几类混合动态系统的稳定性分析及其控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动态系统是由连续(或离散)时间变量和离散事件(或逻辑)变量相互作用的复杂系统。在描述和研究许多复杂的物理现象和实际应用的过程中,混合动态系统能有效地提供一个数学框架(模型)。它在混合自动机控制、数据采样控制、飞机控制、自动列车控制以及网络控制等实际问题中都有着广泛的应用。因此,对于混合动态系统的研究具有重要的理论意义和实用价值。
     本文主要研究了几类混合动态系统的稳定性分析以及相关的控制器设计问题。主要工作概括如下:
     1.研究一类混合动态系统的Lyapunov稳定性问题。通过结合多Lyapunov函数和向量Lyapunov函数,提出一种新的分析工具——多向量Lyapunov函数。利用该工具,弱化对系统能量函数的假设,给出系统渐近稳定的充分条件。用实例验证该方法的有效性。
     2.研究一类混合动态系统的实用稳定化问题。所研究的系统具有时变子系统和时变跳转函数。首先,通过状态跳转函数,确定系统一条严格递增的切换时间序列。然后在该序列中的每一段时间区间内,明确地构造出相应的线性状态反馈控制律,由此实现闭环系统的实用稳定。
     3.研究一类混合动态系统的有限时间稳定性及其稳定化问题。首先,通过放松对Lyapunov函数的限制,给出一个新的非线性系统有限时间稳定的充分必要条件。然后,给出混合动态系统有限时间稳定的概念,同时利用前述条件以及前人的结果(Bhat & Bernstein(2000), Moulay & Perruquetti(2003))进一步研究混合动态系统的有限时间稳定性,给出若干个充分条件。最后,根据系统连续和重置部分的状态划分,构造出一个混合反馈控制器使闭环系统有限时间稳定。
     4.研究基于有限状态自动机的混合动态系统稳定性及其稳定化问题。首先,通过系统两部分的有机结合,对整个混合动态系统进行分析,提出稳定性概念,给出新的判别定理。然后,基于混合观测器进一步研究混合动态系统的混合反馈控制问题。通过设计混合反馈控制律使闭环系统达到渐近稳定。最后,将前述结果推广到不确定混合动态系统,其中不确定因素包括:自动机跳转的不确定性,连续子系统参数的不确定性以及控制器参数不确定性。基于最优路径的思想,通过求解线性矩阵不等式LMI,给出一种非脆弱的控制方法使闭环系统达到渐近稳定。
     5.研究基于微分Petri网的混合动态系统稳定性问题。首先,针对混合动态系统的特点,在其微分Petri网(DPN)模型的基础上,给出它的稳定性概念和稳定性引理。然后通过引入两类辅助函数G和,利用关联矩阵的信息,构造出混合Lyapunov函数得到DPN的稳定性定理。另一方面,通过放松触发条件依赖弧权的限制以及扩展弧权的定义,提出了一种新的Petri网扩展形式——扩展微分Petri网。该Petri网结合了广义微分Petri网和混合自动机的优点。利用这种新的扩展形式对混合动态系统进行建模,通过结合系统两部分(离散和连续)的稳定性,给出系统渐近稳定的充分条件。此外,利用关联函数矩阵的信息,构造出一个新的混合Lyapunov函数,得到线性混合动态系统的稳定性结果。H
Hybrid dynamical systems are the complicated systems that consist of continuous (or discrete) time dynamics, discrete event (or logical) dynamics, and the interaction between them. Hybrid dynamical systems can provide an effective framework for mathematical modeling and analysis of many complex physical phenomena and practical applications. They have a variety of applications such as hybrid automata, sampled-data control systems, aircraft control system, automotive control systems and network control systems etc. Thus, the study of hybrid dynamical systems has important significance both in theory and applications.
     In this dissertation, stability analysis and control problem of several classes hybrid dynamical systems are studied. The main contributions and original ideas included in the dissertation are summarized as follows.
     1.The stability of a class of hybrid dynamical systems is studied. By combining the advantages of multiple Lyapunov functions and vector Lyapunov function, multiple vector Lyapunov functions (MVLF) is proposed. By using the MVLF, we weaken the hypothesis on the Lyapunov function of systems, and give a sufficient condition of asymptotic stability for the systems. A simulation is given to illustrate the effectiveness of the proposed method.
     2.The practical stabilization of a class of hybrid dynamical systems is studied. These hybrid dynamical systems have time-varying subsystems and time-varying state jump. Firstly, by using the state jump function, we determine a strict increased switch- ing sequence for the system. Then, for each time interval of the switching sequence, we explicitly construct a corresponding linear state feedback control laws, which practically stabilize the closed-loop systems.
     3.The finite time stability and stabilization of a class of hybrid dynamical systems are studied. At first, by relaxing the restrictions on Lyapunov function of the system, a new necessary and sufficient condition of finite time stability is given for nonlinear system. Then, we present the concept of finite stability for hybrid dynamical systems. By using the condition mentioned above and the results of previous works (Bhat & Bernstein, 2000; Moulay & Perruquetti, 2003), we further study the finite time stability of hybrid dynamical system, several sufficient conditions are derived. Finally, based on the state partition of continuous and resetting parts of system, a hybrid feedback controller is constructed, which stabilizes the closed-loop systems in finite time.
     4.Based on the finite state machine (FSM), the stability and stabilization of hybrid dynamical systems are studied. Firstly, by concerning the stability of two parts, a concept of asymptotical stability for the whole hybrid dynamical systems is proposed. Moreover, a new stability criterion is given. Then, based on the hybrid observer, we further construct a hybrid feedback controller, which asymptotically stabilize the closed-loop system. Finally, we extend the results obtained above to the uncertain hybrid dynamical systems, where uncertainties appear in the place jump of FSM, the parameter of continuous subsystems and the parameter of controller. Based on optimal road idea, we construct a non-fragile controller by solving an LMI, which asympto- tically stabilize the closed-loop system.
     5. Based on the (extended) differential Petri net (DPN), the stability of hybrid dynamical systems is studied. At first, according to the characteristics of hybrid dynamical systems, we propose its differential Petri net model, and give the concept and lemma of stability for DPN. Then, by using two auxiliary functions G , and the information of index matrix, we construct a new hybrid Lyapunov function and present the stability theorem for DPN. On the other hand, by relaxing the restriction on the enabling condition depends on the weight of arc, and extending the definition of weight for arc, extended differential Petri net (EDPN), a new model tool, is proposed. EDPN adopts both the advantages of generalized differential Petri nets and hybrid automata. Using this model, a sufficient condition of asymptotic stability for hybrid dynamical systems is obtained by combining the stability of two parts. In addition, by using the information of index matrix and a new hybrid Lyapunov function, the stability theorem of linear HDS is obtained. H
引文
[1] Cassandras C.G., Lafortune S. Introduction to Discrete Event Systems [M]. Boston, America: Kluwer Academic Publishers, 1999.
    [2] Ho Y. C. Dynamics of Discrete Event Systems [J]. Proceedings of IEEE, 1989, 77(l):3-6.
    [3]郑大钟,赵千川.离散事件动态系统[M].北京:清华大学出版社, 2001.
    [4] Wonham W.M. Notes on Control of Discrete-Event Systems [M]. Toronto, Canada: Department of Electrical and Computer Engineering, University of Toronto, 2002.
    [5] Witsenhausen H. A class of hybrid-state continuous-time dynamic systems [J]. IEEE Transac- tions on Automatic Control, 1966, 11(2):161-167.
    [6] Cellier F. E. Combined Continuous/discrete system simulation by use of digital computer: Technique and Tools [M]. Zurich Switzerland: Swiss Federal of Technology, 1979.
    [7] Levis A. Challenges to control: A collective view [J]. IEEE Transactions on Automatic Control, 1987,32(4):275- 285.
    [8] Bail J. L., Alla H., David R. Hybrid Petri Nets [C]. Proceedings of 1st European Control Conference, France, 1991:1472-1477.
    [9] Alur R. et al. Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems [C]. In workshop on Theory of Hybrid Systems. Springer-Verlag. Lecture Notes in Computer Science (736),1993:209-229.
    [10] Titus M., Egardt B. Controllability and Control-Law Synthesis of Linear Hybrid Systems [C]. Proc. of the 11 th Int. conf. on DES,France, 1994:377-383. [1l] Branicky M. S., Borkar V. S., Mitter S. K. A Unified Framework for Hybrid Control [C]. Proc. of the 11th Int. conf. on DES, France, 1994:352-358.
    [12] Narain S. Reasoning About Hybrid Systems with Symbolic Simulation [C]. Proc. of the 11th Int. conf, on DES, France, 1994:359-368.
    [13] AIur R., Courcouberis C., Henzinger T. A. The Algorithmic Analysis of Hybrid Systems [C]. Proc. of the 11th Int. conf, on DES. France 1994:489-494.
    [14] Raisch J. Simple Hybrid Control Systems-Continuous FDLTI Plants with Quantized Control Inputs and Symbolic Measurements [C]. Proc. of the 11th Int. conf. on DES, France,1994: 369-376.
    [15] Grossman R.L., Nerode A., Ravn A.P. Hybrid Systems. Lecture Notes in Computer Science [M], Vol.736, Springer-Verlag,1993.
    [16] Antsaklis P. et al. Hybrid Systems II. Lecture Notes in Computer Science [M], Vol.1999, Springer-Verlag,1995.
    [17] Alur R., Henzinger T. A., Sontag E.D. Hybrid Systems III: Verification and Control. Lecture Notes in Computer Science [M], Vol.1066, Springer-Verlag,1996.
    [18] Antsaklis P. et al. Hybrid Systems IV. Lecture Notes in Computer Science [M], Vol.1273, Springer-Verlag,1997.
    [19] Antsaklis P, Kohn W., Lemmon M. Hybrid Systems V. Lecture Notes in Computer Science [M], Vol.1567,Springer-Verlag,1999.
    [20] Automatica, 1997, 35(3) (special issue on Hybrid Systems).
    [21] IEEE Transactions on Automatic Control, 1998, 43(4) (special issue on Hybrid Systems).
    [22] Journal of Discrete Event Dynamic Systems, 1998, 8(2) (Special issue on Hybrid Systems).
    [23] Systems & Control Letters, 1999, 38(3) (Special issue on hybrid systems).
    [24] International Journal of Control, 2002, 75 (16/17) (Special issue on Switched, piecewise and polytopic linear systems).
    [25] Manfred M., Lothar T., Francesca R. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M],. Vol.3414, Springer-Verlag, 2005.
    [26] Alur R., George J. P. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol.2993, Springer-Verlag, 2004.
    [27] Maler O., Pnueli A. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol. 2623, Springer-Verlag, 2003.
    [28] Tomlin C., Greenstreet M. R. Proceedings of Hybrid Systems: Computation and Control, Lec- ture Notes in Computer Science [M],Vol.2289, Springer-Verlag, 2002.
    [29] Domenica M. et al. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol.2034,Springer- Verlag,2001.
    [30] Nancy A. L., Bruce H. K. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol.1790,Springer-Verlag, 2000.
    [31] Vaandrager F. et al. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol.1569, Springer-Verlag, 1999.
    [32] Thomas A. H., Shankar S. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol.1386, Springer-Verlag, 1998.
    [33] http://ww.jeeecss.org/TAB/Technical/hybrid/
    [34] http://control.ee.ethz.ch/hybrid/
    [35] http://www.dii.unisi.it/cohes/
    [36] http://www.seas.upenn.edu/~hybrid/
    [37] http://www.nd.edu/~isis/
    [38] http://chess.eecs.berkelev.edu/
    [39] http://www.s2.chalmers.se/research/automation/
    [40] http://sun-valley.stanford.edu/hybrid/
    [41] http://www ece.ucsb.edu/~hespanha/ece229/
    [42] http://www.stanford.edu/class/aa278a/
    [43] http://www.nd.edu/-ptabuada/EE598J/
    [44] http://www.dcsc.tudelft.nl/~sc4160/
    [45] Antsakis P. J. Guest editorial hybrid control systems: an introductory discussion to special issue [J]. IEEE Trans on Automatic Control, 1998, 43(4):457-460.
    [46] Hopcroft J.E., Ullman J.D. Introduction to Automata Theory, Language and Computation [M]. Reading, MA: Addison-Wesley, 1979.
    [47] Manna Z., Pnueli A. Verifying hybrid systems [C], Lecture Notes in Computer Science, Vol.736, Springer-Verlag, 1993:4-35.
    [48] Lennartson B. et al. Hybrid systems in process control [J]. Control Systems Magazine, 1996, 16(5):45-56.
    [49] Morse A.S., Pantelides C.C. Introduction to the Special Issue on Hybrid Systems [J]. Auto- matica, 1999, 35(3):347-348.
    [50] Peleties P., Decarlo R. Modeling of interacting continuous time and discrete event systems: An example [C]. Proceedings of the 26th Annual Allerton Conference on Communication. Control, and Computing,1988:1150-1159.
    [51]叶阳东.智能混杂系统建模、分析理论及应用的研究[博士学位论文].北京:铁道科学研究院, 2002.
    [52]高军伟.切换系统建模、控制理论与应用研究[博士学位论文].北京:铁道科学研究院, 2003.
    [53]黄杰理.混杂动态系统建模与控制理论研究[博士学位论文].中国科学院自动化所, 1994.6.
    [54]吴峰.混杂系统控制理论与方法研究及其在间歇过程控制中的应用[博士学位论文].中国科学院自动化所,1995.6.
    [55]郑应平.离散事件系统理论研究和应用进展(1) [J].控制与决策, 1996, 11(2):233-241.
    [56]郑应平.离散事件系统理论研究和应用进展(2) [J].控制与决策, 1996, 11(3):329-333.
    [57] Stiver J. A., Antsaklis P. J. Modeling and analysis of hybrid control systems [C]. Proceedings of the 31st IEEE Conference on Decision and Control, 1992:3748-3751.
    [58] Lemmon M.D., Antsaklis P.J. Event identification in hybrid control systems [C]. Proceedings of the 32nd IEEE Conference on Decision and Control, SanAntonlo,Texas,1993, 3:2323- 2328.
    [59] Antsaklis P., Stiver J.A., Lemmon M. Hybrid System Modeling and autonomous Control Systems [J]. Lecture Notes in Computer Science Vol.736, Springer-Verlag, 1993:366-392.
    [60] Koutsoukos X.D., Antsaklis P.J., Stiver J.A. Supervisory control of hybrid systems [J]. Proc- eedings of the IEEE, 2000, 88(7):1026-1049.
    [61] Lennartson B., Egardt B., Tittus M. Hybrid systems in process control [C]. Proceedings of the 33rd IEEE Conference on Decision and Control,1994, 4:3587-3592.
    [62] Alur R., Coucoubetis C., Halbwachs N. The algorithmic analysis of hybrid systems [J]. Theo- retical Computer Science, 1995, 138:3-34. [631 Alur R., Dill D. A theory of Timed Automata [J]. Theoretic Computer Science, 1994, 126(1): 183-235.
    [64] Henzinge T.A. The theory of hybrid automata [C]. Proceedings of the 11th Annual Symposium on Logic in Computer Science, IEEE Computer Society Press, Silverspring, MD, 1996:278- 292.
    [65] David R., Alla H. Petri nets for modeling of dynamic systems: a survey [J]. Automatica, 1994, 30(2):175-201.
    [66] Aua H, Bail L, Bel G. The production systems is described by a discrete-continuous approach: Hybrid Petri net [C]. Symposium ADP2W92. Paris, 1992:876-881.
    [67] David R., Alla H. On hybrid Petri nets [J]. Discrete event dynamic systems: Theory and Applications, 2001, 11:9-40.
    [68] David R. Modeling of hybrid systems using continuous and hybrid Petri nets [C]. Proceedings of the Seventh International Workshop on Petri Nets and Performance Models, 1997: 47-58.
    [69] Xu X.P. Analysis and design of switched systems [Doctoral Dissertation]. Notre Dame, Indiana, U.S.A.University of Notre Dame,2001.
    [70]谢广明.线性切换系统的分析与控制[博士学位论文].北京:清华大学, 2001.
    [71] Remporad A., Morari M. Control of Systems Integrating Logic, Dynamics, and Constraints [J]. Automatica, 1999,35(3):407-427.
    [72] Branicky M.S., Borkar V.S., Mitter S.K. A unified framework for hybrid control: model and optimal control theory [J]. IEEE Transactions on Automatic Control, 1998,43(l):31-45.
    [73] Heemels W., Schumacher J. M., Weiland S. Linear complementarity systems [J]. SLAM J. Applied Mathematics, 2000, 60(4): 1234-1269.
    [74] Heemels W. Linear complementarity systems: a study is hybrid dynamics [Ph.D. thesis]. Eind- hoven Univ. of Technology, 1999.
    [75] Van der S.A., Schumacher J.M. Complementarity modeling of hybrid systems [J]. IEEE Tran- sactions on Automatic Control, Special Issue on Hybrid Systems, 1998:483-490.
    [76] Bokhoven W. Piecewise Linear Modeling and Analysis [M]. Kluwer Techische boeken, Dev- enter, the Netherlands, 1981.
    [77] Sontag E. Nonlinear regulation:The piecewne linear approach [J]. IEEE Transactions on Auto- matic Control, 1981, 26:346-358.
    [78] Tavernini L. Differential automata and their discrete simulators [J]. Nonlinear Analysis, Theory, Methods and Applications, 1987, 11(6):665-683.
    [79] Nerode A., Kohn W. Models for Hybrid Systems: automata, topologies, controllability, obser- vability [J]. Hybrid systems-Computation and Control, Lecture Notes in Computer Science, 1993, 736:317-356.
    [80] Kohn W., Jeffrey B. R. Implementing Sensor Fusion Using a Cost-Based Approach [C]. Proc- eedings of the American Control Conference, Albuquerque, New Mexico, 1997:2244-2248.
    [81] Brockett R.W. Hybrid Models for Motion control systems [C]. In Trentelman and Willems, Eds, Essays on Control: Perspectives in the Theory and its Application. Birkhauser, Boston, MA: Birkhauser,1993:29-54.
    [82] Van der S.A. Schumacher H. An Introduction to Hybrid Dynamical Systems [M]. Berlin:Spr- inger-Verlag, 2000.
    [83] Decarlo R.A., Branicky M.S., S Pettersson. Perspectives and results on the stability and stabili- zability of hybrid systems [J]. Proceedings of the IEEE, 2000, 88(7):1069-1082.
    [84] Davrazos G. N., Koussoulas N. T. A Review of Stability Results for Switched and Hybrid Systems [C]. The 9th Mediterranean Conference on Control and Automation, June 27-29, Dubrovnik, Croatia, 2001:3-19.
    [85] Shorten R.N., Narendra K.S. A sufficient condition for the existence of s common Lyapunov function for two second order linear systems [C]. Proceedings of the 36th IEEE Conference on Decision and Control, 1997, 4:3521-3522.
    [86] Shorten R.N., Narendra K.S. Necessary and sufficient conditions for the existence of common quadratic Lyapunov function for two stable second order linear time-invariant systems [C]. Proceedings of the 1999 American Control Conference, 1999, 2:1410-1414.
    [87] Shorten R.N., Narendra K.S. Necessary and sufficient conditions for the existence of common quadratic Lyapunov function for M stable second order linear time-invariant systems [C]. Proceedings of the 2000 American Control Conference, 2000, 1:359-363.
    [88] Shorten R.N., Narendra K.S. O. Mason. A result on common quadratic Lyapunov functions [C]. Proceedings of the 41st IEEE Conference on Decision and Control, 2002, 3:2780-2785.
    [89] Shorten R.N., Narendra K.S. O. Mason. A result on common quadratic Lyapunov functions [J]. IEEE Transactions on Automatic Control, 2003, 48(1):110-113.
    [90] Shorten R.N., Narendra K.S. On the stability and existence of common Lyapunov functions for stable linear switching systems [C]. Proceedings of the 37th IEEE Conference on Decision and Control, 1998, 4:3723-3724.
    [91] Shorten R, Cairbre F.O. On the stability of pairwise triangularisable and related switching systems [C]. Proceedings of the 2001 American Control Conference, 2001, 3:1882-1883.
    [92] Wulf K., Shorten R., Curran P. On the relationship between matrix pencil eigenvalue criteria and the choice of Lyapunov function for the analysis of second order switching systems [C]. Proceedings of the 2002 American Control Conference, 2002, 2:1248-1253.
    [93] Mason O., Shorten R. A conjecture on the existence of common quadratic Lyapunov functions for positive linear systems [C]. Proceedings of the 2003 American Control Conference, 2003, 5: 4469-4470.
    [94] Mason O., Shorten R. A result on the existence of common quadratic Lyapunov functions for pairs of stable discrete-time LTI systems [C]. Proceedings of the 2003 American Control Conference, 2003, 5:4471-4475.
    [95] Shorten R.N., Narendra K.S. Necessary and sufficient conditions for common quadratic Lya- punov functions for pair of stable LTI systems whose system matrices are in companion form [C]. Proceedings of the 2003 American Control Conference, 2003, 6:5203-5208.
    [96] Shorten R.N., Narendra K.S. On common quadratic Lyapunov functions for pairs of stable LTI systems whose system matrices are in companion form [J]. IEEE Transactions on Automatic Control, 2003, 48(4):618-621.
    [97] Liberzon D., Hespanha J.P., Morse A.S. Stabillity of switched systems: Lie-algebraic condition [J]. Systems & Control Letters, 1999, 37:117-122.
    [98] Agrachev A.A, Liberzon. D. Lie-algebraic conditions for exponential stability of switched systems [C]. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona USA, 1999, 3:2679 -2684.
    [99] Liberzon D., Tempo R. Gradient algorithms for finding common Lyapunov functions [C]. Pro- ceedings of 42nd IEEE Conference on Decision and Control, 2003, 5:4782- 4787.
    [100] Liberzon D., Tempo R. Common Lyapunov functions and gradient algorithms [J]. IEEE Transactions on Automatic Control, 2004, 49(6):990-994.
    [101] Beldiman O., Bushnell L. Stability, linearization and control of switched systems [C]. Proc- eedings of American Control Conference, San Diego, CA, 1999:2950-2955.
    [102] Schinkel M., Wang Y., Hunt K. Stable and robust state feedback design for hybrid systems[C]. Proceedings of the 2000 American Control Conference, 2000, 1:215-219.
    [103] Skafidas E., Evans R. J.. Stability of logic-differential systems [C]. Proceedings of the 37th IEEE Conference on Decision and Control, 1998, 3:3711-3716.
    [104] Skafidas E., Evans R. J., Savkin A.V. Stability results for switched controller system [J]. Automatica, 1999, 35:553-564.
    [105] Dogruel M, Ozguner U. Stability of hybrid systems [C]. Proceedings of the 1994 IEEE International Symposium on Intelligent Control, 1994:129-134.
    [106] Dogruel M., Ozguner U. Stability of a set of matrices: an application to hybrid systems [C]. Proceedings of the 1995 IEEE International Symposium on Intelligent Control, 1995:59-64.
    [107] Narendra K.S., Balakrishnan J. A common Lyapunov function for stable LTI systems with commuting a matrices [J]. IEEE Trans. on Automatic Control, 1994, 39(12):2469-2471.
    [108] Hu B, Zhai G.S., Michel A.N. Common quadratic Lyapunov-like function with associated switching regions for two unstable second-order LTI systems [C]. Proceedings of the 39th IEEE Conference on Decision and Control, 2000, 2:1391-1396.
    [109] Peleties P., DeCarlo R.A. Asymptotic stability of m-switched systems using Lyapunov-like functions [C]. Proceedings of the American Conference on Control, 1991:1679-1684.
    [110] Wicks M.A., Peleties P., DeCarlo K.A. Construction of piecewise Lyapunov functions for stabilizing switched systems [C]. Proceedings of the 33rd IEEE Conference on Decision and Control, 1994, 4:3492-3497.
    [111] Branicky M.S. Stability of switched and hybrid systems [C]. Proceedings of the 33rd IEEEConference on Decision and Control,1994, 4:3498-3503.
    [112] Branicky M.S. Stability of hybrid systems: state of the art [C]. Proceedings of the 36th IEEE Conference on Decision and Control,1997, 1:120-125.
    [113] Branicky M.S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J]. IEEE Transactions on Automatic Control, 1998, 43(4):475-482.
    [114] Hou L, Michel A. N., Ye H. Stability analysis of switched systems [C]. Proceedings of the 35th IEEE Decision and Control,1996, 2:1208-1212.
    [115] Ye H., Michel A. N., Hou L. Stability theory for hybrid dynamical systems [C]. Proceedings of the 34th IEEE Conference on Decision and Control,1995, 3:2679-2684.
    [116] Ye H., Michel A. N., Hou L. Stability theory for hybrid dynamical systems [J]. IEEE Transactions on Automatic Control, 1998, 43(4):461-474.
    [117] Li Z.G., Wen C.Y., Soh Y.C. Stability of perturbed switched nonlinear systems [C]. Pro- ceedings of the 1999 American Control Conference,1999, 4:2969-2973.
    [118] Li Z.G., Wen C.Y., Soh Y.C. A unified approach for stability analysis of impulsive hybrid systems [C]. Proceedings of the 38th IEEE Conference on Decision and Control, 1999, 5: 4398-4403.
    [119] Li Z. G., Hu B, Wen C. Y. A state transformation for switched linear systems [C]. Proceedings of the 2001 American Control Conference, 2001, 1:331-336.
    [120] Li Z.G., Soh Y.C., Wen C.Y. Robust stability of class of hybrid nonlinear systems [J]. IEEE Transactions on Automatic Control, 2001, 46(6):897-903.
    [121] Li Z.G., Wen C.Y., Soh Y.C. Generalized matrix measure of switched nonlinear systems [J]. IEEE Transactions on Automatic Control, 2002, 47(1):178-183.
    [122] Li Z. G., Xie W. X., Wen C.Y. Globally exponential stabilization of switched nonlinear systems with arbitrary switchings [C]. Proceedings of the 39th IEEE Conference on Decision and Control,2000, 4:3610-3615.
    [123] Li Z.G., Wen C.Y., Soh Y.C. Robust stability of switched systems with arbitrarily fast switchings by generalized matrix measure [C]. Proceedings of the 2000 American Control Conference,2000, 4:2679-2682.
    [124] Li Z.G., Soh Y.C., Wen C.Y. Robust stability of quasi-periodic hybrid dynamic uncertain systems [J]. IEEE Transactions on Automatic Control, 2001, 46(1):107-111.
    [125] Li Z.G., Sob C.B., Wen C.Y. Stability of Uncertain Quasi-Periodic Hybrid Dynamic Systems [J]. International Journal of Control, 2000, 73(1):63-73.
    [126] Hespanha J. P., Morse A.S. Stability of switched systems with average dwell-time [C]. Proceedings of the 38th IEEE Conference on Decision and Control,1999, 3:2655-2660.
    [127] Hespanha J. P., Morse A.S. Stabilization of nonholonomic integrators via logic-based swi- tching [J]. Automatica, 1999, 35(3):385-393.
    [128] Kantner M. Robust stability of piecewise linear discrete time systems [C]. Proceedings of the 1997 American Control Conference,1997, 2:1241-1245.
    [129] De M.C., Oliveira J., Bemussou J.C. A new discrete time robust stability condition [J]. System & Control Letter, 1999, 36:135-141.
    [130] Daafouz J., Riedinger P., lung C. Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach [J]. IEEE Transactions on Automatic Control, 2002, 47(11):1883-1887.
    [131] Zhai G.S. Quadratic stabilizability of discrete-time switched systems via state and outputfeedback [C]. Proceedings of the 40th IEEE Conference on Decision and Control, 2001, 3: 2165-2166.
    [132] Zhai G.S., Chen X.K., Ikeda M. Stability and L2 gain analysis for a class of switched symmetric systems [C]. Proceedings of the 41st IEEE Conference on Decision and Control, 2002, 4:4395-4400.
    [133] Zhai G.S., Sun Y., Chen X.K. Stability and L2 gain analysis for switched symmetric systems with time delay [C]. Proceedings of the 2003 American Control Conference, 2003, 3:2682- 2687.
    [134] Zhai G.S., Lin H., Xu X.P. Stability analysis and design of switched normal systems [C]. Proc- eedings of the 43rd IEEE Conference on Decision and Control, 2004, 3:3253-3258.
    [135] Zhai G.S., Lin H., Xu X.P. Analysis of switched normal discrete-time systems [C]. Proceedings of the 2005 American Control Conference, 2005:3800-3805.
    [136] Boyd S., Ghaoui L.E., Feron E. Linear Matrix Inequalities in System and Control Theory [M]. Philadelphia, Pennsylvania: SIAM, 1994.
    [137] Pettersson S., Lennartson B. Stability and robustness for hybrid systems [C]. Proceedings of the 35th IEEE Decision and Control, 1996, 2:1202-1207.
    [138] Pettersson S., Lennartson B. LMI for Stability and Robustness of Hybrid Systems [C]. Proc- eedings of the American Control Conference, Albuquerque, New Mexico, 1997: 1714-1718.
    [139] Pettersson S., Lennartson B. Exponential stability analysis of nonlinear systems using LMIs [C]. Proceedings of the 36th IEEE Conference on Decision and Control, 1997, 1:199-204.
    [140] Lennartson B., Pettersson S. Stability Analysis of Hybrid Systems - A Gear-box Application [J]. Nonlinear and Hybrid Systems in Automotive Control, Springer-Verlag, 2003:373-389.
    [141] Pettersson S. Synthesis of switched linear systems [C]. Proceedings of 42nd IEEE Confer- ence on Decision and Control, 2003, 5:5283-5288.
    [142] Pettersson S. Controller Design of Switched Linear Systems [C]. Proceedings of the 2004 American Control Conference, 2004:3869-3874.
    [143] Pettersson S., Lennartson B. Hybrid System Stability and Robustness Verification using Linear Matrix Inequalities[J]. International Journal of Control, 2002, 75(16):1335-1355.
    [144] Pettersson S. Analysis and Design of Hybrid Systems [Doctoral Dissertation]. Goteborg, Sweden: Chalmers University of Technology 1999.
    [145]张霓.参数不确定线性混杂系统的鲁棒控制及应用[博士学位论文].浙江大学, 2002.
    [146]张霓,吴铁军.参数摄动混杂离散系统的鲁棒稳定性[J].控制理论与应用.2002,19(5): 731-736.
    [147] Johansson M., Rantzer A. On the computation of piecewue quadratic Lyapunov functions [C]. Proceedings of 36th IEEE Conference on Decision and Control, 1997:3515-3520.
    [148] Johansson M., Rantzer A. Computation of piecewise quadratic Lyapunov functions for hybrid systems [J]. IEEE Transactions on Automatic Control, 1998,43(4):555-559.
    [149] Johansson M. Piecewise Linear Control Systems - A Computational Approach [J]. Lecture Notes in Control and Information Sciences no.284, Springer-Verlag, Heidelberg, Germany, 2002.
    [150] Feng G. Stability analysis of piecewise discrete-time linear systems [J]. IEEE Transactions on Automatic Control, 2002, 47(7):1108-1112.
    [151] Feng G. Controller design and analysis of uncertain piecewise-linear systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(2):224-232.
    [152] Mignone D., Trecate G.F., Morari M. Stability and stabilization of piecewise affine and hybrid systems: an LMI approach [C]. Proceedings of the 39th IEEE Conference on Decision and Contro1, 2000:504-509.
    [153] Trecate G. F., Cuzzola F.A., Mignone D. Analysis and control with performance of piecewise affine and hybrid systems [C]. Proceedings of the 2001 American Control Conference, 2001, 1:200-205.
    [154] Miller R. K., Michel A.N. Qualitative analysis of large -scale dynamical systems [M]. NewYork, Acad. Press, 1977. k
    [155]黄琳.稳定性理论[M].北京:北京大学出版社, 1992.
    [156] Hassibi A., Boyd S. P., How J. P. A class of Lyapunov funtionals for analyzing hybrid dyna- mical systems [C]. Proceedings of American Control Conference, 1999.
    [157] Hu B., Michel A.N. Towards.stability theory of general hybrid dynamical systems [J]. Automatica, 1999, 35(3):371-384.
    [158] Ye H., Michel A. N., Hou L. Stability theory for hybrid dynamical systems [J]. IEEE Tran- saction on Automatic Control, 1998, 43(4):461-474.
    [159] Branicky M.S., Zhang G. Solving hybrid control problems: level sets and behavioral pro- gramming [C]. Proceedings of the 2000 American Control Conference, 2000, 2:1175- 1180.
    [160] Branicky M.S., Hebbar R., Zhang C. A fast marching algorithm for hybrid systems [C]. Proceedings of the 38th IEEE Conference on Decision and Control, 1999, 5:4897-4902.
    [161] Hector J. Sussmann A. maximum principle for hybrid optimal control problems [C]. Procee- dings of the CDC, 1999:425-430.
    [162] Bett J.C., Lemmon M.D. Bounded amplitude performance of switched LPV systems with applications to hybrid systems [J]. Automatica, 1997, 35(3):491-503.
    [163] Skafidas E., Evans R.J, Mareels L. Optimal Controllers Switching for stochastic systems [C]. Proc of 36th IEEE CDC, 1997:3950-3955.
    [164] Riedinger P., Kratz F., Zanner C. Time optimal control of hybrid systems [C]. Proc of the ACC, 1999:2466-2470.
    [165] Morari M., Bemporad A. Control of Systems Integrating Logic, Dynamics, and Constraints [J]. Automatica, 1999,35(3):407-427.
    [166] Trecate G.F., Mignone D., Castagnoli D. Mixed Logic Dynamical Model of a Hydroelectric Power Plant [C]. The 4th International Conference Automation of Mixed Processes: Hybrid Dynamic Systems, 2000:1-6.
    [167] Papafotiou G., Geyer T., Morari M. Optimal Direct Torque Control of Three-Phase Symmetric Induction Motors [C]. The 43rd IEEE Conference on Decision and Control, 2004:1860-1865.
    [168] Xu X.P., Antsaklis P. J. An approach to optimal control of switched systems with internally forced switchings [C]. Proceedings of the American Control Conference, Albuquerque, New Mexico, 2000:2683-2687.
    [169] Hedlund S., Rantzer A. Optimal control of hybrid systems [C]. Proc. of the 38th IEEE Conf, on Decision & Control, 1999:257-262.
    [170] Rantzer A., Johansson M. Piecewise linear quadratic optimal control [C]. Proceedings of the 1997 American Control Conference,1997, 3:1749-1753.
    [171] Rantzer A., Johansson M. Piecewise linear quadratic optimal control [J]. IEEE Transactions on Automatic Control, 2000, 45 (4):629-637.
    [172] Schutter B. D. Optimal control of a class of linear hybrid systems with saturation [C]. Proc. of the 38th IEEE Conf. on Decision & Control, 1999, 10:3978-3983.
    [173] Cassandras C. G., Pepyne D. L. Modeling analysis and optimal control of a class of hybrid systems [J]. Discrete Event Dynamical Systems: Theory and Applications, 1998:175-180.
    [174] Pepyne D. L., Cassandras C. G. Optimal control of hybrid systems in manufacturing [J]. Proc. of the IEEE, 2000,88(7):1108-1123.
    [175] Wardi Y, Cassandras C.G., Pepyne D.L. Optimal control of a class of hybrid systems [J]. IEEE Transactions on Automatic Control, 2001, 46(3):398-415.
    [176] Giua A., Seatzu C., Van der C.M. Optimal control of switched autonomous linear systems [C]. Proc of the 40th IEEE Conf. on Decision & Control, 2001:2472-2477.
    [177]尹增山,高春华,李平.混杂系统优化控制的动态规划方法研究[J].控制理论与应用, 2002, 19(l):29-33.
    [178]尹增山,李平.切换系统优化控制方法研究[J].浙江大学学报:工学版, 2002,36(2):115- 118.
    [179]翟海峰,苏宏业.一类分段线性混杂系统的最优控制策略研究[J].控制与决策, 2002, 17(6):863-866.
    [180]费树岷,王泽宁,冯纯伯.一类开关系统的开关控制策略优化设计[J].自动化学报, 2001, 27(2):247-251.
    [181]李秀改,高东杰.混杂系统滚动时域状态反馈预侧控制研究与实现[J].自动化学报, 2004, 30(4):567-571.
    [182]李秀改,高东杰.基于混合逻辑动态模型的混杂系统预侧控制[J].控制与决策,2002, 17(3):315-319.
    [183] Daafouz J., Riedinger P., Claude I. Static output feedback control for switched systems [C]. Proceedings of the 40th IEEE Conference on Decision and Control, 2001, 3:2093-2094.
    [184] Daafouz J., Bemussou J. Robust dynamic output feedback control for switched systems [C]. Proceedings of the 41st IEEE Conference on Decision and Contro1,2002:4389-4394.
    [185] Hespanha J.P., Morse A.S. Switching between stabilizing controllers [J]. Automatica, 2002, 38:1905-1917.
    [186] Zefran M, Burdick J.W. Design of switching controllers for systems with changing dynamics [C]. Proceedings of the 37th IEEE Conference on Decision and Control, 1998, 2:2113-2118.
    [187] Zefran M., Burdick J.W. Stabilization of systems with changing dynamics by means of switching [C]. Proceedings of 1998 IEEE International Conference on Robotics and Automation, 1998, 2:1090-1095.
    [188] Fang L., Lin H., Antsaklis P.J. Stabilization and Performance Analysis for .Class of Switched Systems [C]. Proceedings of the 43rd IEEE Conference on Decision and Contro1, 2004:3265- 3270.
    [189] Lin H, Antsaklis P.J. Controller synthesis for .class of uncertain piecewise linear hybrid dynamical systems[C]. Proceedings of the 41st IEEE Conference on Decision and Control, 2002, 3:3188-3193.
    [190] Lin H., Antsaklis P.J. Synthesis of uniformly ultimate boundedness switching laws for discrete-time uncertain switched linear systems [C]. Proceedings of 42nd IEEE Conference on Decision and Control, 2003, 5:4806-4811.
    [191] Xu X.P., Antsaklis P.J. Stabilization of second-order LTI switched systems [C]. Proceedings of the 38th IEEE Conference on Decision and Control, 1999, 2:1339-1344.
    [192] Hu B, Xu X.P., Michel A.N. Robust stabilizing control laws for a class of second- order switched systems [C]. Proceedings of the 1999 American Control Conference, 1999, 4:2960- 2964.
    [193] Pettersson S., Lennartson B. Stabilization of hybrid systems using a min-projection strategy [C]. Proceedings of the 2001 American Control Conference, 2001, 1:223-228.
    [194] Hu B, Zhai G.S., Michel A.N. Hybrid output feedback stabilization of two- dimensional linear control systems [C]. Proceedings of the 2000 American Control Conference, 2000, 3:2184- 2188.
    [195] Zhai G.S., Takai S., Michel A.N. Improving closed-loop stability of second-order LTI systems by hybrid static output feedback [C]. Proceedings of the 41st IEEE Conference on Decision and Control, 2002, 3:2792-2797.
    [196] Zhai G.S., Chen X.K. Stabilizing linear time-invariant systems with finite-state hybrid static output feedback [C]. IEEE 2002 International Symposium on Circuits and Systems, 2002, 1:249-252.
    [197] Feng G. Observer-based output feedback controller design of piecewise discrete-time linear systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Appli- cations, 2003, 50(3):448-451.
    [198] Feng G. Controller design and analysis of uncertain piecewise-linear systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(2): 224-232.
    [199] Li Z.G., Wen C.Y., Soh Y.C. Stabilization of a class of switched systems via designing switching laws [J]. IEEE Transactions on Automatic Control, 2001, 46(4):665-670.
    [200] Li Z.G., Wen C.Y., Soh Y.C. Switched controllers and their applications in bilinear systems [J]. Automatica, 2001, 37(3):477-481.
    [201] Sun Z.D., Ge S.S. Dynamic output feedback stabilization of a class of switched linear systems [J]. Fundamental Theory and Applications, IEEE Transactions on Circuits and Systems I, 2003, 50(8):1111-1115.
    [202] Sun Z.D., Zheng D.Z. On reachability and stabilization of switched linear systems [J]. IEEE Transactions on Automatic Control, 2001, 46(2):291-295.
    [203] Sun Z.D., Zheng D.Z. A robust stabilizing law for switched linear systems [J]. International Journal of control, 2004, 77(4):389-398.
    [204] Sun Z.D., Zheng D.Z. Stabilizability and insensitivity of switched linear systems [J]. IEEE Transactions on Automatic Control, 2004, 49(7):1133-1137.
    [205]谢广明,郑大钟.线性切换系统基于范数的系统镇定条件及算法[J].自动化学报,2001, 27(l): 115-119.
    [206] Xie G.M., Wang L. Reachability realization and stabilizability of switched linear discrete-time systems [J]. Journal of Mathematics Analysis end Applications, 2002, 280:209- 220.
    [207] Xie G.M., Wang L. New results on stabilizability of switched linear systems [C]. Proceedings of 42nd IEEE Conference on Decision and Control, 2003, 6:6265-6270.
    [208] Xie G.M., Wang L., Hao F. Robust stability analysis and control synthesis for discrete-time uncertain switched systems [C]. Proceedings of 42nd IEEE Conference on Decision and Control, 2003, 5:4812-4817.
    [209] Xie G.M., Wang L. Stabilization of a class of hybrid discrete-time systems [C]. Proceedings of 2003 IEEE Conference on Control Application, 2003, 1:1404-1409.
    [210] Xie G.M., Wang L. Stabilization of a class switched linear systems [C]. IEEE International Conference on Systems, Man and Cybemetics, 2003, 2:1898-1903.
    [211] Ji Z.J, Wang L., Xie G.M. Stabilizing discrete-time switched systems via observer-based static output feedback [C]. IEEE International Conference on Systems, Men and Cybernetics,2003, 3:2545-2550.
    [212] Ji Z.J, Wang L., Xie G.M. New results on the quadratic stabilization of switched linear systems [C]. Proceedings of 42nd IEEE Conference on Decision and Control, 2003, 2:1657-1662.
    [213] Ji Z.J, Wang L. Disturbance attenuation of uncertain switched linear systems [C]. 43rd IEEE Conference on Decision and Control, 2004, 4:3708-3713.
    [214] Ji Z.J, Wang L. Quadratic stabilization of uncertain discrete-time switched linear systems [C]. IEEE International Conference on Systems, Man and Cybemetics, 2004, 2:1492- 1497
    [215] Ji Z.J, Wang L., Xie G.M. Linear matrix inequality approach to quadratic stabilization of switched systems [J]. IEE Proc. Control Theory Application. 2004, 151:289-294.
    [216]张霄力,赵军.任意切换下不确定线性切换系统的鲁棒镇定[J].自动化学报, 2002,28(5): 859-861.
    [217]孙洪飞,鲁春铭,赵军.通过控制器切换实现线性系统输出反馈鲁棒镇定[J].控制理论与应用, 2002, 19(3):438-441.
    [218]张霓,吴铁军.具有多个平衡点的不确定混杂系统的鲁棒镇[J].浙江大学学报:工学版2002,36(3).281-285.
    [219]张霓,吴铁军.具多个平衡点的不确定混杂系统输出反馈鲁棒镇定[J].科技通报, 2003,19(1).32-37.
    [220]张霓,吴铁军.一类不确定混杂动态系统的保性能控制及其应用[J].华东理工大学学报:自然科学版,2002,28(4).435-440.
    [221]聂宏,赵军.线性系统的混杂状态反馈H∞鲁棒控制[J].东北大学学报:自然科学版, 2003, 24(2):128-131.
    [222]聂宏,王明顺,赵军.线性不确定时滞系统混杂反馈H∞鲁棒镇定[J].控制与决策, 2004, 19(6):642-646.
    [223]王泽宁,费树崛.一类混杂系统的鲁棒性分析与控制[J].控制理论与应用, 2001,18(3): 375-379.
    [224] Bellman R. Vector Lyapunov functions [J]. SIAM J. Control , 1962, 1:32-34.
    [225] Lakshmikantham V., Matrosov V.M., Sivasundaram S. Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems [M], Dordrecht, The Netherlands: Kluwer, 1991.
    [226] Siljak D.D. Large-Scale Dynamic Systems: Stability and Structure [M], New York: Elsevier, 1978.
    [227] Sergey G.N., Wassim M.H.On the Stability and Control of Nonlinear Dynamical Systems via Vector Lyapunov Functions [J]. IEEE Transactions on Automatic Control, 2006, 51(2):203- 215.
    [228] Lakshmikantham V., Leela S., Martynyuk A. A. Practical Stability of Nonlinear Systems [M], Singapore: World Scientific, 1990.
    [229] LaSalle J. P., Lefschetz S., Stability by Lyapunov’s Direct Method with Applications [M], New York: Academic, 1961.
    [230] Michel A.N. Quantitative analysis of simple and interconnected systems: Stability, bound- edness and trajectory behavior [J]. IEEE Trans. Circuits Syst, CAS-I, 1970, 17(3):292-301.
    [231] Michel A.N. Analysis of discontinuous large-scale systems: Stability, transient behavior andtrajectory bounds [J]. Int. J. Syst. Sci, 1971, (2): 77-95.
    [232] Weiss L., Infante E. F. Finite time stability under perturbing forces and on product spaces [J]. IEEE Transactions on Automatic Control, 1967, 12(1):54-59.
    [233] Xu X.P., Zhai G.S. Practical stability and stabilization of hybrid and switched systems [J]. IEEE Transactions on Automatic Control, 2005, 50(11):1897-1903 .
    [234] Xu X.P., Zhai G.S. On practical stability and stabilization of hybrid and switched systems [C]. Proc.7th Int. Workshop on Hybrid Systems, LNCS, 2004, 2993:615-630.
    [235] Zhai G.S., Michel A.N. On practical stability of switched systems [C]. Proc. 41st IEEE Conf. Decision and Control, Las Vegas, NV, 2002, 3488-3493.
    [236] Zhai G.S., Michel A.N. Generalized practical stability analysis of discontinuous dynamical systems [C]. Proc. 42nd IEEE Conf. Decision and Control, Maui, HI, 2003, 1663-1668 .
    [237] Wang P.G, Liu X. Practical stability of impulsive hybrid differential systems in terms of two measures on time scales [J]. Nonlinear Analysis TMA, 2006, 65(11):2035-2042.
    [238] Dorato P. Short time stability in linear time-varying systems [C]. Proceedings of the IRE International Convention Record Part4 , 1961,83-87.
    [239] Lu Q. Decentralized nonlinear optimal excitation control [J]. IEEE Trans on Power Systems. 1996,11(4):1957-1962.
    [240] Bhat S. P., Bernstein, D. S. Finite-time stability of continuous autonomous systems [J]. SIAM Journal on Control and Optimization, 2000, 38 (3), 751-766.
    [241] Moulay E., Perruquetti W. Finite time stability of nonlinear systems [C]. Proceeding of the 42nd IEEE Conference on Decision and Control, 2003, 3641-3646.
    [242] Hong Y.G., Wang J.K. Nonsmooth finite-time stabilization of a class of nonlinear systems [J]. Science in China, Ser.E, 2005, 35(6):663-672.
    [243] Huang X.Q., Lin W., Yang B. Global finite-time stabilization of a class of uncertain nonlinear systems [J]. Automatica, 2005, 41(5):881-888.
    [244] Yu, X.H., Man Z.H. Multi-input uncertain linear systems with terminal sliding-mode control [J]. Automatica, 1998, 34(3):389-392.
    [245] Yu S.H. et al. Continuous finite-time control for robotic manipulators with terminal sliding mode [J]. Automatica, 2005, 41(11):1957-1964.
    [246] Orlov Y. Finite time stability and robust control synthesis of uncertain switched systems [J]. SIAM Journal on Control and Optimization, 2004, 43(4):1253-1271.
    [247] Sergey G.N., Wassim M.H. Finite-time stabilization of nonlinear impulsive dynamical systems [J]. Nonlinear analysis: Hybrid Systems, 2008, 2(3):832-845.
    [248]卢建宁.基于LMI的若干混杂系统稳定性分析与综合研究[博士学位论文].浙江大学, 2005.
    [249]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [250]冯纯伯.非线性控制系统的分析与设计[M].南京:东南大学出版.1990.
    [251] Bhat S.P., Bernstein D.S. Continuous finite-time stabilization of the translational and rota- tional double integrators [J]. IEEE Transactions on Automatic Control, 1998, 43(5):678-682
    [252] Zinober A. Adaptive relay control of second-order systems [J]. Int. J.Control, 1975, 21:81- 98.
    [253] Zinober A. Self-adaptive control of the time varying nonlinear crane problem with distur- bances and state constraints [J], Control and Computers, 1986, 14:103-109.
    [254] Burton J.A., Zinober A. Continuous self-adaptive control using variable structure design tech- niques [J], Deterministic Control of Uncertain Systems, 1990:309-332.
    [255] Haimo V. Finite time controllers [J]. SIAM J. Contr. Opti., 1986, 24:760-770.
    [256] Man Z.H., Paplinski S.P., Wu H.R. A robust MIMO terminal sliding mode control for rigid robotic manipulators [J], IEEE Transactions on Automatic Contro1, 1994, 39(12): 2464-2468.
    [257] Man Z.H., Yu X.H. Terminal sliding mode control of MIMO linear systems [J]. IEEE Transa- ctions on Circuits and Systems I, 1997, 44(11):1065-1070.
    [258] Yu X..H., Man Z.H. Model reference control systems with terminal sliding modes [J]. Int. J. Control, 1996, 64 (6):1165-1176.
    [259] Bhat S. P., Bernstein D.S. Finite-time stability of homogeneous systems [J]. Proceedings of American Control Conference. Albuguerque, New Mexico, 1997, 2513-2514.
    [260] Hong Y.G. Finite-time stabilization and stabilizability of a class of controllable systems [J]. Systems and Control Letters, 2002, 46(4):231-236.
    [261] Hong Y.G., Huang J., Xu Y. On an output feedback finite-time stabilization problem [J]. IEEE Transactions on Automatic Contro1, 2001, 46(2):305-309.
    [262]李世华,田玉平.非完整移动机器人的有限时间跟踪控制算法研究[J].控制与决策, 2005, 20(7):750-754.
    [263] Kurzweil J. On the inversion of Lyapunov’s second theorem on stability of motion [J]. Amer. Math. Soc. Transl., 1963, 24:19-77.
    [264] Wassim M.H., Chellaboina V., Sergey G.N. Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control [M]. Princeton University Press, Princeton, 2006.
    [265] Balluchi A. et al. Design of Observers for Hybrid Systems [C]. In Hybrid systems: Compu- tation and Control, 5th International workshop, LNCS 2289, Stanford, CA, USA, Springer, March, 2002, 76-89.
    [266] Mo zveren C., Willsky A.S., Antsaklis P.J. Stability and Stabilizability of Discrete Event Dynamic Systems [J]. Journal of Association for Computing Machinery. 1991, 38(3):730-752.
    [267] Mo zveren C., Willsky A.S. Observability of Discrete Event Dynamic Systems [J]. IEEE Transcations on Automatic Control, 1990, 35(7):797-806.
    [268] Ji Z.J, Wang L., Xie G.M. Stabilizing Discrete-Time Switched Systems via Observer-Based Static Output Feedback [C]. IEEE International conference on Systems, Man and Cybernetic, 2003, 3:2545-2550.
    [269] Driss M., Mohammed A.H., Francois P. Robustness and Optimality of Linear Quadratic Controller for Uncertain Systems [J]. Automatica, 1996, 32(7): 1081-1083.
    [270] Xie G.M, Wang L. Stability and Stabilization of Switched Impulsive Systems [C]. Proc of the American Control Conf. Minnesota, USA, 2006, 4406-4411.
    [271] Bemporad A., Bicchi A., Buttazzo G.C.(Eds.): Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M], Vol.4416 Springer-Verlag, 2007,
    [272] Hespanha J.P., Tiwari A.(Eds.): Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science [M],Vol.3927 Springer-Verlag, 2006,
    [273] Lygeros J. et al. On the existence of executions of hybrid automata [C], IEEE Conf. Decision Control, Phoenix, AZ, 1999, 2249-2254.
    [274] Thomas A., Henzinger T. A. The theory of hybrid automata [C]. Proc. 11th Annual IEEE Sym- posium on Logic in Computer Science, LICS’96, 1996, 278-292.
    [275] Alla H., David R. Continuous Petri nets [C]. 8th European Workshop on Application and Theory of Petri Nets, 1987, 275-294.
    [276] LeBail J., Alla H., David R. Hybrid Petri nets [C]. Proc.1st European Control Conference, Grenoble, France, 1991, 1472-1477.
    [277] Rezai M., Ito M.R., Lawrence P.D. Modeling and simulation of hybrid control systems by global Petri nets [C]. IEEE Int. Symposium on Circuits and Systems, 1995, 908-911.
    [278] Dubois E., Alla H., David R. Continuous Petri nets with maximal speeds depending on time [C]. Pro.15th International Conference on Application and Theory of Petri Nets, Zaragoza, Spain, 1994, 32-39.
    [279] Demongodin I., Koussoulas N.T. Differential Petri net: representing continuous systems in a discrete-event world [C]. IEEE Translations on Automatic Control, 1998, 43(3): 573- 579.
    [280] Wu Y.L.et al. Modeling and simulation of hybrid dynamical systems with generalized differ- ential Petri nets [C]. Proc. IEEE International Symposium on Intelligent Control, Vancouver, Canada, 2002, 789-794.
    [281] Davrazos G.N., Koussoulas N.T. A General Methodology for Stability Analysis of Differential Petri Net [C]. Proc of the 10th Mediterranean Conference on Control and Automation-MED, Lisbon, Portugal, 2002, 1085-1091
    [282] Passino K.M., Burgess K.L., Michel A.N. Lagrange Stability and Boundedness of Discrete Event Systems [J]. Journal of Discrete Event Dynamic Systems: Theory and Application, 1995, 5(4):383- 403.
    [283] Liberzon D., Morse A.S. Basic Problems in Stability and Design of Switched Systems [J]. IEEE Control Systems, 1999, 19(5): 59- 70.
    [284]陈国培,李俊民.一类混合时滞系统的观测器设计[J].计算机集成制造系统, 2005, 11(6): 891-894.
    [285] Demongodin I., Koussoulas N.T. Differential Petri nets models for industrial automation and supervisory control [J]. IEEE Trans on Systems, Man, and Cybernetics-Part C: Application and Reviews, 2006, 36(4):543-553.
    [286] Moulay E. et al. Finite-time stability and stabilization of time-delay systems [J]. Systems & Control Letters, 2008, 57(7):561-566.
    [287]刘玉忠,赵军.具有个开关系统的渐近稳定性[J].控制理论与应用, 2001,18(5):745- 746. m
    [288]阿?阿?玛尔得纽克,孙振绮.实用稳定性及应用[M].北京:科学出版社, 2004.