大规模定制下参数化产品族多目标智能优化方法与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代制造业为了满足消费者的需要,面临着用有限的生产成本快速地为客户提供多品种、高质量、定制产品的压力;大规模定制迎合当今市场需求,它正以其独特的生产模式引起社会广泛关注。大规模定制的核心思想是以接近大规模生产的速度和成本满足客户对产品的个性化需求,它将传统的面向客户订单的反应式定制转变为面向产品族规划的预定制,以提高企业快速响应客户需求的能力。其实施成败的关键在于能否有效解决同时满足客户个性化的特定需求且保持批量生产的规模效益之间的矛盾。因此,合理的产品族规划成为企业实施大规模定制的基础和保障。
     本文的研究目标在于针对参数化产品族规划,提出有效的方法和工具支持科学的产品族优化决策。以期既要展现面向客户尽可能丰富的产品外部差异性以满足客户的需求,又要增加面向企业尽可能多的产品间共性以降低额外生产成本。成功的设计方法应能在满足客户个性化性能需求的前提下获取产品族内的最大共性,实现产品族共性与差异性的最佳平衡。
     论文通过对大规模定制的概念、本质属性详细分析,结合产品族的概念、特点与优势,指出以产品族规划为基础组织企业的生产经营,能够集成大规模生产与定制生产的优势,辅助企业有效地实施大规模定制生产。
     在参数化产品族优化方面,本文对产品族优化设计的理论与方法进行了较为深入的探讨,具体包括:
     (1)在不考虑产品间共性的约束条件下,从多目标的角度,研究了无公用平台下,参数化产品族多目标优化设计方法。建立了无公用平台下,参数化产品族的多目标优化模型,并给出其多目标优化问题模型的求解方法,仿真实验结果表明,所提方法较文献中其他优化方法而言,能得到更佳的无公用平台下参数化产品族整体优化方案。
     (2)以无公用平台下参数化产品族多目标优化结果为研究基础,分析了单平台下,参数化产品族的多目标优化问题。对参数化产品族平台变量的优选方法进行了探讨。根据平台变量选取后,是否预先合理设置平台变量取值以降低问题求解的复杂性,分别建立了平台变量取值已知和未知时的参数化产品族多目标优化模型;并给出了相应的求解方法。仿真实验结果表明,所提方法均能得到优于其他文献中所提方法得到的结果。但预先不固定平台变量的取值,所得到的产品族优化设计结果要优于平台变量值预先固定时的产品族优化设计结果,代价是前者算法复杂度更高。
     (3)对单平台下参数化产品族设计方法进行了拓展,提出了多平台下的参数化产品族优化设计方法。针对多平台下参数化产品族的特点与及其优化的复杂性,提出了一种单阶段下多平台产品族双层多目标并行协同优化算法,用于求解多平台下参数化产品族多目标优化模型。仿真实验结果表明,所提方法能够允许在平台变量未知的情况下,通过在运行过程中自动改变平台共性并搜索共性与产品差异性之间的最佳平衡点;并通过一次优化过程即可选择最合理的平台变量和差异性变量的最佳配置,以及平台变量和差异性变量取值的最佳设置;从而获得柔性高、整体性能佳的产品族优化设计方案。
     综上表明,基于平台的参数化产品族开发设计,能以低成本、高质量的产品快速响应顾客个性化的需求。这对产品定制日益普及的当今企业,进行产品开发优化设计具有一定的借鉴意义。
Inorder to fulfill the requirements of the customers, modern manufacturing feels the pressure of offering the various styles, high quality and customized products by utilizing the limited production cost. Mass cutomization caters for trend of needs in market. Now many enterprises in society are paying attention to it widely because of its advantage. The key thought of Mass customization is to offer customers individualized products at the nearly same effieiency and cost of mass production. Mass customization shifts the traditional customization model that passively responds to customer orders into the pre-customization model that plans initiatively product family inorder to improve the ability of enierprises to respond to customer requirements quiekly. The key is to solve the conflict between scale economies with batch production while meeting customers'individual requirements. Therefore, a reasonable product family planning is the foundation and guarantee of mass customization.
     The dissertation is to research and develop suitable methods and algorithms to support scientific scale-based product family optimization decision, including optimization of both exterior product functional diversification to satisfy customer's individual requirement and interior design diversification to decrease production cost for enterprises. A successful product family design mothod should achieve an optimal tradeoff among a set of conflicting objectives, which involves maximizing commonality across the family of products without comporising the capability to satisfy customer's performance requirements.
     According to the analysis for the concept and essential characteristics of mass customization in detail, in combination with the definition, characteristics and advantages of product family, The dissertation can indicate that the production and operations based on product family planning can effectively combine the benefits from mass production and one-of-a-kind production in order to enterprise effectively implement the strategy of mass customization in the customer.oriented market environment.
     In respect of scale-based product family optimization, the theories and methods related to product family optimization design were deeply researched in the paper, including:
     (1) Without regard for commonality between products, a multi-objective optimization design method for scale-based product family was proposed from multi-objective angles. The multi-bjective optimization model for scale-based product family without product platform was built and correspondent solving method was given. Comparison of the simulation experiment results with existing benchmark designs suggests that the proposed algorithms perform better than conventional optimization techniques, while providing designers with more information to support decision making during scale-based product family optimization design.
     (2) Based on the results of scale-based product family optimization design without consideration about commonality between products, the dissertation then analyzed the multi-objective optimization problem for single platform based product family. A method of optimal selection for platform variables among product family design variables was given. According to the complexity of scale-based product family optimization design based on selected platform variables, two multi-objective optimization models were respectively built based on platform variables values setting or no setting in advance and corresponding solving methods were proposed. The efficiency and effectiveness of the proposed method were illustrated by the optimization design of the Scale-based universal motor families and the comparison against the designs obtained from related literatures. At the same time, the simulation experiments also show that the results obtained from platform variables values without setting in advance during the process of corresponding algorithm running were better than that of platform variables values setting in advance. However, the former has a higher computational complexity.
     (3) This dissertation presents a new optimization design method for multi-platform based product family optimization problem in order to advance further the previous presented method for single platform based product family optimization problem. According to the characteristic and complexity of scale-based product family based on multi.platform, a two-level multi-objective concurrent collaborative optimization algorithm was presented to solve multi-platform based product family model during a single optimization process. The simulation experiment shows that the presented method in the case of unknown platform variables can simultaneously determine the optimal settings for the product platform and corresponding product family, by automatically varying the amount of platform commonality within the Scale-based product family.
     Viewed in toto, these results indicates that the development and design of scale-based product family on common product platform could reduce cost, raise quality of product and respond rapidly the individual needs of customers. It is definite sense for product development and design in enterprise because the way of customized product has gradually been popular in today.
引文
[1]Toffler A. Future Shock. New York:Bantam Books,1970:53-125
    [2]Davis S. From future perfect:Mass customizing. Planning Review,1989,17(2): 16-21
    [3]David M, Anderson B, Joseph Pine Ⅱ,21世纪企业竞争前沿——大规模定制模式下的敏捷产品开发.北京:机械工业出版社,1999:71-142
    [4]但斌等.大规模定制——打造21世纪企业核心竞争力.北京:科学出版社,2004:73-132
    [5]陈建.面向大规模定制的产品族设计关键技术研究:[山东大学博士学位论文].济南:山东大学机械工程学院,2007,51-54
    [6]李中凯.产品族可重构设计理论与方法及其在大型空分装备中的应用研究[浙江大学博士学位论文].杭州:浙江大学工程及计算机图形学研究所,2009,6-9
    [7]Simpson T W. A concept exploration method for product family design:[Doctoral Dissertation of Georgia Institute of Technology]. USA:Georgia Institute of Technology,1998,153-155
    [8]杨青海,祁国宁.大批量定制原理.机械工程学报,2007,43(11):89-97
    [9]Farrell R S, Simpson T W. Product platform design to improve commonality in custom products. Journal of Intelligent Manufacturing,2003,14:541-556
    [10]高飞,肖刚,陈久军.面向大批量定制的产品族设计方法的现状与趋势.计算机集成制造系统,2009,15(9):1665-1672
    [11]伊辉勇,刘伟.面向在线大规模定制的产品族规模优化方法.计算机集成制造系统,2009,(12):2370-2374
    [12]Simpson T W, Maier J R A, Mistree F. Product platform design:method and application. Research in Engineering Design,2001,13(1):371-386
    [13]Dai Z, Scott M J. Product platform design through sensitivity analysis and cluster analysis. Journal of Intelligent Manufacturing,2007,18(1):97-113
    [14]Simpson T W. Product platform design and optimization:status and promise. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,2004, 18(1):3-20
    [15]Scott M J, Simpson T W, Arenillas J C G, et al. Towards a suite of problems for comparison of product platform design methods:a proposed classification. Proceedings of 2006 ASME Design Engineering Technical Conferences, Philadelphia, P A, USA,2006,833-844
    [16]Simpson T W, Tucker M, Olivier D W, et al. Platform-based design and development:current trends and needs in industry. Proceedings of ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Philadelphia, USA,2006, paper no. DETC2006/DAC,110-119
    [17]Simpson T W. A concept exploration method for product family design [dissertation]. Georgia Institute of Technology,1998
    [18]Farrell R, Simpson T. Product platform design to improve commonality in custom products. Journal of Intelligent Manufacturing,2003,14(6):541-556
    [19]Fellini R, Kokkolaras M, Papalambros P Y. Quantitative platform selection in optimal design of product families, with application to automotive engine design. Journal of Engineering Design,2006,17(5):429-446
    [20]CHEN C B, WANG L Y. Product platform design through clustering analysis and information theoretical approach. International Journal of Production Research, 2008,46(15):4259-428
    [21]陈永亮,褚巍丽,徐燕申.面向可适应性的参数化产品平台设计.计算机集成制造系统,2007,13(5):877-884
    [22]D'Souza B, Simpson T W. A genetic algorithm based method for product family design Optimization. Engineering Optimization,2003,35(1):1-18
    [23]] Nayak R U, Chen W, Simpson T W. A variation-based methodology for product family design. Journal of Engineering Optimization,2002,34(1):65-81
    [24]Messac A, Martinez M P, Simpson T W. Introduction of a product family penalty function using physical programming. Transactions of ASME,2002,124 (2):164-172
    [25]CHEN C B, WANG L Y. Multiple-platform based product family design for mass customization using a modified genetic algorithm. Journal of Intelligent Manufacturing,2008,19:577-589
    [26]Simpson T W, D'Souza B. Assessing variable levels of platform commonality within a product family using a multi-objective genetic algorithm. Current Engineering,2004,12(2):119-129
    [27]Akundi S, Simpson T W, Reed P. Multi-objective design optimization for product platform product family design using genetic algorithms. Proceedings of ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Long Beach,2005
    [28]Kumar D, Chen W, Simpson T W. A market-driven approach to the design of platform-based product families. Collection of Technical Papers,11th AIAA/ISSMO Multidisciplinary Analysis and optimization Conference,2006,1: 200-224
    [29]Kumar R, Allada V. Scalable platforms using ant colony optimization. Journal of intelligent Manufacturing,2007,18(1):127-142
    [30]Liu Z, Wong Y S, Lee K S. A manufacturing-oriented approach for multi-platforming product family design with modified genetic algorithm. Journal of Intelligent Manufacturing,2009, DOI 10.1007/s10845-009-0365-8
    [31]Chen C B, Wang L Y. Modified Genetic Algorithm Applied to Solve Product Family Optimization Problem. Chinese Journal of Mechanical Engineering,2007, 20(4):106-111
    [32]李中凯,谭建荣,冯毅雄等.基于混合协同进化算法的可调节产品族优化设计.计算机集成制造系统,2008,14(8)::1458-1465
    [33]李中凯,谭建荣,冯毅雄.可调节产品族的自底向上优化再设计方法.计算机辅助设计与图形学学报,2009,21(8):1083-1091
    [34]Liu C M. Clustering techniques for stock location and order-picking in a distribution center. Computers and Operations Research,1999,26(10-11): 989-1002.
    [35]Zaheh L A. Outline of new approach to analysis of complex systems and decision process. IEEE Transactions on Systems, Man and Cybernetics,1973,3(1):28-44
    [36]常明山.以客户为中心的产品规划方法研究及支持系统软件开发:[天津大学博士学位论文],天津:天津大学,2000.
    [37]路晓伟,蒋馥,侯立文.基于客户本题的客户特征提取.计算机工程,2005,31(5):31-33
    [38]Zeng Y, Gu P. A science-based approach to product design theory part Ⅱ: Formulation of design requirements and products. Robotics and computer integrated manufacturing,1999,15(4):341-352
    [39]Mckay A, Pennington A, Baxter J. Requirements management a representation scheme for product specifications. Computer-Aided Design,2001,33(7):510-520
    [40]郭伟,王凤岐,杜玉明等.产品全生命周期需求的分析及其间映射方法的研究.机械工程学报,1998,34(5):40-48
    [41]邓家褆,韩晓建,曾硝等.产品概念设计——理论、方法与技术.北京:机械工业出版社,2002,55-58
    [42]戴若夷,谭建荣,李涛.面向大规模定制的广义需求模型方法及实现技术研究.计算机辅助设计与图形学学报,2003,15(4):467-474
    [43]郑华林,刘飞,王逢春等.面向大规模定制的产品需求建模方法研究.中国机械工程学报,2003,14(6):471-475
    [44]周康渠,石晓辉,廖林清.面向产品定制的客户需求研究.中国机械工程,2006,17(2):142-145
    [45]Zhou M. Fuzzy logic and optimization models for implementing QFD. Computers and Engineering,1998,35(1-2):240-273
    [46]Chen J, Tang X Q, A Improved Quality Function Deployment Models. CADDM, 1999,9(1):59-66
    [47]林志航,车阿大,国大川.面向并行工程的分布式QFD系统研究.高技术通讯,1998,(2):30-34
    [58]Kim J K. A Knowledge-Based Approach to Quality Function Deployment.1998, 35(1-2):233-236
    [49]Jurgen B. Cost Engineering with Quality Function Deployment Models. Computers industrial Engineering,1998,35(3-4):587-590
    [50]朱祖平.QFD和CE在企业技术创新中的应用初探.科研管理,1998,19(2):52-58
    [51]Bowman C, Faulkner D. Measuring Product Advantage Using Competitive Benchmarking and Customer Perceptions [J]. Long Range Planning,1994, 27(1):119-132
    [52]Gilmore J, Pine J. The four faces of mass customization, Harvard Business Review 1997,75(1):91-101.
    [53]Jacobson R. Unobservable effects and business performance. Marketing Science, 1990,9:74-85
    [54]Mill A, Dess G G. Assessing Porter's model in terms of its generalizability, accuracy and simplicity. Journal of Management Studies,1993,30:4-6
    [55]Joseph Pine Ⅱ. Mass customization:the new frontier in business competition. Boston:Harvard Business School Press,1993
    [56]Kay M. Making Mass Customization Happen:Lessons for Implementation. Planning Review,1993, (4):14-18
    [57]Lau R S M. Mass Customization:the next industrial revolution. Industrial Management,1995,37 (5):18-19
    [58]Tseng M M, Jiao J X, Merchant M E. Design for mass customization. Annals of the CIRP,1996,45(1):153-156
    [59]Duray R, Ward P T, Milligan G W, et al. Approaches to mass customization: Configurations and empirical validation[J]. Journal of Operations Management. 18 (6):605-625
    [60]Tseng M M, Lei M, Su C. Collaborative control system for mass customization manufacturing, CIRP Annals-Manufacturing Technology,1997,45(1):373-376
    [61]周炳海,施海锋,蔡建国.大批量定制生产的概念框架模型研究.上海工程技术大学学报,2000,14(4):278-284
    [62]邵晓峰,黄培清,季建华.大规模定制生产模式的研究.工业工程与管理,2001,(2):13-17
    [63]李仁旺,苏宝华,祁国宁.面向大批量定制的产品建模—理论.方法.应用[M].北京:科学出版社,2005
    [64]唐晓青,王雪聪.以顾客满意为中心的大规模定制质量改进.机械工程学报,2005,41(5):200-204
    [65]Ross A. Selling uniqueness. Manufacturing Engineer,1996,75(6):260-263
    [66]熊立华.面向大规模定制的产品族开发设计研究:[天津大学博士学位论文],天津:天津大学,2004
    [67]张建军.大批量定制的客户驱动模型与产品配置方法研究.[合肥工业大学博士学位论文],合肥:合肥工业大学,2005
    [68]李敏,徐福缘,顾新建.大批量定制及其产品与过程集成优化模型研究.中国机械工程,2002,13(9):762-765
    [69]Womack J, Jones D, Ross D. The Machine that Changed the World. New York:Rawson,1990
    [70]Lampel J, Mintzberg H. Customizing Customization. Sloan Management Review, 1996,38 (1):21-30
    [71]祁国宁,顾新建,李仁旺.大批量定制及其模型的研究.计算机集成制造系统,2000,(2):41-45
    [72]Dave A, Peter S, Geoff N. Mass Customization-an Automotive Perspective [J]. International Journal of Production Economics,2000,65():99-110
    [73]Swaminathan J M. Enabling customization using standardization operations [J]. California Management Review,2001,43 (3):125-135
    [74]Piller F T, Stoko C M. Mass customization:Four approaches to deliver customized products and services with mass production efficiency. Engineering Management Conference,2002 IEEE International,2002,18-20 Aug,2:773-778.
    [75]Selladurai R S. Mass customization in operations management:oxymoron or reality [J]. Int. J. Management Science,2004,32:295-300
    [76]Giovani D S, Denis B, Flavio S F. Mass customization:Literature review and research directions [J]. Int. J. Production Economics,2001,72:1-13
    [77]Simpson T W, Maier J R A, Mistree F. Product Platform Design:Method and Application. Research in Engineering Design,2001,13(1):371-386
    [78]McGrath M E. Product Strategy for High-Techno logy Companies [M]. NY:Irwin Professional Publishing,1995
    [79]Meyer M H, Lehnerd A P. The Power of Product Platforms:Building Value and Cost Leadership [M]. New York:The Free Press,1997
    [80]Robertson D, Ulrich K. Planning product platforms. Sloan Management Review, 1998,39(4):19-31
    [81]Muffatto M, Roveda M. Product architecture and Platforms:A conceptual framework [J]. International Journal of Technology Management,2002,24(1): 1-16
    [82]Bowman, D. Platforming Trends in Industry:Proceedings of 2005 Innovations in Product Development Conference-Product Families and Platforms:From Strategies Innovation to Implementation, Cambridge, MA,2005 [C]. Cambridge Press,2005
    [83]侯鸿翔.基于产品平台的协同产品开发研究:[天津大学博士学位论文],天津:天津大学,2003
    [84]Erens F, Verhulst K. Architectures for product families. Computers in Industry, 1997,33 (2-3):165-178
    [85]Tseng M, Du X H. Design by customers in the manufacturing firm. Research Policy,1998,24(3):419-440
    [86]Hegge H, Wortrann J. Generic bill-of-material:A new product model. International Journal of Production Economies,1991,23 (1):117-128
    [87]Kusiak A, Huang C C. Development of modular products. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A,1996,19(4): 523-538
    [88]Agarwal M, Cagan J. A blend of different tastes:the language of coffeemakers. Environment and Planning B:Planning and Design,1998,25(2):205-226
    [89]Du X H, Jiao J X, Tseng M M. Modeling platform-based product configuration using programmed attributed graph grammars. Journal of Engineering Design, 2003,14(2):145-167
    [90]Zahed S. Common platform development:design for product variety. [Doctor Dissertation. Georgia Institute of Technology,2000
    [91]楼健人,张树有,谭建荣.面向大批量定制的客户需求信息表达与处理技术研究.中国机械工程,2004,15(8):685-687
    [92]秦红斌.基于公共产品平台的产品族设计技术研究:[华中科技大学博士学位论文],武汉:华中科技大学,2006
    [93]祁国宁,顾新建,谭建荣.大批量定制技术及其应用.北京:机械工业出版社,2003
    [94]贾延林.模块化设计.北京:机械工业出版社,1993:12-15
    [95]G G Rogers, L Bottaci. Modular Production System:A New Manufacturing Paradigm. IntelligentManuafeturing,1997, (8):147-156
    [96]Hernandez G, Allen J K, Simpson T W, et al. Robust design of families for products with production modeling and revaluation. ASME Journal of Mechanical Design,2001,6:183-190
    [97]王云霞,易红,汤文成等.基于可调节变量的内圆磨床产品族设计.计算机集成制造系统,2004,10(10):1191-1206
    [98]王云霞,易红,汤文成等.基于Internet的内圆磨床产品族定制系统.计算机集成制造系统,2004,10(11):1437-1440
    [99]Nayak R U, Chen W, Simpson T W. A variation-based method for product family design. Engineering Optimization,2002,34 (1):65-81
    [100]Simpson T W, Chen W. Use of the robust concept exploration method to facilitate the design of a family of products. Simultaneous Engineering:Methodologies and Applications,1999:247-278
    [101]Wang K H. A systematic approach for t he robust design of scalable product platforms. Journal of Engineering Manufacture,2006,220 (12):1983-1995
    [102]Lan J, Venkat A. Robust modular product family design using a modified Taguchi method. Journal of Engineering Design,2005,16 (5):443-458
    [103]Nayak R U, Chen W, Simpson T W. A variation based method for product family design. Engineering Optimization,2002,34 (1):65-81
    [104]Dai Z, Scott M J. Product platform design with consideration of uncertainty. Proceedings of Society of Automotive Engineers World Congress. Warrendale, Pa. USA,2005:225-235
    [105]Dai Z, Scott M J. Effective Product family design using Preference aggregation. Journal of Mechanical Design,2006,128(4):125-134
    [106]Nelson S A, Parkinson M B, Papalambros P Y. Multicriteria optimization in product platform design. Journal of Mechanical Design,2001,123(6):199-204
    [107]Deb K, Pratap A, Agarwal S. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,2002,6 (2):82-197
    [108]Srinivas N, Deb K. Multi-objective function optimization using nondominated sorting genetic algorithms. Evolutionary Computations,1995,2 (3):221-248
    [109]Mitra K, Gopinath R. Multi-objective optimization of an industrial grinding operation using elitist nondominated sorting genetic algorithm. Chemical Engineering Science,2004,59(2):385-396
    [110]Milosevic B. Nondominated sorting genetic algorithm for optimal phasor measurement placement. IEEE Transactions on Power Systems,2003,18(1): 69-75
    [111]Abido M A. Multi-objective evolutionary algorithms for electric power dispatch problem. IEEE Transactions on Evolutionary Computation,2006,10(3):315-329
    [112]李中凯,谭建荣,冯毅雄等.基于拥挤距离排序的多目标粒子群优化算法及其应用.计算机集成制造系统,2008,14(7):1329-1336
    [113]李中凯,谭建荣,冯毅雄等.基于混合协同进化算法的可调节产品族优化设计.计算机集成制造系统,2008,14(8):1457-1465
    [114]李中凯,谭建荣,冯毅雄等.基于多目标遗传算法的可调节产品族优化.浙江大学学报(工学版),2008,42(6):1015-1057
    [115]雷德明,严新平.多目标智能优化算法及其应用.北京:科学出版社,2009:1-33
    [116]陈国良,王煦法,庄镇泉等.遗传算法及其应用.北京:人民邮电出版社,2001:20-100
    [117]Raghuwanshi M M, Kakde O G. Survey on multi-objective evolutionary and real coded genetic algorithms. Proceedings of the 8th Asia pacific symposium on intelligent and evolutionary systems,2004, pp 150-161
    [118]陈春宝.基于聚类分析与遗传算法的产品多样性优化研究:[上海交通大学博士论文],上海:上海交通大学工业工程与物流工程系,2008
    [119]Abido M A, Bakhashwain J M. Optimal VAR dispatch using a multi-objective evolutionary algorithm. International Journal of Electrical Power & Energy Systems,2005,27(1):13-20
    [120]Aravind Seshadri.NSGA-2[CP].http://www.iitk.ac.in/kanggal,2009.