p38MAPK与脊髓星形胶质细胞活化的关系及参与慢性前列腺炎疼痛的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景慢性前列腺炎(chronic prostatitis,CP)是泌尿外科最常见疾病之一,该病病因、病理改变、临床症状复杂多样,其中疼痛是慢性前列腺炎患者最主要的症状。尽管前列腺炎一般不会对生命造成威胁,但可严重影响患者生活质量,尤其是对患者精神健康的影响比严重的糖尿病和慢性心力衰竭更为明显。由于慢性前列腺炎病因复杂,治疗困难,虽已有大量的基础和临床研究,但至今尚无突破性进展。因此,从疼痛机理研究入手,有望开创新的慢性前列腺炎治疗方法。由于前列腺疼痛呈现内脏牵涉痛特点,目前认为前列腺疼痛的持续与泛化与支配前列腺的L5~S2脊髓段的继发性病变有关。
     在慢性前列腺炎L5~S2脊髓段的继发性病变研究中,发现除神经元外,神经胶质细胞具有较大作用。神经胶质细胞是神经系统中除神经元以外的第二大类细胞,广泛分布于脑和脊髓。近年来发现,痛觉的传导和调制不仅仅是神经元的功能,活化的星形胶质细胞也通过和神经细胞的相互作用及炎性因子的分泌而参与病理性疼痛的发生。星形胶质细胞功能受许多神经体液因子的调节,目前引起广泛重视的有p物质(substance P, SP)、谷氨酸和各种炎性因子等,周围慢性疼痛可通过这些递质和生物因子的作用影响脊髓星形胶质细胞功能,从而参与慢性疼痛在脊髓初级中枢的传导和调制。SP不仅作为神经递质向中枢传递来自外界的物理、化学和温度等伤害性刺激,具有导致疼痛的作用,同时还可在接受刺激信号后由神经末梢在局部释放出来,参与损伤局部的免疫、炎症反应及损伤的修复。
     L5~S2脊髓段神经胶质细胞参与前列腺疼痛调节的可能机制研究中,信号转导通路的研究尤其重要。p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase, p38MAPK)属于哺乳动物应激与炎症激活的丝裂原活化蛋白激酶家族重要成员。p38MAPK信号通路参与了细胞的生长发育及细胞间功能同步等多种生理过程,并与炎症、应激反应的调控密切相关,被认为是细胞信息传递的交汇点和共同通路。脊髓cAMP反应元件结合蛋白(cAMP responseelement binding protein,CREB)转录因子属于碱性氨基酸亮氨酸拉链(bZIP)转录因子家族,参与多种生物分子基因表达的调控。核转录因子kB (Nuclear factor-kappa b,NF-kB)是能调节多种炎症和免疫基因表达的一种重要的转录调节因子。有证据表明,这些因子在疼痛机制中发挥一定的作用,研究这些因子的生物学特性及其在慢性前列腺疼痛脊髓胶质细胞活化中的调节机理,有助于进一步了解慢性前列腺疼痛的发病机制,及促进抗慢性前列腺疼痛药物的有效开发。
     目的1、观察L5-S2脊髓段背根神经节(dorsal root ganglion,DRG)和体外培养星形胶质细胞活化中p38MAPK的变化,观察炎性因子水平的变化及与p38MAPK的关系;2、探讨CREB和NF-KB在p38MAPK所致脊髓星形胶质细胞活化中的作用,明确脊髓星形胶质细胞活化中p38MAPK细胞信号转导途径及在大鼠慢性前列腺炎疼痛中的作用。
     方法
     第一部分:p38MAPK在P物质刺激脊髓星形胶质细胞体外活化中的作用
     分离培养SPF大鼠脊髓星形胶质细胞,设正常对照组(正常组)、SP刺激组(SP组,10-7mol/L)、SB203580阻断p38MAPK组(SB组,10μmol/L)和SP刺激+SB203580阻断p38MAPK组(SP+SB组)。WB法、RT-PCR法、ELISA法检测1h,3h,12h,24h和36h时p38MAPK、p-p38(磷酸化p38MAPK)含量及GFAP mRNA、TNF-α、NO水平和NOS活性的变化。
     第二部分:p38MAPK在慢性前列腺炎大鼠脊髓背根神经节内星形胶质细胞活化中的作用
     制作大鼠慢性前列腺炎疼痛模型,观察L5-S2脊髓段背根神经节中p38MAPK和磷酸化p38MAPK含量变化,测定培养上清液TNF-α、NO、NOS含量,同时应用p38MAPK抑制剂作用于动物模型(骶管内注射模型),观察抑制剂SB203580对p38MAPK活化与痛性物质表达的影响及关系。
     第三部分:CREB和NF-KB在p38MAPK所致脊髓星形胶质细胞活化中的作用
     观察体外胶质细胞在SP刺激后p-P38、p-CREB、NF-KBp65的变化及关系,观察抑制剂SB203580(p38MAPK inhibitor)、PD98059(CREB inhibitor)和SN50(NF-KB inhibitor)对各信号转导通路蛋白活化与痛性物质表达的影响及关系。分离培养SPF大鼠脊髓星形胶质细胞,设正常组、SP刺激组(SP组,10-7mol/L)、SP刺激+SB203580(10μmol/L)阻断p38MAPK组(SP+SB组)、SP刺激+ PD98059(10μmol/L)阻断CREB组(SP+PD组)、SP刺激+ SN50(10μmol/L)阻断NF-KB (SP+SN组)。WB法、免疫荧光法、ELISA法检测12h和24h时p-p38、p-CREB、NF-KBp65水平及GFAP、TNF-α、IL-1β水平变化。
     结果与结论
     第一部分:脊髓星形胶质细胞GFAP阳性表达率大于95%。SP组脊髓星形胶质细胞总p38MAPK水平无显著变化,1h后p-p38开始升高,3h后GFAP mRNA水平显著增高,同时NO、NOS和TNF-α水平显著增高。用SB203580阻断p38MAPK通路后,SP+SB组较SP组p-p38、GFAP mRNA、NO、NOS、TNF-a水平显著降低。SB组总p38MAPK、p-p38、GFAP mRNA、NO、NOS、TNF-α水平无显著变化。提示p38MAPK信号通路参与了体外培养脊髓星形胶质细胞P物质刺激活化过程,阻断p38MAPK信号通路可有效降低脊髓星形胶质细胞炎性因子水平。
     第二部分:前列腺炎组大鼠L5~S2脊髓背角中p-p38、GFAP、TNF-α、NO水平和iNOS活性在5d和10d均明显高于正常对照组并随时间增高。镇痛组大鼠L5~S2脊髓背角中p-p38、GFAP、TNF-α、NO水平和iNOS活性在5d和10d均低于前列腺炎组。提示脊髓p38MAPK信号通路参与了大鼠前列腺炎发生后脊髓痛觉传导及SB203580镇痛机制,阻断p38MAPK信号通路可有效降低脊髓炎性因子水平。
     第三部分:SP组脊髓星形胶质细胞p-p38、p-CREB、NF-KBp65显著升高,GFAP水平显著增高,同时TNF-α和IL-1β水平显著增高。与SP组比较,用SB203580阻断p38MAPK通路后,SP+SB组p-p38、p-CREB、NF-kBp65显著降低,GFAP、TNF-α和IL-1β水平显著降低。用PD98059阻断CREB通路后,SP+PD组p-p38、NF-kBp65无显著变化,p-CREB显著降低,GFAP水平降低,同时TNF-α和IL-1β水平降低。用SN50阻断NF-kB通路后,SP+SN组p-p38、p-CREB无显著变化,NF-kBp65显著降低,GFAP水平降低,同时TNF-α和IL-1β水平降低。提示体外培养中,SP刺激后脊髓星形胶质细胞显著活化,p38MAPK活化后通过CREB及NF-kB信号途径导致胶质细胞炎性因子水平显著升高。
Background
     Chronic prostatitis (chronic prostatitis, CP) is the most common urological diseases. The causes, pathological changes and clinical symptoms of this disease were complex and diverse. Pain is the most important symptoms in patients with chronic prostatitis. Although prostatitis is generally not life-threatening, but it can seriously affect the life quality of patients. The impact of prostatitis on mental health of patients is more serious than diabetes and chronic heart failure. Due to the etiology complexity and treatment difficulties of chronic prostatitis, although a large number of basic and clinical research have been done, but so far no breakthrough has been gained. Therefore, study of the mechanism of pain is expected to open up new treatment for chronic prostatitis. Prostate pain has the characteristics of visceral referred pain, for this reason, At present, it is recognized that the continuation and generalization of prostate pain is correlated with the secondary lesions of the L5 ~ S2 spinal cord innervating prostate.
     It was found that the glial cells have a role in the secondary lesions of the L5 ~ S2 spinal cord in the chronic Prostatitis as well as neurons, Glial cells, widely distributed in the brain and spinal cord, were the second largest category of cells of the nervous system in addition to neurons. In recent years, it was found that transmission and modulation of pain is not only the function of neurons, but also of activated astrocytes realized by the interaction with nerve cells and the secretion of inflammatory factors.
     Astrocyte function is regulated by many neurohumoral factors. At present, substance P, glutamic acid and a variety of inflammatory factors has caused widespread attention. Chronic pain can affect the function of spinal cord astrocytes through the role of these transmitters and biological factors and participate in the conduction and modulation of primary spinal cord center of chronic pain. SP, as a neurotransmitter, not only transmit physical, chemical noxious stimulation from the outside to the center leading to pain, but also can be released from nerve endings to participate in immunity, inflammation and repair of local injury after receiving the stimulating signal. In the possible mechanisms study of glial cells of L5~S2 spinal cord involved in the regulation of prostate pain, signal transduction pathway study is particularly important. p38 mitogen-activated protein kinase (p38MAPK) is an important member of the family of mitogen-activated protein kinases involved in mammalian stress and inflammatory activation.
     p38MAPK signaling pathway, considered as the intersection point and common pathway of the cell information transmission, involved in a variety of physiological processes such as cell growth and cellular function closely related to the regulation and control of inflammation and stress response. cAMP response element binding protein (CREB), involved in the regulation of gene expression of a variety of biological molecules, belongs to basic amino acid leucine zipper (bZIP) transcription factor family. Nuclear factor-kappa b ( NF-kB), regulating variety of inflammatory and immune gene expression, is an important factor in transcriptional regulation. There is evidence that these factors play a role in the pain mechanisms. Research on the biological characteristics of these factors and the regulation mechanism of glial cell activation of spinal cord in the chronic prostate pain contributes to a better understanding of the pathogenesis of chronic prostate pain and the promotion of effective development of anti-chronic prostate pain drug.
     Aim
     1. To observe the changes of p38MAPK of dorsal root ganglia (DRG) in L5-S2 of spinal cord and during the activation of cultured astrocytes in vitro. To observed the relationship between the changes of inflammatory factors and p38MAPK.
     2、To investigate the role of CREB and NF-KB in the p38MAPK-induced activation of spinal cord astrocytes, p38MAPK signal transduction pathway in the activation of spinal cord astrocytes cell and the role in the chronic prostate pain of rats.
     Methods
     The first part: The role of p38MAPK in the P material stimulation induced activation of spinal cord astrocytes in vitro
     Aastrocytes, cultured from spinal cord of SPF rat and identified by immunofluorescence method with GFAP antibody, were grouped into the control group, the SP stimulus group(SP group) and the SB203580 interrupt p38MAPK group ( interrupt group)in which SP (10-7mol/L) and SB203580 (10μmol/L) were added to the supernatant for 12h. The WB method, RT-PCR method and ELISA method were used to determine the changes of p38MAPK, phosphorylated p38MAPK, GFAP mRNA, TNF-α, NO and NOS of astrocytes or supernatant at 1h,3h,12h,24h and 36h respectively.
     The second part: The role of p38MAPK in the activation of astrocytes of dorsal root ganglion cells in the spinal cord of rats with chronic prostatitis
     Forty-five male SD rats were divided into the normal group (5 rats), the prostatitis group (10 rats ) and the chronic prostate pain treated with SB203580 group (the SB203580 group, 30 rats). In the SB203580 group, complete Freund's adjuvant prostate was injected and intrathecal administration of SB203580 every 5 rats with 0.5μg/10μl、2.5μg/10μl and 12.5μg/10μl were applied respectively. After 5 and 10 days, Western blot and ELISA method were used to determine the changes of p-p38 (phosphorylated p38MAPK) , GFAP, TNF-α, NO and iNOS in the posterior horn of the L5~S2 spinal cord.
     The third part: The role of CREB and NF-KB in the p38MAPK-induced activation of spinal cord astrocytes
     Aastrocytes, cultured from spinal cord of SPF rat, were grouped into the normal group, the SP stimulus group(SP group), the SP stimulus + SB203580 interrupt group(SP+SB group), the SP stimulus + PD98059 interrupt group(SP+PD group) and the SP stimulus + SN50 interrupt group (SP+SN group)in which SP (10-7mol/L), SB203580 (10μmol/L), PD98059 (10μmol/L) and SN50(10μmol/L) were added to the supernatant for 12h. The WB method, immunofluorescence method and ELISA method were used to determine the changes of p-p38, p-CREB, NF-KBp65, GFAP, TNF-α, IL-1βof astrocytes or supernatant at 12h and 24h.
     Main results and conclusoions
     The first part: The GFAP positive rate of the cultured cells was higher than 95%. p38MAPK level in the SP group did not have any change, whereas p-p38 level increased significantly after 1h and GFAP mRNA, NO, NOS and TNF-a level increased after 3h. When p38MAPK pathway was inhibited by SB203580 in the SP+SB group, GFAP mRNA, NO, NOS and TNF-a was significantly reduced compared with those in the SP group. The level of p38MAPK, p-p38, GFAP mRNA, NO, NOS and TNF-a in the SB group did not have changes compared with those in the normal group. These results indicate that p38MAPK signal pathway contributes to P substance induced activaton of spinal cord astrocytes according to inflammatory factors attenuation after p38MAPK signal pathway interruption by SB203580.
     The second part: p-p38, GFAP, TNF-α, NO and iNOS of the prostatitis group increased significantly at the 5th days and 10th day. while these index were significantly reduced compared with those in the SB203580 group. The chronic prostatitis can result in the activation of p38MAPK and more expression of GFAP, TNF-αand iNOS in L5~S2 spinal cord, suggesting the secondary inflammation of L5~S2 spinal cord which is probably correlated with the maintenance and enlargement of prostate pain.
     The third part: p-p38, p-CREB, NF-KBp65 level in the SP group increased significantly. In the same time, GFAP, TNF-a and IL-1βlevel increased significantly too. When p38MAPK pathway was inhibited by SB203580 in the SP+SB group, p-p38, p-CREB, NF-KBp65 level and GFAP, TNF-a and IL-1βwas significantly reduced compared with those in the SP group. In the SP+PD group, p-CREB level was significantly reduced compared with those in the SP group. In the SP+SN group, NF-KBp65 level was significantly reduced compared with those in the SP group. Astrocytes from spinal cord were significant activated after stimulated by SP in vitro , Inflammatory factors levels from glial cells were significantly increased through CREB and NF-KB signaling pathways after p38MAPK activation.
引文
1. Mishra VC,Browne J,Emberton M.Role of repeated prostatic massage in chronic prostatitis: a systematic review of the literature. Urology,2008,72(4):731-735.
    2. Li HC,Wang ZL,Li HL,et al.Correlation of the prognosis of chronic prostatitis/chronic pelvic pain syndrome with psychological and other factors: a Cox regression analysis.Zhonghua Nan Ke Xue, 2008,14(8):723-727.
    3. Liang CZ,Guo QK,Hao ZY,et al.K channel expression in prostate epithelium and its implications in men with chronic prostatitis.BJU Int,2006,97(1):190-192.
    4. Pontari MA,Ruggieri MR.Mechanisms in prostatitis/chronic pelvic pain syndrome. J Urol,2008,179(5 Suppl):S61-S67.
    5. Turini D,Beneforti P,Spinelli M,et al.Heat/burning sensation induced by topical application of capsaicin on perineal cutaneous area: new approach in diagnosis and treatment of chronic prostatitis/chronic pelvic pain syndrome?Urology,2006, 67(5): 910-913.
    6. Zhang SW,Zhou ZS,Song B.Activation of astrocytes effects changes of substance P in cornu dorsal medullae spinalis in chronic prostatitis rats.Zhonghua Nan Ke Xue, 2007, 13 (4):342-344.
    7. Tang W,Song B,Zhou ZS,et al.Intrathecal administration of resiniferatoxin produces analgesia against prostatodynia in rats.Chin Med J (Engl). 2007,120(18): 1616-1621.
    8. Chuang YC,Yoshimura N,Huang CC,et al.Intraprostatic botulinum toxin a injection inhibits cyclooxygenase-2 expression and suppresses prostatic pain on capsaicin induced prostatitis model in rat.J Urol, 2008,180(2):742-748.
    9. Nickel JC.Prostatitis/Chronic pelvic pain syndrome.Rev Urol, 2002,4(2):95-96.
    10. Donnell RF.Multimodal therapy for chronic prostatitis/chronic pelvic pain syndrome.Curr Urol Rep,2004,5(4):299.
    11. Capodice JL,Bemis DL,Buttyan R,et al.Complementary and alternative medicine for chronic prostatitis/chronic pelvic pain syndrome. Evid Based Complement Alternat Med,2005,2(4):495-501.
    12. Propert KJ,McNaughton CM,Leiby BE,et al.A prospective study of symptoms and quality of life in men with chronic prostatitis/chronic pelvic pain syndrome: theNational Institutes of Health Chronic Prostatitis Cohort study. Chronic Prostatitis Collaborative Research Network. J Urol,2006,175(2):619-623.
    13. Habermacher GM,Chason JT,Schaeffer AJ.Prostatitis/chronic pelvic pain syndrome.Annu Rev Med,2006,57:195-206.
    14. Ledeboer A,Liu T,Shumilla JA,et al.The glial modulatory drug AV411 attenuates mechanical allodynia in rat models of neuropathic pain.Neuron Glia Biol,2006,2(4): 279-291.
    15. Obata K,Noguchi K.Contribution of primary sensory neurons and spinal glial cells to pathomechanisms of neuropathic pain.Brain Nerve,2008,60(5):483-492.
    16. Hansson E.Could chronic pain and spread of pain sensation be induced and maintained by glial activation?Acta Physiol (Oxf),2006,187(1-2):321-327.
    17. Gordh T,Chu H,Sharma HS. Spinal nerve lesion alters blood-spinal cord barrier function and activates astrocytes in the rat. Pain,2006,124(1-2):211-221.
    18. Kim D,Kim MA,Cho IH,et al.critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem, 2007,282(20): 14975-14983.
    19. Meunier A,Latremoliere A,Dominguez E,et al.Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat.Mol Ther,2007,15(4):687-697.
    20. Hatashita S,Sekiguchi M,Kobayashi H,et al.Contralateral neuropathic pain and neuropathology in dorsal root ganglion and spinal cord following hemilateral nerve injury in rats.Spine,2008,33(12):1344-1351.
    21. Tawfik VL,Nutile MN,Lacroix ML,et al.Efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury. Brain Behav Immun,2007,21(2):238-246.
    22. Forrest SL,Keast JR. Expression of receptors for glial cell line-derived neurotrophic factor family ligands in sacral spinal cord reveals separate targets of pelvic afferent fibers. J Comp Neurol,2008,506(6):989-1002.
    23. Qian L,Block ML,Wei SJ,et al.Interleukin-10 protects lipopolysaccharide-induced neurotoxicity in primary midbrain cultures by inhibiting the function of NADPH oxidase. J Pharmacol Exp Ther,2006,319(1):44-52.
    24. Zhang SW,Zhou ZS,Song B.Activation of astrocytes effects changes of substance P in cornu dorsal medullae spinalis in chronic prostatitis rats.Zhonghua Nan Ke Xue, 2007,13(4):342-344.
    25. Greco R,Tassorelli C,Sandrini G, et al.Role of calcitonin gene-related peptide and substance P in different models of pain.Cephalalgia,2008,28(2):114-126.
    26. Papp I,Szucs P,Hollo K,et al.Hyperpolarization-activated and cyclic nucleotide-gated cation channel subunit 2 ion channels modulate synaptic transmission from nociceptive primary afferents containing substance P to secondary sensory neurons in laminae I-IIo of the rodent spinal dorsal horn. Eur J Neurosci,2006,24(5):1341-1352.
    27. Liu D,Li H,Zhao CQ,et al.Changes of substance P-immunoreactive nerve fiber innervation density in the sublesional bones in young growing rats at an early stage after spinal cord injury. Osteoporos Int,2008,19(4):559-569.
    28. Xu M,Bruchas MR,Ippolito DL,et al.Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 mitogen-activated protein kinase.J Neurosci, 2007,27(10):2570-2581.
    29. Guo Z,Niu YL,Zhang JW,et al.Coronary artery occlusion alters expression of substance P and its mRNA in spinal dorsal horn in rats. Neuroscience,2007,145(2): 669-675.
    30. Mortimer HJ,Peacock AJ,Kirk A,et al. p38 MAP kinase: essential role in hypoxia-mediated human pulmonary artery fibroblast proliferation.Pulm Pharmacol Ther, 2007,20(6):718-725.
    31. Rodrigues MS,Bloise FF,Moscat J,et al.Ouabain inhibits p38 activation in thymocytes.Cell Biol Int,2008,32(10):1323-1328.
    32. Xiao ZY,Zhou WX,Zhang YX,et al.Inhibitory effect of linomide on lipopolysaccharide-induced proinflammatory cytokine tumor necrosis factor-alpha production in RAW264.7 macrophages through suppression of NF-kappaB, p38, and JNK activation. Immunol Lett,2007,114(2):81-85.
    33. Sun JJ,Liu Y,Ye ZR.Effects of P2Y(1) receptor on glial fibrillary acidic protein and glial cell line-derived neurotrophic factor production of astrocytes under ischemic condition and the related signaling pathways.Neurosci Bull,2008,24(4): 231-243.
    34. Dallo JG,Reichert BV,Valladao JB,et al.Differential astroglial responses in the spinal cord of rats submitted to a sciatic nerve double crush treated with local injection ofcultured Schwann cell suspension or lesioned spinal cord extract: implications on cell therapy for nerve repair. Acta Cir Bras,2007,22(6):485-494.
    35. Hansson E,Westerlund A,Bjorklund U,et al.mu-Opioid agonists inhibit the enhanced intracellular Ca(2+) responses in inflammatory activated astrocytes co-cultured with brain endothelial cells. Neuroscience,2008,155(4):1237-1249.
    36. Liu XC,Zhu Y. Isolation of neural stem cells from the spinal cords of human fetus. Sheng Li Xue Bao,2006,58(4):384-390.
    37. Junttila MR,Li SP,Westermarck J.Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival.FASEB J,2008,22(4): 954-965.
    38. Tsubaki M,Kato C,Manno M,et al.Macrophage inflammatory protein-1alpha (MIP-1alpha) enhances a receptor activator of nuclear factor kappaB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3K/Akt pathways. Mol Cell Biochem,2007,304(1-2):53-60.
    39. Bikkavilli RK,Feigin ME,Malbon CC.p38 mitogen-activated protein kinase regulates canonical Wnt-{beta}-catenin signaling by inactivation of GSK3{beta}.J Cell Sci,2008,121(Pt 21):3598-3607.
    40. Gu YW,Su DS,Tian J,et al.Attenuating phosphorylation of p38 MAPK in the activated microglia: a new mechanism for intrathecal lidocaine reversing tactile allodynia following chronic constriction injury in rats. Neurosci Lett,2008,431(2): 129-134.
    41. Studer RK,Aboka AM,Gilbertson LG,et al.p38 MAPK inhibition in nucleus pulposus cells: a potential target for treating intervertebral disc degeneration. Spine,2007,32(25): 2827-2833.
    42. Sivam SP,Pugazhenthi S,Pugazhenthi V,et al.L-DOPA-induced activation of striatal p38MAPK and CREB in neonatal dopaminergic denervated rat: relevance to self-injurious behavior. J Neurosci Res,2008,86(2):339-349.
    43. Wang YH,Zhang LC,Zeng YM.Activation of ERK1/2 in spinal cord contributes to the development of acute cystic pain in rabbits.Neurosci Bull,2006,22(4):216-220.
    44. Nunez C,Castells MT,Laorden ML,et al.Regulation of extracellular signal-regulated kinases (ERKs) by naloxone-induced morphine withdrawal in the brain stress system.Naunyn Schmiedebergs Arch Pharmacol,2008,378(4):407-420.
    45. Su Q,Chen J,Fang Q. Modulation of the p38MAPK pathway in failing humanmyocardium secondary to rheumatic heart disease.J Heart Valve Dis,2007,16(6): 683-689.
    46. Gelmedin V,Caballero GR,Brehm K.Characterization and inhibition of a p38-like mitogen-activated protein kinase (MAPK) from Echinococcus multilocularis: antiparasitic activities of p38 MAPK inhibitors. Biochem Pharmacol,2008,76(9): 1068-1081.
    47. JiangY,Chen G,Zheng Y,et al.TLR4 signaling induces functional nerve growth factor receptor p75NTR on mouse dendritic cells via p38MAPK and NF-kappa B pathways. Mol Immunol,2008,45(6):1557-1566.
    48. Sen P,Chakraborty PK,Raha S.Activation of p38MAPK by repetitive low-grade oxidative stress leads to pro-survival effects.Biochim Biophys Acta,2007,1773(3): 367-374.
    49. Hisatsune J,Nakayama M,Isomoto H,et al.Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2, cAMP response element binding protein, and NF-kappaB activation. J Immunol,2008,180(7): 5017-5027.
    50. Huh JE,Yim JH,Lee HK,et al.Prodigiosin isolated from Hahella chejuensis suppresses lipopolysaccharide-induced NO production by inhibiting p38 MAPK, JNK and NF-kappaB activation in murine peritoneal macrophages. Int Immunopharmacol,2007, 7(13):1825-1833.
    51. Hamanoue M,Sato K,Takamatsu K.Inhibition of p38 mitogen-activated protein kinase-induced apoptosis in cultured mature oligodendrocytes using SB202190 and SB203580. Neurochem Int,2007,51(1):16-24.
    52. Henklova P,Vrzal R,Papouskova B,et al.SB203580, a pharmacological inhibitor of p38 MAP kinase transduction pathway activates ERK and JNK MAP kinases in primary cultures of human hepatocytes. Eur J Pharmacol,2008,593(1-3):16-23.
    53. Zhou XH, Li LD,Wu LM,et al.Increased inflammatory factors activity in model rats with experimental autoimmune prostatitis.Arch Androl,2007,53(2):49-52.
    54. Milligan ED,Sloane EM,Watkins LR.Glia in pathological pain: a role for fractalkine.J Neuroimmunol,2008,198(1-2):113-120.
    55. Hatashita S,Sekiguchi M,Kobayashi H,et al.Contralateral neuropathic pain andneuropathology in dorsal root ganglion and spinal cord following hemilateral nerve injury in rats. Spine,2008,33(12):1344-1351.
    56. Phulwani NK,Esen N,Syed MM,et al.TLR2 expression in astrocytes is induced by TNF-alpha and NF-kappaB-dependent pathways.J Immunol,2008,181(6):3841-3849.
    57. Scholz J,Woolf CJ.The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci,2007,10(11):1361-1368.
    58. Zhou XH,Li LD,Wu LM,et al.Increased inflammatory factors activity in model rats with experimental autoimmune prostatitis.Arch Androl,2007,53(2):49-52.
    59. Takeyama K, Mitsuzawa H,Nishitani C,et al.The 6-fluoro-8-methoxy quinolone gatifloxacin down-regulates interleukin-8 production in prostate cell line PC-3. Antimicrob Agents Chemother,2007,51(1):162-168.
    60. Levy D,Zochodne DW. NO pain: potential roles of nitric oxide in neuropathic pain. Pain Pract,2004,4(1):11-18.
    61. Yang Q,Chen SR,Li DP,et al.Kv1.1/1.2 channels are downstream effectors of nitric oxide on synaptic GABA release to preautonomic neurons in the paraventricular nucleus.Neuroscience,2007,149(2):315-327.
    62. Guan Y,Yaster M,Raja SN,et al.Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice. Mol Pain,2007,3:29.
    63. Vareniuk I,Pavlov IA,Obrosova IG. Inducible nitric oxide synthase gene deficiency counteracts multiple manifestations of peripheral neuropathy in a streptozotocin- induced mouse model of diabetes.Diabetologia,2008,51(11):2126-2133.
    64. Martucci C,Trovato AE,Costa B,Borsani E,et al.The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain, 2008,137(1):81-95.
    65. Trafton JA,Basbaum AI.The contribution of spinal cord neurokinin-1 receptor signaling to pain.J Pain,2000,1(3 Suppl):57-65.
    66. Zhang MJ,Chu KD,Shi YL.et al.Clinical study on treatment of chronic prostatitis/chronic pelvic pain syndrome by three different TCM principles. Zhongguo Zhong Xi Yi Jie He Za Zhi,2007,27(11):989-992.
    67. Zhou Z,Peng X,Hao S,et al. HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor alpha in spinal cord microglia. Gene Ther,2008,15(3):183-190.
    68. Mensah AG,Kibaly C,Schaeffer V,et al.Endogenous steroid production in the spinal cord and potential involvement in neuropathic pain modulation.J Steroid Biochem Mol Biol, 2008,109(3-5):286-293.
    69. Ito T,Ohtori S,Inoue G,et al.Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis.Spine,2007,32(2):159-167.
    70. Tsubaki M,Kato C,Manno M,et al.Macrophage inflammatory protein-1alpha (MIP-1alpha) enhances a receptor activator of nuclear factor kappaB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3K/Akt pathways. Mol Cell Biochem,2007,304(1-2):53-60.
    71. Au RY, Talib TK,Au AY,et al.Avocado soybean unsaponifiables (ASU) suppress TNF-alpha, IL-1beta, COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in articular chondrocytes and monocyte/macrophages. Osteoarthritis Cartilage, 2007,15(11):1249-1255.
    72. Cadiou H,Studer M,Jones NG,et al.Modulation of acid-sensing ion channel activity by nitric oxide. J Neurosci,2007,27(48):13251-13260.
    73. Kano Y,Horie N,Doi S,et al.Artepillin C derived from propolis induces neurite outgrowth in PC12m3 cells via ERK and p38 MAPK pathways.Neurochem Res, 2008, 33(9):1795-1803.
    74. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta,2007,1773(8):1358-1375.
    75. Yi WQ,Gan HT,Huang XL,et al.The effects of p38 mitogen activated protein kinase inhibitor SB203580 on colonic mucosa tumor necrosis factor alpha expression in ulcerative colitis.Zhonghua Nei Ke Za Zhi,2007,46(9):747-750.
    76. Barone FC, Irving EA, Ray AM, et al. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev, 2001,21(2):129-145.
    77. Meotti FC,Posser T,Missau FC,et al.Involvement of p38MAPK on the antinociceptiveaction of myricitrin in mice. Biochem Pharmacol,2007,74(6): 924-931.
    78. Wei F, Guo W,Zou S,et al.Supraspinal glial-neuronal interactions contribute to descending pain facilitation.J Neurosci,2008,28(42):10482-10495.
    79. Sivam SP,Pugazhenthi S,Pugazhenthi V,et al.L-DOPA-induced activation of striatal p38MAPK and CREB in neonatal dopaminergic denervated rat: relevance to self-injurious behavior. J Neurosci Res,2008,86(2):339-349.
    80. Holownia A,Braszko JJ. The effect of angiotensin II and IV on ERK1/2 and CREB signalling in cultured rat astroglial cells. Naunyn Schmiedebergs Arch Pharmacol,2007, 376(3): 157-163.
    81. Cheng JC,Esparza S,Sandoval S,et al.Potential role of CREB as a prognostic marker in acute myeloid leukemia.Future Oncol,2007,3(4):475-480.
    82. Omori K,Naruishi K,Yamaguchi T,et al.cAMP-response element binding protein (CREB) regulates cyclosporine-A-mediated down-regulation of cathepsin B and L synthesis. Cell Tissue Res,2007,330(1):75-82.
    83. Holownia A,Braszko JJ. The effect of angiotensin II and IV on ERK1/2 and CREB signalling in cultured rat astroglial cells.Naunyn Schmiedebergs Arch Pharmacol,2007, 376(3):157-163.
    84. Li K,Ma Q,Shi L,et al.NS5ATP9 gene regulated by NF-kappaB signal pathway. Arch Biochem Biophys,2008,479(1):15-19.
    85. Hyzd'alova M,Hofmanova J,Pachernik J,et al.The interaction of butyrate with TNF-alpha during differentiation and apoptosis of colon epithelial cells: role of NF-kappaB activation. Cytokine,2008,44(1):33-43.
    86. Sun B,Karin M. NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene,2008,27(48):6228-6244.
    1. Hartgers FC,Obeng BB,Voskamp A,Larbi IA,et al.Enhanced Toll-Like Receptor Responsiveness Associated with Mitogen-Activated Protein Kinase Activation in Plasmodium falciparum-Infected Children. Infect Immun,2008,76(11):5149-5157.
    2. Kim JY,Huh KH,Park YJ,et al.Molecular mechanisms of cell death of mycophenolic Acid-treated primary isolated rat islets: implication of mitogen-activated protein kinase activation. Transplant Proc,2008,40(8):2575-2577.
    3. Gong K,Li Z,Xu M,et al.A Novel Protein Kinase A-independent, {beta}-Arrestin-1- dependent Signaling Pathway for p38 Mitogen-activated Protein Kinase Activation by {beta}2-Adrenergic Receptors. J Biol Chem,2008,283(43): 29028-29036.
    4. Proctor BM,Jin X,Lupu TS,et al. Requirement for p38 mitogen-activated protein kinaseactivity in neointima formation after vascular injury. Circulation,2008,118(6):658-666.
    5. Moon KC,Park JS,Norwitz ER,et al.Expression of extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinase in the invasive trophoblasts at the human placental bed.Placenta,2008,29(5):391-395.
    6. Doucet C,Milin S,Favreau F,et al.A p38 mitogen-activated protein kinase inhibitor protects against renal damage in a non-heart-beating donor model. Am J Physiol Renal Physiol,2008,295(1):F179-191.
    7. Marchetti A,Colletti M,Cozzolino AM,et al.ERK5/MAPK is activated by TGFbeta in hepatocytes and required for the GSK-3beta-mediated Snail protein stabilization. Cell Signal,2008,20(11):2113-2118.
    8. Keren A,Keren PA,Bengal E.A p38 MAPK-CREB pathway functions to pattern mesoderm in Xenopus.Dev Biol, 2008,322(1):86-94.
    9. Curry JM,Eubank TD,Roberts RD,et al.M-CSF Signals through the MAPK/ERK Pathway via Sp1 to Induce VEGF Production and Induces Angiogenesis In Vivo. PLoS ONE, 2008,3(10):e3405.
    10. Shen F,Fan X,Liu B,et al.Overexpression of cyclin D1-CDK4 in silica-induced transformed cells is due to activation of ERKs, JNKs/AP-1 pathway.Toxicol Lett, 2006, 160(3): 185-195.
    11. Wang Y,Sheibani N.PECAM-1 isoform-specific activation of MAPK/ERKs and small GTPases: implications in inflammation and angiogenesis.J Cell Biochem,2006,98(2): 451-468.
    12. Zheng GY,Chen XC,Du J,Liu CY,et al.Inhibitory action of propyl gallate on the activation of SAPK/JNK and p38MAPK induced by cerebral ischemia-reperfusion in rats.Yao Xue Xue Bao.2006,41(6):548-554.
    13. Wang X,Fu S,Wang Y,et al.Interleukin-1beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway.Mol Cell Neurosci,2007,36(3):343-354.
    14. Bu J,Ma PC,Chen ZQ,et al.Inhibition of MITF and tyrosinase by paeonol-stimulated JNK/SAPK to reduction of phosphorylated CREB.Am J Chin Med,2008,36(2):245-263.
    15. Jin XY,Lee SH,Kim JY,et al.Polyozellin inhibits nitric oxide production bydown-regulating LPS-induced activity of NF-kappaB and SAPK/JNK in RAW 264.7 cells.Planta Med,2006,72(9):857-859.
    16. Tumurkhuu G,Koide N,Dagvadorj J,et al.MnTBAP, a synthetic metalloporphyrin, inhibits production of tumor necrosis factor-alpha in lipopolysaccharide-stimulated RAW 264.7 macrophages cells via inhibiting oxidative stress-mediating p38 and SAPK/JNK signaling.FEMS Immunol Med Microbiol,2007,49(2):304-311.
    17. Katz M,Amit I,Yarden Y.Regulation of MAPKs by growth factors and receptor tyrosine kinases.Biochim Biophys Acta,2007,1773(8):1161-1176.
    18. Colcombet J,Hirt H.Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes.Biochem J,2008,413(2):217-226.
    19. Almog T,Naor Z.Mitogen activated protein kinases (MAPKs) as regulators of spermatogenesis and spermatozoa functions.Mol Cell Endocrinol,2008,282(1-2):39-44.
    20. Anderson DH. Role of lipids in the MAPK signaling pathway.Prog Lipid Res, 2006, 45(2):102-119.
    21. Krens SF,Spaink HP,Snaar BE.Functions of the MAPK family in vertebrate- development. FEBS Lett,2006,580(21):4984-4990.
    22. Lang R,Hammer M,Mages.DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response.J Immunol. 2006,177(11): 7497- 7504.
    23. Salojin K,Oravecz T. Regulation of innate immunity by MAPK dual-specificity phosphatases: knockout models reveal new tricks of old genes.J Leukoc Biol,2007,81(4): 860-869.
    24. Khuu CH,Barrozo RM,Weinstein SL.Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages.Mol Immunol, 2007,44(7):1598-1605.
    25. Chen LY,Luo M,Li TC,et al.Effect of HCMV on p38MAPK, apoptosis and cell cycle of human glioma U251 cells.Zhonghua Er Ke Za Zhi,2006,44(10):778-781.
    26. Guo RW,Yang LX,Li MQ,et al.Angiotensin II induces NF-kappa B activation in HUVEC via the p38MAPK pathway.Peptides,2006,27(12):3269-3275.
    27. Veglianese P,Lo CD,Bao CM,et al.Activation of the p38MAPK cascade is associated with upregulation of TNF alpha receptors in the spinal motor neurons of mouse models of familial ALS. Mol Cell Neurosci,2006,31(2):218-231.
    28. Gianni M,Parrella E,Raska IJr,et al.P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARalpha-mediated transcription.EMBO J. 2006,22; 25(4):739-751.
    29. Lu M,Xiao L,Li Z. The relationship between p38MAPK and apoptosis during paclitaxel resistance of ovarian cancer cells.J Huazhong Univ Sci Technolog Med Sci.2007,27(6): 725-728.
    30. Yoshida H,Goedert M. Sequential phosphorylation of tau protein by cAMP-dependent protein kinase and SAPK4/p38delta or JNK2 in the presence of heparin generates the AT100 epitope. J Neurochem, 2006,99(1):154-164.
    31. Diedhiou CJ,Popova OV,Dietz KJ,et al.The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol,2008,8:49.
    32. Ambrose M,Ryan A,O'Sullivan GC,et al. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis- inducing factor. Mol Pharmacol,2006,69(6):1879-1890.
    33. Junttila MR,Ala AR,Jokilehto T,et al.p38alpha and p38delta mitogen-activated protein kinase isoforms regulate invasion and growth of head and neck squamous carcinoma cells. Oncogene,2007,26(36):5267-5279.
    34. Kraft CA,Efimova T,Eckert RL.Activation of PKCdelta and p38delta MAPK during okadaic acid dependent keratinocyte apoptosis. Arch Dermatol Res,2007,299(2):71-83.
    35. Ruiz-Bonilla V,Perdiguero E,Gresh L,et al.Efficient adult skeletal muscle regeneration in mice deficient in p38beta, p38gamma and p38delta MAP kinases.Cell Cycle,2008,7(14):2208-2214.
    36. Zhou X,Ferraris JD,Dmitrieva NI,et al.MKP-1 inhibits high NaCl-induced activation of p38 but does not inhibit the activation of TonEBP/OREBP: opposite roles of p38alpha and p38delta. Proc Natl Acad Sci USA. 2008,105(14):5620-5625.
    37. Mattie MD,McElwee MK,Freedman JH.Mechanism of copper-activated transcription: activation of AP-1, and the JNK/SAPK and p38 signal transduction pathways. J Mol Biol, 2008,383(5):1008-1018.
    38. Goldsmith ZG,Dhanasekaran DN. G protein regulation of MAPK networks.Oncogene, 2007,26(22):3122-3142.
    39.唐皓,马中富.p38 MAPK信号转导通路研究进展.热带医学杂志,2004,4(4):501-503.
    40.谢晨曦,任建林.P38 MAPK信号传导通路与胃癌关系的研究现状.世界华人消化杂志,2008,16(30):3427-3432.
    41. Zwerina J,Hayer S,Redlich K,et al.Activation of p38 MAPK is a key step in tumor necrosis factor-mediated inflammatory bone destruction.Arthritis Rheum,2006,54(2): 463-472.
    42. Studer RK,Gilbertson LG,Georgescu H,et al.p38 MAPK inhibition modulates rabbit nucleus pulposus cell response to IL-1. J Orthop Res,2008,26(7):991-998.
    43. Cheng C,Qin Y,Shao X,et al.Induction of TNF-alpha by LPS in Schwann cell is regulated by MAPK activation signals. Cell Mol Neurobiol,2007,27(7):909-921.
    44. Jin Y,Fan Y,Yan EZ,et al.Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus. Acta Pharmacol Sin,2006,27(10):1309-1316.
    45. Zheng C,Lin Z,Zhao ZJ,et al.MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27. J Biol Chem,2006,281(48):37215-37226.
    46. Vertii A,Hakim C,Kotlyarov A,et al.Analysis of properties of small heat shock protein Hsp25 in MAPK-activated protein kinase 2 (MK2)-deficient cells: MK2-dependent insolubilization of Hsp25 oligomers correlates with susceptibility to stress. J Biol Chem, 2006,281(37):26966-26975.
    47. Hisatsune J,Nakayama M,Isomoto H,et al.Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2, cAMP response element binding protein, and NF-kappaB activation. J Immunol,2008,180(7):5017-5027.
    48. Li R,Ding T,Liu X,et al. Influence of SB203580 on cell apoptosis and P38MAPK in renal ischemia/reperfusion injury. J Huazhong Univ Sci Technolog Med Sci,2006,26(1): 50-52.
    49. Lim SJ,Lee YJ,Lee E.p38MAPK inhibitor SB203580 sensitizes human SNU-C4 colon cancer cells to exisulind-induced apoptosis. Oncol Rep,2006,16(5):1131-1135.
    50. Smith SJ,Fenwick PS,Nicholson AG,et al.Inhibitory effect of p38 mitogen-activated protein kinase inhibitors on cytokine release from human macrophages. Br J Pharmacol,2006,149(4):393-404.
    51. Bikkavilli RK,Feigin ME,Malbon CC.p38 mitogen-activated protein kinase regulates canonical Wnt-{beta}-catenin signaling by inactivation of GSK3{beta}.J Cell Sci, 2008, 121(Pt 21):3598-3607.
    52. Phan V,Belas R,Gilmore BF,et al.ZapA, a Virulence Factor in a Rat Model of Proteus mirabilis-Induced Acute and Chronic Prostatitis.Infect Immun,2008,76(11):4859-4864.
    53. Mishra VC,Browne J,Emberton M.Role of repeated prostatic massage in chronic prostatitis: a systematic review of the literature.Urology,2008,72(4):731-735.
    54. Zeng HQ,Zhang CH,Lu GC. Psychological factors and erectile function in men with refractory chronic prostatitis.Zhonghua Nan Ke Xue,2008,14(8):728-730.
    55. Sandhu JS. Prostate cancer and chronic prostatitis.Curr Urol Rep,2008,9(4):328-332.
    56.张水文,孙凤岭,臧桐,宋波.星形胶质细胞活化对慢性前列腺炎疼痛大鼠脑诱发电位的影响.中国现代医学杂志,2008, 18 (10):1328-1330.
    57.张恒,周占松,刘丽梅,等.P物质刺激下脊髓星形胶质细胞活化中磷酸化P38丝裂素活化蛋白激酶和c-fos的表达及作用.第三军医大学学报, 2006,28 (21): 2163-2065.
    58. Khadra A,Fletcher P,Luzzi G,et al.Interleukin-8 levels in seminal plasma in chronic prostatitis/chronic pelvic pain syndrome and nonspecific urethritis.BJU Int,2006,97(5): 1043-1046.
    59. Koval LV,Gankovskaia LV,Mazo EB,et al.Analysis of cytokines in seminal plasma and blood sera of patients with chronic prostatitis during immunotherapy with natural complex of cytokines and antimicrobial peptides. Zh Mikrobiol Epidemiol Immunobiol, 2007,5: 57-61.
    60. Hains BC,Waxman SG.Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci,2006,26(16):4308-4317.
    61. Zhao P,Waxman SG,Hains BC.Extracellular signal-regulated kinase-regulated microglia -neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J Neurosci, 2007,27(9):2357-2368.
    1. Mishra VC,Browne J,Emberton M.Role of repeated prostatic massage in chronic prostatitis: a systematic review of the literature. Urology, 2008,72(4):731-735.
    2. Li HC,Wang ZL,Li HL,et al.Correlation of the prognosis of chronic prostatitis/chronic pelvic pain syndrome with psychological and other factors: a Cox regression analysis.Zhonghua Nan Ke Xue,2008,14(8):723-727.
    3. Zeng HQ,Zhang CH,Lu GC.Psychological factors and erectile function in men with refractory chronic prostatitis.Zhonghua Nan Ke Xue,2008,14(8): 728-730.
    4. Sandhu JS.Prostate cancer and chronic prostatitis. Curr Urol Rep,2008,9(4):328-332.
    5. Dimitrakov J,Joffe HV,Soldin SJ,et al.Adrenocortical hormone abnormalities in men with chronic prostatitis/chronic pelvic pain syndrome. Urology,2008,71(2): 261-266.
    6. Kastner C.Update on minimally invasive therapy for chronic prostatitis/chronic pelvic pain syndrome.Curr Urol Rep,2008,9(4):333-338.
    7. Zhao H,Shen JH,Chen YP,et al.Changes of seminal parameters, zinc concentration andantibacterial activity in patients with non-inflammatory chronic prostatitis/chronic pelvic pain syndrome. Zhonghua Nan Ke Xue,2008,14(6):530-532.
    8. Barnes RW. Urology: Chronic Prostatitis. Cal West Med. 1928,28(3):379-380.
    9. Tang W,Song B,Zhou ZS,et al.Intrathecal administration of resiniferatoxin produces analgesia against prostatodynia in rats.Chin Med J (Engl),2007,120(18): 1616-1621.
    10. Pontari MA,Ruggieri MR.Mechanisms in prostatitis/chronic pelvic pain syndrome.J Urol,2008,179(5 Suppl):S61-S67.
    11. Pontari MA.Etiologic theories of chronic prostatitis/chronic pelvic pain syndrome.Curr Urol Rep,2007,8(4):307-312.
    12. Hedelin H,Jonsson K.Chronic prostatitis/chronic pelvic pain syndrome: symptoms are aggravated by cold and become less distressing with age and time. Scand J Urol Nephrol,2007,41(6):516-520.
    13. Schaeffer AJ.Evaluation of the cytokines in genital secretions of patients with chronic prostatitis. J Urol,2005,173(3):844-845.
    14. Weidner W,Anderson RU.Evaluation of acute and chronic bacterial prostatitis and diagnostic management of chronic prostatitis/chronic pelvic pain syndrome with special reference to infection/inflammation. Int J Antimicrob Agents,2008,31 Suppl 1: S91-S95.
    15. Hassan AA,Elgamal SA,Sabaa MA,et al.Evaluation of intravesical potassium sensitivity test and bladder biopsy in patients with chronic prostatitis/chronic pelvic pain syndrome Int J Urol,2007,14(8):738-742.
    16. Liu LF,Yang JR,Ginsberg DA,et al.Factors influencing the diagnosis and treatment of chronic prostatitis among urologists in China. Asian J Androl,2008,10(4):675-681.
    17. Weidner W,Wagenlehner FM,Marconi M,et al.Acute bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome: andrological implications. Andrologia, 2008,40(2):105-112.
    18. Duclos AJ,Lee CT,Shoskes DA.Current treatment options in the management of chronic prostatitis.Ther Clin Risk Manag,2007,3(4):507-512.
    19. Liu BP.An analysis of the countermeasures against chronic prostatitis among college students in Guangzhou City.Zhonghua Nan Ke Xue,2008,14(1):34-37.
    20. Berger R.Prospective, randomized, double-blind trial shows aerobic exercise is a validtreatment option for chronic prostatitis.Nat Clin Pract Urol,2007,4(10):534-535.
    21. Donnell RF. Multimodal therapy for chronic prostatitis/chronic pelvic pain syndrome. Curr Urol Rep,2004,5(4):299.
    22. Dhar NB,Shoskes DA. Nickel JC.New therapies in chronic prostatitis. Curr Urol Rep, 2007,8(4):313-318.
    23. Role of alpha1-blockers in chronic prostatitis syndromes. BJU Int,2008,101 Suppl 3:11-16.
    24. Nickel JC.Treatment of chronic prostatitis/chronic pelvic pain syndrome. Int J Antimicrob Agents,2008,31 Suppl 1:S112-S116.
    25. Nickel JC.Antibiotics and alpha-Blockers for Chronic Prostatitis: Evidence From Recent Randomized Placebo-Controlled Studies.Rev Urol,2005,7(1):65-66.
    26. Kunishima Y,Takeyama K,Takahashi S,et al.Gatifloxacin treatment for chronic prostatitis: a prospective multicenter clinical trial. J Infect Chemother, 2008,14 (2):137-140.
    27. Kertes P,Goncalves F,Stefancik J,et al.Value of antibiotic therapy for bioptically proved chronic prostatitis. Bratisl Lek Listy,2008,109(1):42.
    28. Jeong CW,Lim DJ,Son H,et al.Treatment for chronic prostatitis/chronic pelvic pain syndrome: levofloxacin, doxazosin and their combination. Urol Int, 2008,80(2):157- 161.
    29. Wang W.What kinds of external therapies can be adopted for chronic prostatitis? J Tradit Chin Med,2007,27(3):238-240.
    30. Capodice JL,Bemis DL,Buttyan R,et al.Complementary and alternative medicine for chronic prostatitis/chronic pelvic pain syndrome. Evid Based Complement Alternat Med, 2005,2(4):495-501.
    31. Donnell RF.The use of saw palmetto versus finasteride for the treatment of prostatitis/chronic pelvic pain syndrome.Curr Urol Rep,2004,5(4): 298.
    32. Korzhachkina NB,Li AA,Kotenko KV.Using some new technologies in medical rehabilitation in chronic prostatitis.Vopr Kurortol Fizioter Lech Fiz Kult,2007, Nov-Dec; (6): 34-42.
    33. Curtis NJ,Baranowski AP,Pontari M,et al.Management of men diagnosed with chronic prostatitis/chronic pelvic pain syndrome who have failed traditional management.RevUrol,2007,9(2):63-72.
    34. Rosted P.Chronic prostatitis/chronic pelvic pain syndrome and acupuncture--a case report.Acupunct Med, 2007,25(4):198-199.
    35. Weidner W. Understanding the natural treated history of chronic prostatitis/chronic pelvic pain syndrome. Nat Clin Pract Urol, 2006,3(8):410-411.
    36. Lee SW,Liong ML,Yuen KH,et al.Acupuncture versus sham acupuncture for chronic prostatitis/chronic pelvic pain. Am J Med,2008,121(1):79.e1-79.e 7.
    37.鲍身涛.中医综合疗法治疗216例慢性前列腺炎临床疗效分析.中华中医药杂志,2007,22(2):96-97.
    38.冯保华.复元活血汤加减治疗气滞血瘀型慢性前列腺炎262例分析.中国误诊学杂志,2008,8(15):674-675.
    39.胡有文,杜开熊.慢性前列腺炎的诊断与治疗之我见.中国性科学,2008,17(6):34-36.
    40. Zhou Q,Li LQ,Wang CH,et al.The severity of psychic symptoms closely correlated with that of clinical ones in chronic prostatitis patients.Zhonghua Nan Ke Xue,2007,13(6): 531-534.