dispersion[J]. Colloids andSurface A: Physicochemical and Engineering Aspects,2012,396:328-335.
    [163]Y F Huang, M J Hu, S P Yi, et al. Preparation and characterization of silica/fluorinatedacrylate copolymers hybrid films and the investigation of their icephobicity[J]. ThinSolid Films,2012,520:5644-5651.
    [164]L Wang, X L Li, M F Huang, et al. Preparation and characterization of silicasol/fluoroacrylate core-shell nanocomposite emulsion[J]. Iranian Polymer Journal,2012,21:343-352.
    [165]H Tai, A Sergienko, M Silverstein. Organic-inorganic networks in foams from highinternal phase emulsion polymerizations[J]. Polymer,2001,42:4473-4482.
    [166]S Kim, S Heo, J Koak, et al. A biocompatibility study of a reinforced acrylic basedhybrid denture composite resin with polyhedraloligosilsesquioxane[J]. Journal of OralRehabilitation,2007,34(5):389-395.
    [167]C Ni, G Ni, S Zhang, et al. The preparation of inorganic/organic hybrid nanomaterialscontaining silsesquioxane and its reinforcement for an epoxy resin network[J]. Colloidand Polymer Science,2010,288:469-477.
    [168]K J Shea, D A Loy. Bridged polysilsesquioxanes. Molecularengineered hybridorganic-inorganic materials[J]. Chemistry of Material,2001,13:3306-3319.
    [169]H W J Oviatt, K J Shea, S Kalluri, et al. Applications of organic bridged polysilses-quioxane xerogels to nonlinear optical materials by the sol-gel method[J]. Chemistry ofMaterial,1995,7:493-498.
    [170]J D Lichtenhan, Y A Otonari, M J Carr. Linear hybrid polymer building blocks:methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers andpolymers[J]. Macromolecules,1995,28:8435-8437.
    [171]G Hasegawa, K Kanamori, K Nakanishi, et al. Fabrication of macroporous siliconcarbide ceramics by intramolecular carbothermal reduction of phenyl-bridgedpolysilsesquioxane[J]. Journal of Materials Chemistry,2009,19:7716-7720.
    [172]X Wang, L Wu, J Li. Study on the flame retarded poly (methyl methacrylate) bytriphenylphosphate and nano-poly(phenylsilsesquioxane) spheres[J]. Advances inPolymer Technology,2011,30:33-40.
    [173]W S Ma, D Q Zhang, Y Duan, et al. Highly monodisperse polysilsesquioxane spheres:Synthesis and application in cotton fabrics[J]. Journal of Colloid and Interface Science,2013,392:194-200.
    [174]S Sankaraiah. Preparation and characterization of surface-functionalizedpolysilsesquioxane hard spheres in aqueous medium[J]. Macromolecules,2008,41:6195-6204.