铋系可见光响应型复合光催化剂的设计、合成及水体净化的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种拥有解决全球能源短缺和治理环境污染的潜在能力,半导体光催化剂已经引起了非常广泛的关注。而开发高效稳定的可见光光催化剂已经成为光催化领域研究的热点。半导体实现可见光响应的前提是带隙与太阳光谱中可见光区域相匹配,而获得高效稳定光催化剂的基础是提高半导体光催化剂的光生载流子分离效率和可回收利用率。本文围绕新型可见光光催化剂BiOI和B2WO6粉体高的载流子复合率和回收成本的现况,设计制备了具有高光催化活性和强回收再利用能力的BiOI/Bi2WO6基(复合)可见光光催化剂。用光催化剂降解污染物的同时,也深刻体会到污染治理之不易,所以本文还初步研究了用于节能环保型白光发光二极管(WLED)灯用K2SiF6: Mn4+红色荧光粉。具体的研究内容和已取得的研究成果如下:
     (1)用乙二醇做溶剂,采用溶剂热法通过调整前驱体中Bi/I的比值为1:1,1:1.5,1:2,1:3和1:5,制备了一系列晶型由Bi7O9I3到BiOI持续变化的样品。通过XRD,TG等测试手段确认了Bi7O9I3样品的晶体结构。获得的Bi7O9I3样品具有空心分层结构的三维自组装形貌和高达68.86m2·g的比表面积,再结合晶体沿光催化活性(110)晶面的择优生长使Bi7O9I3拥有优异的光催化降解特性。另外,通过在Bi7O9I3的制备过程中添加微量水来调控Bi7O9I3的微观形貌,从而制备了一系列光催化性能更强的不同形貌的Bi7O9I3样品,XRD谱和SEM照片显示微量水没有改变Bi7O9I3的晶型,而微结构由原来的空心球状变成了更加开放的三维分层结构。光催化降解实验表明添加微量水后的全部样品都拥有比空心分层球体Bi7O9I3更强的光催化性能。
     (2)通过静电纺丝和溶剂热法的结合,成功制备了BiOI薄片在TiO2纳米纤维表面的可控合成,得到TiO2@BiOI复合膜,通过调整反应时间和BiOI前驱体的初始浓度可以方便的调控TiO2纤维表面上BiOI的尺寸,形貌和密度,进而改善光催化性能。TiO2@BiOI复合膜在可见光照射下具有优异的光催化性能,同时复合膜具有更高的固液分离能力,方便反应完成后的回收再利用。通过研究复合薄膜的光致发光,瞬态光电流响应曲线和XPS谱证明了在TiO2和BiOI接触界面形成了可降低区域内光生电子空穴对复合概率的异质结,从而提高光催化活性。为了进一步改善TiO2@BiOI薄膜的力学性能,结合静电纺丝,浸泡法和溶剂热法,制备了SiO2@TiO2@BiOI的复合纤维薄膜,结果显示BiOI在SiO2@TiO2表面生长的形貌类似于TiO2@BiOI。SiO2@TiO2@BiOI复合薄膜显示出强的可见光光催化性能的同时,还具有SiO2基质材料的柔韧性,可以直接通过过滤的方式光催化降解水体有机污染物。
     (3)结合静电纺丝和溶剂热法成功实现了Bi2WO6薄片在SiO2纳米纤维表面的可控生长,通过Bi2WO6前驱体浓度的控制可以方便的调控SiO2纳米纤维表面Bi2WO6的形貌和密度。在复合膜中,Bi2WO6被分散固定在SiO2纳米纤维的表面,这种结构有效防止了Bi2WO6在光催化反应过程中的团聚,并赋予了Bi2WO6新的光催化反应方式,比如复合膜较好的拉伸强度和弹性模量可以使膜直接通过过滤的形式降解有机污染物,同时极大的改善了Bi2WO6光催化剂的回收再利用能力。通过测试薄膜热处理前后的XRD,SEM和力学性能,发现Bi2WO6@SiO2复合纤维具有优异的热稳定性和拉伸强度,另外,SiO2@Bi2WO6复合薄膜可以在需要热处理的情况下保护Bi2WO6在高温时避免发生团聚。改善了光催化剂的回收再利用能力后,为了进一步优化SiO2@Bi2WO6的光催化活性,通过结合静电纺丝、浸泡法和溶剂热法设计和制备了SiO2@TiO2@Bi2WO6核-核-壳结构的复合纤维,测试结果显示,与SiO2@Bi2WO6不同,长在TiO2包覆层表面的Bi2WO6的形貌更小更分散,光催化活性也远大于SiO2@Bi2WO6薄膜,同时还继承了SiO2@Bi2WO6复合膜的柔韧性。
     (4)以廉价的SiO2粉末为硅源,在HF/KMnO4水溶液中用简单的氧化还原反应制备了高亮度的K2SiF6: Mn4+红色荧光粉,制备的粉体的量子效率为74%。通过荧光粉的SEM,XRD和PL图谱的测试结果表明K2SiF6: Mn4+具有作为节能环保型暖白光LED用红色荧光粉的形貌和发光特性。LED的封装实验显示混合K2SiF6: Mn4+和商用YAG: Ce荧光粉可以获得3510K暖白光色温,90.9高显色指数和81.56lm/W发光效率的暖白光LED。K2SiF6: Mn4+红色荧光粉优异的光学性能和低成本高效率的制造方法使其在暖白光LED领域具有的巨大的应用潜力。
Semiconductor photocatalysis has received much attention as a potential solution to theworldwide energy shortage and counteracting environmental degradation. Visible-light-drivenphotocatalysts with high activity and stability had attracted a great deal of attention. It wasnecessary to make the band gap of photocatalysts match with that of the solar energy and toexploit way to enhance the photo-generated electron-hole separation. In this paper, in view ofthe market demand, the BiOI/Bi2WO6-base visible light photocatalysts with excellentphtocatalytic activity and recycling was designed. Meanwhile, Synthesis of K2SiF6: Mn4+phosphor and their application in warm-white LED
     (1) A series of crystal continuously changing from Bi7O9I3to BiOI were successfullyfabricated using an ethylene glycol-assisted solvothermal process by adjusting theconcentration of precursor with different I/Bi molar ratios of1,1.5,2,3, and5. The productcan be determined as Bi7O9I3, based on the results of X-ray diffraction and thermogravimetryanalysis. Bi7O9I3uniform flowerlike hollow microspheres with a hole in its shell have beenobtained with larger BET specific surface area (68.86m2·g). The special structural feature ofthe hollow Bi7O9I3microsphere structure and crystal had special anisotropic growth along the(110) plane lead to high photocatalytic activity under visible light irradiation. In addition, themicro-structure of Bi7O9I3is regulated by adding a small amout of water duing preparation.All samples on the degradation of RhB under visible light irradiation exhibited higherphotocatalytic activity than that of hollow Bi7O9I3microsphere structure.
     (2) Electrospinning-derived TiO2nanofibers of anatase phase were decorated with BiOInanosheets, constructing TiO2@BiOI composite fibers. Size, morphology, together withpopulation density of the BiOI nanosheets can be readily adjusted by controlling the initialconcentration of Bi(NO3)3and incubation time in the hydrothermal reaction. Compared withpristine TiO2nanofibers, the TiO2@BiOI composite fibers exhibit faster decomposition ofRhB under visible light irradiation, and meanwhile possess high separation convenience inwater purification. Photoluminescence and transient photocurrent response results evidencethe formation of p-n junction at the interface of TiO2and BiOI, which contributes a lot inpromoting the photocatalytic performance of TiO2@BiOI fibers through enhanced separation efficiency of photogenerated charge carriers. In addition, the TiO2@BiOI fibers alsodemonstrate excellent chemical stability, making their repeated reuse in water purificationfeasible. To further improve the mechanical properties of TiO2@BiOI, the SiO2@TiO2@BiOIcomposite films is synthesized by combining the electrospinning technique, soaking andsolvothermal method. The results showed that the morphology of BiOI on the surface ofSiO2@TiO2similar to those on the TiO2@BiOI, meaning SiO2@TiO2@BiOI have both thephotocatalytic activity of TiO2@BiOI and flexibility of SiO2fiber.
     (3) The hierarchical SiO2@Bi2WO6composite nanofibers membranes were successfullyfabricated by combining the electrospinning technique and solvothermal method. Size,morphology, together with population density of the Bi2WO6nanosheets can be readilyadjusted by controlling the initial concentration of Bi(NO3)3in the hydrothermal reaction.Bi2WO6is dispersed on the surface of SiO2fibers not only prevent agglomeration of Bi2WO6during the photocatalytic reaction but also could be recycled easily by sedimentation. X-raydiffraction, scanning electron microscope and mechanical properties of films before and afterheat treatment results evidence that the composite fibers have excellent thermal stability andtensile strength. In order to improve the photocatalytic activity of SiO2@Bi2WO6, theSiO2@TiO2@Bi2WO6composite films is synthesized by combining the electrospinningtechnique, soaking and solvothermal method. The results showed that SiO2@TiO2@Bi2WO6has excellent photocatalytic activity and flexibility.
     (4) Highly bright K2SiF6: Mn4+red phosphors with a quantum efficiency of74%weresynthesized from silicon dioxide by redox reaction in HF/KMnO4solution. The opticalproperties of LEDs containing different ratios of K2SiF6: Mn4+phosphor and commercialCe3+-doped garnets(YAG-40) yellow-green phosphor were studied. A warm-white LED, withcolor temperature of3510K and color rendering index of90.9and efficacy of81.56lm/Wwas demonstrated. These prominent optical properties together with its low-cost and highefficient fabrication approach endow the as-synthesized K2SiF6: Mn4+phosphors greatpotential for commercial applications in warm-white LED.
引文
[1] A. Fujishima, K. Honda, Photolysis-decomposition of water at the surface of anirradiated semiconductor [J]. Nature,1972,238(5385):37-38
    [2] J. H. Park, S. Kim, A. J. Bard, Novel carbon-doped TiO2nanotube arrays with highaspect ratios for efficient solar water splitting [J]. Nano letters,2006,6(1):24-28
    [3] U. Bach, D. Lupo, P. Comte, et al., Solid-state dye-sensitized mesoporous TiO2solarcells with high photon-to-electron conversion efficiencies [J]. Nature,1998,395(6702):583-585
    [4] G. K. Mor, K. Shankar, M. Paulose, et al., Use of highly-ordered TiO2nanotube arraysin dye-sensitized solar cells [J]. Nano letters,2006,6(2):215-218
    [5] M. K. Nazeeruddin, P. Pechy, T. Renouard, et al., Engineering of efficientpanchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. Journal of theAmerican Chemical Society,2001,123(8):1613-1624
    [6] A. L. Linsebigler, G. Lu, J. T. Yates Jr, Photocatalysis on TiO2surfaces: principles,mechanisms, and selected results [J]. Chemical reviews,1995,95(3):735-758
    [7] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence onphotocatalytic activity of TiO2-xNxpowders [J]. The Journal of Physical Chemistry B,2003,107(23):5483-5486
    [8] H. G. Yang, C. H. Sun, S. Z. Qiao, et al., Anatase TiO2single crystals with a largepercentage of reactive facets [J]. Nature,2008,453(7195):638-641
    [9] T. L. Thompson, J. T. Yates, Surface science studies of the photoactivation of TiO2new photochemical processes [J]. Chemical Reviews,2006,106(10):4428-4453
    [10] J. H. Carey, J. Lawrence, H. M. Tosine, Photodechlorination of PCB's in the presenceof titanium dioxide in aqueous suspensions [J]. Bulletin of EnvironmentalContamination and Toxicology,1976,16(6):697-701
    [11] M.A. Fox, M. T. Dulay, Heterogeneous photocatalysis [J]. Chemical reviews,1993,93(1):341-357
    [12] H.D. Müller, F. Steinbach, Decomposition of isopropyl alcohol photosensitized byzinc oxide,1970
    [13] F. Steinbach, Influence of Metal Support and Ultraviolet Irradiation on the CatalyticActivity of Nickel Oxide,1969
    [14] R. Wang, K. Hashimoto, A. Fujishima, et al., Light-induced amphiphilic surfaces [J].Nature,1997,388:431-432
    [15] K. Hashimoto, H. Irie, A. Fujishima, TiO2photocatalysis: a historical overview andfuture prospects [J]. Japanese Journal of Applied Physics,2005,44(12R):8269
    [16] S. C. Roy, O. K. Varghese, M. Paulose, et al., Toward solar fuels: photocatalyticconversion of carbon dioxide to hydrocarbons [J]. Acs Nano,2010,4(3):1259-1278
    [17] R. Asahi, T. Morikawa, T. Ohwaki, et al., Visible-light photocatalysis innitrogen-doped titanium oxides [J]. science,2001,293(5528):269-271
    [18] S. In, A. Orlov, R. Berg, et al., Effective visible light-activated B-doped and B,N-codoped TiO2photocatalysts [J]. Journal of the American Chemical Society,2007,129(45):13790-13791
    [19] C.-C. Hu, H. Teng, Structural features of p-type semiconducting NiO as a co-catalystfor photocatalytic water splitting [J]. Journal of Catalysis,2010,272(1):1-8
    [20] Q. Li, T. Kako, J. Ye, WO3modified titanate network film: highly efficientphoto-mineralization of2-propanol under visible light irradiation [J]. ChemicalCommunications,2010,46(29):5352-5354
    [21] J.S. Jang, S.H. Choi, H. Park, et al., A composite photocatalyst of CdS nanoparticlesdeposited on TiO2nanosheets [J]. Journal of nanoscience and nanotechnology,2006,6(11):3642-3646
    [22] R.S. Dibbell, D.G. Youker, D.F. Watson, Excited-state electron transfer from CdSquantum dots to TiO2nanoparticles via molecular linkers with phenylene bridges [J].The Journal of Physical Chemistry C,2009,113(43):18643-18651
    [23] J. Feng, J. Han, X. Zhao, Synthesis of CuInS2 quantum dots on TiO2 porous films by solvothermal method for absorption layer of solar cells[J]. Progress in Organic Coatings,2009,64(2):268-273
    [24] F. Wagner, G. Somorjai, Photocatalytic hydrogen production from water on Pt-freeSrTiO3in alkali hydroxide solutions,1980
    [25] S. Ouyang, N. Kikugawa, Z. Zou, et al., Effective decolorizations and mineralizationsof organic dyes over a silver germanium oxide photocatalyst under indoor-illuminationirradiation [J]. Applied Catalysis A: General,2009,366(2):309-314
    [26] S. Ouyang, N. Kikugawa, D. Chen, et al., A systematical study on photocatalyticproperties of AgMO2(M=Al, Ga, In): effects of chemical compositions, crystalstructures, and electronic structures [J]. The Journal of Physical Chemistry C,2009,113(4):1560-1566
    [27] X. Li, S. Ouyang, N. Kikugawa, et al., Novel Ag2 ZnGeO4 photocatalyst for dye degradation under visible light irradiation [J]. AppliedCatalysis A: General,2008,334(1):51-58
    [28] S. Ouyang, H. Zhang, D. Li, et al., Electronic structure and photocatalyticcharacterization of a novel photocatalyst AgAlO2[J]. The Journal of PhysicalChemistry B,2006,110(24):11677-11682
    [29] J. Tang, Z. Zou, J. Ye, Efficient Photocatalytic Decomposition of OrganicContaminants over CaBi2O4under Visible‐Light Irradiation [J]. Angewandte ChemieInternational Edition,2004,43(34):4463-4466
    [30] J. Ye, Z. Zou, A. Matsushita, A novel series of water splitting photocatalysts NiM2O6(M=Nb, Ta) active under visible light [J]. International Journal of Hydrogen Energy,2003,28(6):651-655
    [31] T. Kako, Z. Zou, M. Katagiri, et al., Decomposition of organic compounds overNaBiO3under visible light irradiation [J]. Chemistry of materials,2007,19(2):198-202
    [32] F. E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water [J].Chemistry of Materials,2007,20(1):35-54
    [33] Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalyticH2-production activity of graphene/C3N4composites [J]. The Journal of PhysicalChemistry C,2011,115(15):7355-7363
    [34] U. I. Gaya, A. H. Abdullah, Heterogeneous photocatalytic degradation of organiccontaminants over titanium dioxide: a review of fundamentals, progress and problems[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2008,9(1):1-12
    [35] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis [J]. Journal ofPhotochemistry and Photobiology C: Photochemistry Reviews,2000,1(1):1-21
    [36] J. A. Byrne, B. R. Eggins, Photoelectrochemistry of oxalate on particulate TiO2 electrodes [J]. Journal of Electroanalytical Chemistry,1998,457(1):61-72
    [37] J.-M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to theremoval of various types of aqueous pollutants [J]. Catalysis today,1999,53(1):115-129
    [38] M. N. Chong, B. Jin, C. W. Chow, et al., Recent developments in photocatalytic watertreatment technology: a review [J]. Water research,2010,44(10):2997-3027
    [39] Z. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties [J]. Journal ofnanoscience and nanotechnology,2005,5(10):1561-1573
    [40] S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures [J]. Science andTechnology of Advanced Materials,2009,10(1):013001
    [41] Z.L. Wang, Nanostructures of zinc oxide [J]. Materials today,2004,7(6):26-33
    [42] X. Chen, S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties,modifications, and applications [J]. Chemical reviews,2007,107(7):2891-2959
    [43] M. Pechini. Method of preparing lead and alkaline earth titanates and niobates andcoating method using the same to form a capacitor: US,3330697,1967
    [44] C. Marcilly, P. Courty, B. Delmon, Preparation of highly dispersed mixed oxides andoxide solid solutions by pyrolysis of amorphous organic precursors [J]. Journal of theAmerican Ceramic Society,1970,53(1):56-57
    [45] L.A. Chick, L. Pederson, G. Maupin, et al., Glycine-nitrate combustion synthesis ofoxide ceramic powders [J]. Materials Letters,1990,10(1):6-12
    [46] M.S. Tokumoto, S.H. Pulcinelli, C.V. Santilli, et al., Catalysis and temperaturedependence on the formation of ZnO nanoparticles and of zinc acetate derivativesprepared by the sol-gel route [J]. The Journal of Physical Chemistry B,2003,107(2):568-574
    [47] S. Kobayashi, N. Hamasaki, M. Suzuki, et al., Preparation of helical transition-metaloxide tubes using organogelators as structure-directing agents [J]. Journal of theamerican chemical society,2002,124(23):6550-6551
    [48] Q. Zhang, K. Pita, W. Ye, et al., Influence of annealing atmosphere and temperatureon photoluminescence of Tb3+ or Eu3+-activated zincsilicate thin film phosphors via sol–gel method [J]. Chemical physics letters,2002,351(3):163-170
    [49] L. Jiang, L. Wang, J. Zhang, A direct route for the synthesis of nanometer-sizedBi2WO6particles loaded on a spherical MCM-48mesoporous molecular sieve [J].Chemical Communications,2010,46(42):8067-8069
    [50] M. Yu, J. Lin, J. Fang, Silica spheres coated with YVO4: Eu3+layers via sol-gelprocess: A simple method to obtain spherical core-shell phosphors [J]. Chemistry ofmaterials,2005,17(7):1783-1791
    [51] K.P. Johnston, J.M. Penninger, Supercritical fluid science and technology,1989
    [52] B.L. Cushing, V.L. Kolesnichenko, C.J. O'Connor, Recent advances in theliquid-phase syntheses of inorganic nanoparticles [J]. Chemical reviews,2004,104(9):3893-3946
    [53] S. Ouyang, J. Ye, β-AgAl1-xGaxO2Solid-Solution Photocatalysts: ContinuousModulation of Electronic Structure toward High-Performance Visible-LightPhotoactivity [J]. Journal of the American Chemical Society,2011,133(20):7757-7763
    [54] H. Yamashita, Y. Ichihashi, M. Takeuchi, et al., Characterization of metalion-implanted titanium oxide photocatalysts operating under visible light irradiation[J]. Journal of synchrotron radiation,1999,6(3):451-452
    [55] J.-M. Herrmann, J. Disdier, P. Pichat, Effect of chromium doping on the electrical andcatalytic properties of powder titania under UV and visible illumination [J]. Chemicalphysics letters,1984,108(6):618-622
    [56] E. Borgarello, J. Kiwi, M. Graetzel, et al., Visible light induced water cleavage incolloidal solutions of chromium-doped titanium dioxide particles [J]. Journal of theAmerican chemical society,1982,104(11):2996-3002
    [57] K.E. Karakitsou, X.E. Verykios, Effects of altervalent cation doping of titania on itsperformance as a photocatalyst for water cleavage [J]. The Journal of PhysicalChemistry,1993,97(6):1184-1189
    [58] W. Mu, J.-M. Herrmann, P. Pichat, Room temperature photocatalytic oxidation ofliquid cyclohexane into cyclohexanone over neat and modified TiO2[J]. Catalysisletters,1989,3(1):73-84
    [59] T. Umebayashi, T. Yamaki, H. Itoh, et al., Analysis of electronic structures of3dtransition metal-doped TiO2 based on band calculations [J]. Journal ofPhysics and Chemistry of Solids,2002,63(10):1909-1920
    [60] T. Nishikawa, Y. SHINOHARA, T. Nakajima, et al., Prospect of Activating aPhotocatalyst by Sunlight-a Quantum Chemical Study of Isomorphically SubstitutedTitania [J]. Chemistry letters,1999,1999(11):1133-1134
    [61] H. Kato, H. Kobayashi, A. Kudo, Role of Ag+in the band structures andphotocatalytic properties of AgMO3(M: Ta and Nb) with the perovskite structure [J].The Journal of Physical Chemistry B,2002,106(48):12441-12447
    [62] T. Kako, J. Ye, Comparison of photocatalytic activities of two kinds of leadmagnesium niobate for decomposition of organic compounds under visible-lightirradiation [J]. Journal of Materials Research,2007,22(09):2590-2597
    [63] X. Li, T. Kako, J. Ye,2-Propanol photodegradation over lead niobates under visiblelight irradiation [J]. Applied Catalysis A: General,2007,326(1):1-7
    [64] A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystalform-controlled and highly crystalline BiVO4powder from layered vanadates at roomtemperature and its photocatalytic and photophysical properties [J]. Journal of theAmerican Chemical Society,1999,121(49):11459-11467
    [65] H.G. Kim, D.W. Hwang, J.S. Lee, An undoped, single-phase oxide photocatalystworking under visible light [J]. Journal of the American Chemical Society,2004,126(29):8912-8913
    [66] S. Saadi, A. Bouguelia, M. Trari, Photocatalytic hydrogen evolution over CuCrO2[J]. Solar Energy,2006,80(3):272-280
    [67] S. Saadi, A. Bouguelia, A. Derbal, et al., Hydrogen photoproduction over new catalystCuLaO2[J]. Journal of Photochemistry and Photobiology A: Chemistry,2007,187(1):97-104
    [68] Y. Hosogi, Y. Shimodaira, H. Kato, et al., Role of Sn2+in the band structure ofSnM2O6and Sn2M2O7(M=Nb and Ta) and their photocatalytic properties [J].Chemistry of Materials,2008,20(4):1299-1307
    [69] Y. Hosogi, H. Kato, A. Kudo, Photocatalytic activities of layered titanates andniobates ion-exchanged with Sn2+under visible light irradiation [J]. The Journal ofPhysical Chemistry C,2008,112(45):17678-17682
    [70] S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide[J]. Angewandte Chemie International Edition,2003,42(40):4908-4911
    [71] W. Zhao, W. Ma, C. Chen, et al., Efficient degradation of toxic organic pollutants withNi2O3/TiO2-xBxunder visible irradiation [J]. Journal of the American Chemical Society,2004,126(15):4782-4783
    [72] X. Chen, C. Burda, The electronic origin of the visible-light absorption properties ofC-, N-and S-doped TiO2nanomaterials [J]. Journal of the American Chemical Society,2008,130(15):5018-5019
    [73] G. Hitoki, T. Takata, J.N. Kondo, et al., An oxynitride, TaON, as an efficient wateroxidation photocatalyst under visible light irradiation (λ≤500nm)[J]. ChemicalCommunications,2002,(16):1698-1699
    [74] A. Kasahara, K. Nukumizu, T. Takata, et al., LaTiO2N as a visible-light (≤600nm)-driven photocatalyst (2)[J]. The Journal of Physical Chemistry B,2003,107(3):791-797
    [75] X. Zhang, Z. Ai, F. Jia, et al., Generalized one-pot synthesis, characterization, andphotocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres [J].The Journal of Physical Chemistry C,2008,112(3):747-753
    [76] A. Kudo, I. Tsuji, H. Kato, AgInZn7S9solid solution photocatalyst for H2evolutionfrom aqueous solutions under visible light irradiation [J]. Chemical Communications,2002,(17):1958-1959
    [77] Z. Lei, W. You, M. Liu, et al., Photocatalytic water reduction under visible light on anovel ZnIn2S4catalyst synthesized by hydrothermal method [J]. ChemicalCommunications,2003,(17):2142-2143
    [78] X. Zhang, D. Jing, M. Liu, et al., Efficient photocatalytic H2production under visiblelight irradiation over Ni doped Cd1-xZnxS microsphere photocatalysts [J]. CatalysisCommunications,2008,9(8):1720-1724
    [79] J. Tang, Z. Zou, J. Ye, Effects of substituting Sr2+and Ba2+for Ca2+on the structuralproperties and photocatalytic behaviors of CaIn2O4[J]. Chemistry of materials,2004,16(9):1644-1649
    [80] J. Yin, Z. Zou, J. Ye, A novel series of the new visible-light-driven photocatalystsMCo1/3Nb2/3O3(M=Ca, Sr, and Ba) with special electronic structures [J]. The Journalof Physical Chemistry B,2003,107(21):4936-4941
    [81] J. Sato, H. Kobayashi, Y. Inoue, Photocatalytic activity for water decomposition ofindates with octahedrally coordinated d10configuration. II. Roles of geometric andelectronic structures [J]. The Journal of Physical Chemistry B,2003,107(31):7970-7975
    [82] Z. Zou, J. Ye, H. Arakawa, Substitution effects of In3+by Al3+and Ga3+on thephotocatalytic and structural properties of the Bi2InNbO7photocatalyst [J]. Chemistryof materials,2001,13(5):1765-1769
    [83] J. Ye, Z. Zou, M. Oshikiri, et al., A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation [J]. Chemical Physics Letters,2002,356(3):221-226
    [84] Z. Zou, J. Ye, K. Sayama, et al., Photocatalytic and photophysical properties of anovel series of solid photocatalysts, BiTa1x Nb x O4(0 x1)[J]. Chemical physics letters,2001,343(3):303-308
    [85] Y. Shimodaira, H. Kato, H. Kobayashi, et al., Investigations of electronic structuresand photocatalytic activities under visible light irradiation of lead molybdate replacedwith chromium (VI)[J]. Bulletin of the Chemical Society of Japan,2007,80(5):885-893
    [86] S. Ouyang, Z. Li, Z. Ouyang, et al., Correlation of crystal structures, electronicstructures, and photocatalytic properties in a series of Ag-based oxides: AgAlO2,AgCrO2, and Ag2CrO4[J]. The Journal of Physical Chemistry C,2008,112(8):3134-3141
    [87] K. Maeda, K. Teramura, D. Lu, et al., Photocatalyst releasing hydrogen from water [J].Nature,2006,440(7082):295-295
    [88] K. Maeda, T. Takata, M. Hara, et al., GaN: ZnO solid solution as a photocatalyst forvisible-light-driven overall water splitting [J]. Journal of the American ChemicalSociety,2005,127(23):8286-8287
    [89] G. Li, T. Kako, D. Wang, et al., Composition dependence of the photophysical andphotocatalytic properties of (AgNbO3)1x(NaNbO3) x solid solutions [J]. Journal of Solid StateChemistry,2007,180(10):2845-2850
    [90] M. Yoshino, M. Kakihana, W.S. Cho, et al., Polymerizable Complex Synthesis of PureSr2NbxTa2-xO7Solid Solutions with High Photocatalytic Activities for WaterDecomposition into H2and O2[J]. Chemistry of materials,2002,14(8):3369-3376
    [91] Y. Yuan, J. Lv, X. Jiang, et al., Large impact of strontium substitution onphotocatalytic water splitting activity of BaSnO3[J]. Applied Physics Letters,2007,91(9):094107-094107-094103
    [92] S. Ouyang, H. Tong, N. Umezawa, et al., Surface-alkalinization-induced enhancementof photocatalytic H2evolution over SrTiO3-based photocatalysts [J]. Journal of theAmerican Chemical Society,2012,134(4):1974-1977
    [93] D. Wang, T. Kako, J. Ye, New series of solid-solution semiconductors (AgNbO3)1-x(SrTiO3)xwith modulated band structure and enhanced visible-light photocatalyticactivity [J]. The Journal of Physical Chemistry C,2009,113(9):3785-3792
    [94] W. Yao, J. Ye, Photophysical and Photocatalytic Properties of Ca1-xBixVxO1-xO4SolidSolutions [J]. The Journal of Physical Chemistry B,2006,110(23):11188-11195
    [95] I.-S. Cho, S. Lee, J.H. Noh, et al., SrNb2O6nanotubes with enhanced photocatalyticactivity [J]. Journal of Materials Chemistry,2010,20(19):3979-3983
    [96] Y. Bi, J. Ye, Direct conversion of commercial silver foils into high aspect ratio AgBrnanowires with enhanced photocatalytic properties [J]. Chemistry-A European Journal,2010,16(34):10327-10331
    [97] S. Chatterjee, K. Bhattacharyya, P. Ayyub, et al., Photocatalytic properties ofone-dimensional nanostructured titanates [J]. The Journal of Physical Chemistry C,2010,114(20):9424-9430
    [98] J.S. Jang, U.A. Joshi, J.S. Lee, Solvothermal synthesis of CdS nanowires forphotocatalytic hydrogen and electricity production [J]. The Journal of PhysicalChemistry C,2007,111(35):13280-13287
    [99] G. Kenanakis, N. Katsarakis, Light-induced photocatalytic degradation of stearic acidby c-axis oriented ZnO nanowires [J]. Applied Catalysis A: General,2010,378(2):227-233
    [100] H.S. Jung, Y.J. Hong, Y. Li, et al., Photocatalysis using GaN nanowires [J]. ACS nano,2008,2(4):637-642
    [101] N. Wu, J. Wang, D.N. Tafen, et al., Shape-enhanced photocatalytic activity ofsingle-crystalline anatase TiO2(101) nanobelts [J]. Journal of the American ChemicalSociety,2010,132(19):6679-6685
    [102] Q. Liu, Y. Zhou, J. Kou, et al., High-yield synthesis of ultralong and ultrathinZn2GeO4nanoribbons toward improved photocatalytic reduction of CO2intorenewable hydrocarbon fuel [J]. Journal of the American Chemical Society,2010,132(41):14385-14387
    [103] Y. Bi, J. Ye, In situ oxidation synthesis of Ag/AgCl core-shell nanowires and theirphotocatalytic properties [J]. Chemical Communications,2009,(43):6551-6553
    [104] M. Shahid, I. Shakir, S.-J. Yang, et al., Facile synthesis of core–shell SnO2/V2 O5 nanowires and their efficientphotocatalytic property [J]. Materials Chemistry and Physics,2010,124(1):619-622
    [105] Y. Bi, J. Ye, Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes viagalvanic replacement reaction [J]. Chemical Communications,2010,46(9):1532-1534
    [106] A. Selloni, Crystal growth: Anatase shows its reactive side [J]. Nature materials,2008,7(8):613-615
    [107] G. Liu, C. Sun, H.G. Yang, et al., Nanosized anatase TiO2single crystals for enhancedphotocatalytic activity [J]. Chemical Communications,2010,46(5):755-757
    [108] S. Liu, J. Yu, M. Jaroniec, Tunable photocatalytic selectivity of hollow TiO2microspheres composed of anatase polyhedra with exposed {001} facets [J]. Journalof the American Chemical Society,2010,132(34):11914-11916
    [109] G. Xi, J. Ye, Synthesis of bismuth vanadate nanoplates with exposed {001} facets andenhanced visible-light photocatalytic properties [J]. Chemical Communications,2010,46(11):1893-1895
    [110] T. Sasaki, M. Watanabe, H. Hashizume, et al., Macromolecule-like aspects for acolloidal suspension of an exfoliated titanate. Pairwise association of nanosheets anddynamic reassembling process initiated from it [J]. Journal of the American ChemicalSociety,1996,118(35):8329-8335
    [111] Y. Ebina, N. Sakai, T. Sasaki, Photocatalyst of lamellar aggregates of RuOx-loadedperovskite nanosheets for overall water splitting [J]. The Journal of PhysicalChemistry B,2005,109(36):17212-17216
    [112] T.G. Xu, C. Zhang, X. Shao, et al., Monomolecular-Layer Ba5Ta4O15Nanosheets:Synthesis and Investigation of Photocatalytic Properties [J]. Advanced FunctionalMaterials,2006,16(12):1599-1607
    [113] T. Shibata, G. Takanashi, T. Nakamura, et al., Titanoniobate and niobate nanosheetphotocatalysts: superior photoinduced hydrophilicity and enhanced thermal stability ofunilamellar Nb3O8nanosheet [J]. Energy&Environmental Science,2011,4(2):535-542
    [114] R. Ma, T. Sasaki, Nanosheets of Oxides and Hydroxides: Ultimate2DCharge‐Bearing Functional Crystallites [J]. Advanced materials,2010,22(45):5082-5104
    [115] P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solarenergy conversion [J]. The Journal of Physical Chemistry C,2007,111(7):2834-2860
    [116] G. Xi, B. Yue, J. Cao, et al., Fe3O4/WO3Hierarchical Core-Shell Structure:High-Performance and Recyclable Visible‐Light Photocatalysis [J]. Chemistry-AEuropean Journal,2011,17(18):5145-5154
    [117] Y. Bi, S. Ouyang, J. Cao, et al., Facile synthesis of rhombic dodecahedralAgX/Ag3PO4(X=Cl, Br, I) heterocrystals with enhanced photocatalytic propertiesand stabilities [J]. Physical Chemistry Chemical Physics,2011,13(21):10071-10075
    [118] K. Maeda, M. Higashi, D. Lu, et al., Efficient nonsacrificial water splitting throughtwo-step photoexcitation by visible light using a modified oxynitride as a hydrogenevolution photocatalyst [J]. Journal of the American Chemical Society,2010,132(16):5858-5868
    [119] R. Abe, T. Takata, H. Sugihara, et al., Photocatalytic overall water splitting undervisible light by TaON and WO3with an IO3-/I-shuttle redox mediator [J]. ChemicalCommunications,2005,(30):3829-3831
    [120] Y. Sasaki, A. Iwase, H. Kato, et al., The effect of co-catalyst for Z-schemephotocatalysis systems with an Fe3+/Fe2+ electronmediator on overall water splitting under visible light irradiation [J]. Journal ofCatalysis,2008,259(1):133-137
    [121] R. Benedix, F. Dehn, J. Quaas, et al., Application of titanium dioxide photocatalysis tocreate self-cleaning building materials [J]. Lacer,2000,5:157-168
    [122] A. Fernandez, G. Lassaletta, V. Jimenez, et al., Preparation and characterization ofTiO2 photocatalysts supported on various rigid supports (glass, quartzand stainless steel). Comparative studies of photocatalytic activity in waterpurification [J]. Applied Catalysis B: Environmental,1995,7(1):49-63
    [123] M. Ni, M.K. Leung, D.Y. Leung, et al., A review and recent developments inphotocatalytic water-splitting using TiO2for hydrogen production [J]. Renewable andSustainable Energy Reviews,2007,11(3):401-425
    [124] H. Lal, V. Misra, P. Viswanathan, et al., Comparative studies on ecotoxicology ofsynthetic detergents [J]. Ecotoxicology and environmental safety,1983,7(6):538-545
    [125] J.M. Montgomery, Water treatment: principles and design [M]. John Wiley&Sons,1985:
    [126] D. Das, T.N. Veziro lu, Hydrogen production by biological processes: a survey ofliterature [J]. International Journal of Hydrogen Energy,2001,26(1):13-28
    [127] D. Scaife, Oxide semiconductors in photoelectrochemical conversion of solar energy[J]. Solar Energy,1980,25(1):41-54
    [128] H. Tong, S. Ouyang, Y. Bi, et al., Nano-photocatalytic materials: possibilities andchallenges [J]. Advanced materials,2012,24(2):229-251
    [129] J.J. Bozzola, L.D. Russell, Electron microscopy: principles and techniques forbiologists [M]. Jones&Bartlett Learning,1999:
    [130] B.D. Cullity, Elements of X-ray Diffraction [J]. American Journal of Physics,1957,25:394-395
    [131] R. Erni, M.D. Rossell, C. Kisielowski, et al., Atomic-resolution imaging with asub-50-pm electron probe [J]. Physical review letters,2009,102(9):096101
    [132] L. Ozawa, Cathodoluminescence and photoluminescence: theories and practicalapplications [M]. CRC Press,2010:
    [133] R. Viscarra Rossel, D. Walvoort, A. McBratney, et al., Visible, near infrared, midinfrared or combined diffuse reflectance spectroscopy for simultaneous assessment ofvarious soil properties [J]. Geoderma,2006,131(1):59-75
    [134] H.H. Jaffé, M. Orchin, Theory and applications of ultraviolet spectroscopy,1962
    [135] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and relatedsurface phenomena [J]. Surface Science Reports,2008,63(12):515-582
    [136] Z.R.R. Tian, J.A. Voigt, J. Liu, et al., Complex and oriented ZnO nanostructures [J].Nature Materials,2003,2(12):821-826
    [137] K. Vinodgopal, P.V. Kamat, Enhanced Rates of Photocatalytic Degradation of an AzoDye Using SnO2/TiO2Coupled Semiconductor Thin Films [J]. Environmental science&technology,1995,29(3):841-845
    [138] S. U. M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting bya chemically modified n-TiO2[J]. Science,2002,297(5590):2243-2245
    [139] M. R. Hoffmann, S. T. Martin, W. Choi, et al., Environmental applications ofsemiconductor photocatalysis [J]. Chemical reviews,1995,95(1):69-96
    [140] D. Li, Y. Xia, Fabrication of titania nanofibers by electrospinning [J]. Nano Letters,2003,3(4):555-560
    [141] A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth andfunctionality of TiO2nanotubes and other self-aligned MOx structures [J]. ChemicalCommunications,2009,(20):2791-2808
    [142] X. Song, L. Gao, Facile synthesis and hierarchical assembly of hollow nickel oxidearchitectures bearing enhanced photocatalytic properties [J]. The Journal of PhysicalChemistry C,2008,112(39):15299-15305
    [143] G.J.d.A. Soler-Illia, C. Sanchez, B. Lebeau, et al., Chemical strategies to designtextured materials: from microporous and mesoporous oxides to nanonetworks andhierarchical structures [J]. Chemical Reviews,2002,102(11):4093-4138
    [144] D. Ma, S. Huang, W. Chen, et al., Self-assembled three-dimensional hierarchicalumbilicate Bi2WO6microspheres from nanoplates: controlled synthesis, photocatalyticactivities, and wettability [J]. The Journal of Physical Chemistry C,2009,113(11):4369-4374
    [145] Q. Wu, X. Chen, P. Zhang, et al., Amino acid-assisted synthesis of ZnO hierarchicalarchitectures and their novel photocatalytic activities [J]. Crystal Growth and Design,2008,8(8):3010-3018
    [146] K.-L. Zhang, C.-M. Liu, F.-Q. Huang, et al., Study of the electronic structure andphotocatalytic activity of the BiOCl photocatalyst [J]. Applied Catalysis B:Environmental,2006,68(3):125-129
    [147] S.Y. Chai, Y.J. Kim, M.H. Jung, et al., Heterojunctioned BiOCl/Bi2 O3, a new visible light photocatalyst [J]. Journal of Catalysis,2009,262(1):144-149
    [148] J. Zhang, F. Shi, J. Lin, et al., Self-assembled3-D architectures of BiOBr as a visiblelight-driven photocatalyst [J]. Chemistry of Materials,2008,20(9):2937-2941
    [149] H. Cheng, B. Huang, P. Wang, et al., In situ ion exchange synthesis of the novelAg/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants [J]. Chem.Commun.,2011,47(25):7054-7056
    [150] H. Cheng, B. Huang, Y. Dai, et al., One-step synthesis of the nanostructured AgI/BiOIcomposites with highly enhanced visible-light photocatalytic performances [J].Langmuir,2010,26(9):6618-6624
    [151] X. Zhang, L. Zhang, T. Xie, et al., Low-temperature synthesis and highvisible-light-induced photocatalytic activity of BiOI/TiO2heterostructures [J]. TheJournal of Physical Chemistry C,2009,113(17):7371-7378
    [152] J.C. Yu, J.G. Yu, W.K. Ho, et al., Effects of F-doping on the photocatalytic activityand microstructures of nanocrystalline TiO2powders [J]. Chemistry of Materials,2002,14(9):3808-3816
    [153] M. Anpo, M. Takeuchi, The design and development of highly reactive titanium oxidephotocatalysts operating under visible light irradiation [J]. Journal of Catalysis,2003,216(1-2):505-516
    [154] E. Keller, V. Kr mer, M. Schmidt, et al., The crystal structure of Bi4O5I2and itsrelation to the structure of Bi4O5Br2[J]. Zeitschrift für Kristallographie,2002,217(6):256-264
    [155] X. Xiao, W.-D. Zhang, Hierarchical Bi7O9I3micro/nano-architecture: facile synthesis,growth mechanism, and high visible light photocatalytic performance [J]. RSCAdvances,2011,1(6):1099-1105
    [156] X. Xiao, C. Liu, R. Hu, et al., Oxygen-rich bismuth oxyhalides: generalized one-potsynthesis, band structures and visible-light photocatalytic properties [J]. Journal ofMaterials Chemistry,2012,22(43):22840-22843
    [157] U. Eggenweiler, J. Ketterer, E. Keller, et al., The crystal structure of α-Bi5O7I [J].Zeitschrift für Kristallographie,2001,216(4):230-233
    [158] J. Ketterer, E. Keller, V. Kr mer, Crystal structure of bismuth oxide iodide, β-Bi5O7I[J]. Zeitschrift fur Kristallographie,1985,172:63-70
    [159] W.L. Huang, Q. Zhu, Electronic structures of relaxed BiOX (X=F, Cl, Br, I)photocatalysts [J]. Computational Materials Science,2008,43(4):1101-1108
    [160] Z. Bian, J. Zhu, S. Wang, et al., Self-assembly of active Bi2O3/TiO2visiblephotocatalyst with ordered mesoporous structure and highly crystallized anatase [J].The Journal of Physical Chemistry C,2008,112(16):6258-6262
    [161] X. Xiao, C. Xing, G. He, et al., Solvothermal synthesis of novel hierarchical Bi4O5I2nanoflakes with highly visible light photocatalytic performance for the degradation of4-tert-butylphenol [J]. Applied Catalysis B: Environmental,2014,148-149:154-163
    [162] C. Yu, C. Fan, J.C. Yu, et al., Preparation of bismuth oxyiodides and oxides and theirphotooxidation characteristic under visible/UV light irradiation [J]. Materials ResearchBulletin,2011,46(1):140-146
    [163] D. Hou, X. Hu, P. Hu, et al., Bi4Ti3O12nanofibers–BiOI nanosheets p–n junction:facile synthesis and enhanced visible-light photocatalytic activity [J]. Nanoscale,2013,5(20):9764-9772
    [164] Z. Sun, J. Guo, S. Zhu, et al., A high-performance Bi2WO6-graphene photocatalyst forvisible light-induced H2and O2generation [J]. Nanoscale,2014,6(4):2186-2193
    [165] W.E. Morgan, W.J. Stec, J.R. Van Wazer, Inner-orbital binding-energy shifts ofantimony and bismuth compounds [J]. Inorganic Chemistry,1973,12(4):953-955
    [166] P. Li, X. Zhao, C.-j. Jia, et al., ZnWO4/BiOI heterostructures with highly efficientvisible light photocatalytic activity: the case of interface lattice and energy level match[J]. Journal of Materials Chemistry A,2013,1(10):3421-3429
    [167] J. Liu, L. Ruan, S.B. Adeloju, et al., BiOI/TiO2nanotube arrays, a unique flake-tubestructured p–n junction with remarkable visible-light photoelectrocatalyticperformance and stability [J]. Dalton Transactions,2014,43(4):1706-1715
    [168] Y. Wang, S. Li, X. Xing, et al., Self‐Assembled3D Flowerlike HierarchicalFe3O4@Bi2O3Core–Shell Architectures and Their Enhanced Photocatalytic Activityunder Visible Light [J]. Chemistry-A European Journal,2011,17(17):4802-4808
    [169] D.V. Bavykin, F.C. Walsh, Elongated titanate nanostructures and their applications [J].European Journal of Inorganic Chemistry,2009,2009(8):977-997
    [170] M. Shang, W. Wang, L. Zhang, et al.,3D Bi2WO6/TiO2hierarchical heterostructure:Controllable synthesis and enhanced visible photocatalytic degradation performances[J]. The Journal of Physical Chemistry C,2009,113(33):14727-14731
    [171] H. Sun, S. Liu, S. Liu, et al., A comparative study of reduced graphene oxide modifiedTiO2, ZnO and Ta2O5in visible light photocatalytic/photochemical oxidation ofmethylene blue [J]. Applied Catalysis B-Environmental,2014,146:162-168
    [172] X. Xu, G. Yang, J. Liang, et al., Fabrication of one-dimensional heterostructuredTiO2@SnO2with enhanced photocatalytic activity [J]. Journal of Materials ChemistryA,2014,2(1):116-122
    [173] J. Cao, J. Z. Sun, H. Y. Li, et al., A facile room-temperature chemical reductionmethod to TiO2@CdS core/sheath heterostructure nanowires [J]. Journal of MaterialsChemistry,2004,14(7):1203-1206
    [174] T. Cao, Y. Li, C. Wang, et al., Bi4Ti3O12nanosheets/TiO2submicron fibersheterostructures: in situ fabrication and high visible light photocatalytic activity [J].Journal of Materials Chemistry,2011,21(19):6922-6927
    [175] L. Ye, L. Tian, T. Peng, et al., Synthesis of highly symmetrical BiOI single-crystalnanosheets and their {001} facet-dependent photoactivity [J]. Journal of MaterialsChemistry,2011,21(33):12479-12484
    [176] K.H. Reddy, S. Martha, K. Parida, Fabrication of Novel p-BiOI/n-ZnTiO3Heterojunction for Degradation of Rhodamine6G under Visible Light Irradiation [J].Inorganic chemistry,2013,52:6390-6401
    [177] M. Takagi-Kawai, M. Soma, T. Onishi, et al., The adsorption and the reaction of NH3and NO x on supported V2O5catalysts: effect of supporting materials [J]. CanadianJournal of Chemistry,1980,58(20):2132-2137
    [178] R. Pierotti, J. Rouquerol, Reporting physisorption data for gas/solid systems withspecial reference to the determination of surface area and porosity [J]. Pure ApplChem,1985,57(4):603-619
    [179] M. Zhang, C. Shao, J. Mu, et al., Hierarchical heterostructures of Bi2MoO6on carbonnanofibers: controllable solvothermal fabrication and enhanced visible photocatalyticproperties [J]. Journal of Materials Chemistry,2012,22(2):577-584
    [180] H. Liu, W. Cao, Y. Su, et al., Synthesis, characterization and photocatalyticperformance of novel visible-light-induced Ag/BiOI [J]. Applied Catalysis B:Environmental,2012,111:271-279
    [181] H. Yamashita, Y. Ichihashi, M. Anpo, et al., Photocatalytic decomposition of NO at275K on titanium oxides included within Y-zeolite cavities: The structure and role ofthe active sites [J]. The Journal of Physical Chemistry,1996,100(40):16041-16044
    [182] X.-j. Wang, W.-y. Yang, F.-t. Li, et al., In Situ Microwave-Assisted Synthesis ofPorous N-TiO2/g-C3N4Heterojunctions with Enhanced Visible-Light PhotocatalyticProperties [J]. Industrial&Engineering Chemistry Research,2013,52(48):17140-17150
    [183] C. Chen, W. Ma, J. Zhao, Semiconductor-mediated photodegradation of pollutantsunder visible-light irradiation [J]. Chemical Society Reviews,2010,39(11):4206-4219
    [184] G. Dai, J. Yu, G. Liu, Synthesis and enhanced visible-light photoelectrocatalyticactivity of p-n junction BiOI/TiO2nanotube arrays [J]. The Journal of PhysicalChemistry C,2011,115(15):7339-7346
    [185] J. Cao, B. Xu, B. Luo, et al., Novel BiOI/BiOBr heterojunction photocatalysts withenhanced visible light photocatalytic properties [J]. Catalysis Communications,2011,13(1):63-68
    [186] S.H. Hwang, D.H. Shin, J. Yun, et al., SiO2/TiO2Hollow Nanoparticles Decoratedwith Ag Nanoparticles: Enhanced Visible Light Absorption and Improved LightScattering in Dye‐Sensitized Solar Cells [J]. Chemistry-A European Journal,2014,20(15):4439-4446
    [187] L. Liang, Y. Liu, C. Bu, et al., Highly Uniform, BifunctionalCore/Double-Shell-Structured β-NaYF4: Er3+, Yb3+@SiO2@TiO2HexagonalSub‐microprisms for High‐Performance Dye Sensitized Solar Cells [J]. Advancedmaterials,2013,25(15):2174-2180
    [188] F. Theil, A. Dellith, J. Dellith, et al., Ru dye functionalized Au-SiO2@TiO2andAu/Pt-SiO2@TiO2nanoassemblies for surface-plasmon-induced visible lightphotocatalysis [J]. Journal of colloid and interface science,2014,421:114-121
    [189] H. Fu, C. Pan, W. Yao, et al., Visible-light-induced degradation of rhodamine B bynanosized Bi2WO6[J]. The Journal of Physical Chemistry B,2005,109(47):22432-22439
    [190] J. Tang, Z. Zou, J. Ye, Photocatalytic decomposition of organic contaminants byBi2WO6under visible light irradiation [J]. Catalysis Letters,2004,92(1-2):53-56
    [191] Z. Liu, F. Chen, Y. Gao, et al., A novel synthetic route for magnetically retrievableBi2WO6hierarchical microspheres with enhanced visible photocatalytic performance[J]. Journal of Materials Chemistry A,2013,1(24):7027-7030
    [192] J. Tian, Y. Sang, G. Yu, et al., A Bi2WO6-based hybrid photocatalyst with broadspectrum photocatalytic properties under UV, visible, and near-infrared irradiation [J].Advanced materials,2013,25(36):5075-5080
    [193] N. Horzum, R. Mu oz-Espí, G. Glasser, et al., Hierarchically Structured MetalOxide/Silica Nanofibers by Colloid Electrospinning [J]. ACS applied materials&interfaces,2012,4(11):6338-6345
    [194] Y. Iguchi, H. Ichiura, T. Kitaoka, et al., Preparation and characteristics of highperformance paper containing titanium dioxide photocatalyst supported on inorganicfiber matrix [J]. Chemosphere,2003,53(10):1193-1199
    [195] X. Peng, A.C. Santulli, E. Sutter, et al., Fabrication and enhanced photocatalyticactivity of inorganic core–shell nanofibers produced by coaxial electrospinning [J].Chemical Science,2012,3(4):1262-1272
    [196] S. Zhan, D. Chen, X. Jiao, et al., Mesoporous TiO2/SiO2composite nanofibers withselective photocatalytic properties [J]. Chemical Communications,2007,(20):2043-2045
    [197] Y. Liu, S. Sagi, R. Chandrasekar, et al., Preparation and characterization ofelectrospun SiO2nanofibers [J]. Journal of nanoscience and nanotechnology,2008,8(3):1528-1536
    [198] R. Wang, J. Guo, D. Chen, et al.,“Tube brush” like ZnO/SiO2hybrid to construct aflexible membrane with enhanced photocatalytic properties and recycling ability [J].Journal of Materials Chemistry,2011,21(48):19375-19380
    [199] T. Saison, N. Chemin, C. Chane ac, et al., Bi2O3, BiVO4, and Bi2WO6: impact ofsurface properties on photocatalytic activity under visible light [J]. The Journal ofPhysical Chemistry C,2011,115(13):5657-5666
    [200] J. Sá, J. Montero, E. Duncan, et al., Bi modified Pd/SnO2 catalysts forwater denitration [J]. Applied Catalysis B: Environmental,2007,73(1):98-105
    [201] J. Espinos, J. Morales, A. Barranco, et al., Interface effects for Cu, CuO, and Cu2Odeposited on SiO2and ZrO2. XPS determination of the valence state of copper inCu/SiO2and Cu/ZrO2catalysts [J]. The Journal of Physical Chemistry B,2002,106(27):6921-6929
    [202] J. Jiang, X. Zhang, P. Sun, et al., ZnO/BiOI heterostructures: photoinducedcharge-transfer property and enhanced visible-light photocatalytic activity [J]. TheJournal of Physical Chemistry C,2011,115(42):20555-20564
    [203] Z. Ma, W. Chen, Z. Hu, et al., Flexible and thermally stable SiO2–TiO2compositemicro fibers with hierarchical nano-heterostructure [J]. RSC Advances,2013,3(43):20132-20137
    [204] D. DelaiáSun, Hierarchically multifunctional TiO2nano-thorn membrane for waterpurification [J]. Chemical Communications,2010,46(35):6542-6544
    [205] E.F. Schubert, J.K. Kim, Solid-state light sources getting smart [J]. Science,2005,308(5726):1274-1278
    [206] J.S. Kim, P.E. Jeon, Y.H. Park, et al., White-light generation throughultraviolet-emitting diode and white-emitting phosphor [J]. Applied physics letters,2004,85(17):3696-3698
    [207] H. Guo, X.Y. Liu, F. Li, et al., Enhanced White Luminescence in Mixed-ValenceEu-Doped BaAl2Si2O8Glass Ceramics for W-LEDs [J]. Journal of TheElectrochemical Society,2012,159(6): J223-J226
    [208] X.S. Yan, W.W. Li, X.B. Wang, et al., Facile Synthesis of Ce3+, Eu3+Co-Doped YAGNanophosphor for White Light-Emitting Diodes [J]. Journal of The ElectrochemicalSociety,2012,159(2): H195-H200
    [209] H. Wu, X. Zhang, C. Guo, et al., Three-band white light from InGaN-based blue LEDchip precoated with green/red phosphors [J]. Photonics Technology Letters, IEEE,2005,17(6):1160-1162
    [210] Y. Hu, W. Zhuang, H. Ye, et al., Preparation and luminescent properties of (Ca1- x, Sr x) S: Eu2+ red-emitting phosphor forwhite LED [J]. Journal of Luminescence,2005,111(3):139-145
    [211] G. Li, D. Geng, M. Shang, et al., Tunable luminescence of Ce3+/Mn2+-coactivatedCa2Gd8(SiO4)6O2through energy transfer and modulation of excitation: potentialsingle-phase white/yellow-emitting phosphors [J]. Journal of Materials Chemistry,2011,21(35):13334-13344
    [212] J.M. Phillips, M.E. Coltrin, M.H. Crawford, et al., Research challenges toultra‐efficient inorganic solid‐state lighting [J]. Laser&Photonics Reviews,2007,1(4):307-333
    [213] A.A. Setlur, E.V. Radkov, C.S. Henderson, et al., Energy-efficient,high-color-rendering LED lamps using oxyfluoride and fluoride phosphors [J].Chemistry of Materials,2010,22(13):4076-4082
    [214] S. Adachi, T. Takahashi, Direct synthesis and properties of K2SiF6: Mn4+phosphor bywet chemical etching of Si wafer [J]. Journal of Applied Physics,2008,104(2):023512-023512-023513
    [215] A. Paulusz, Efficient Mn (IV) Emission in Fluorine Coordination [J]. Journal of TheElectrochemical Society,1973,120(7):942-947
    [216] R. Kasa, S. Adachi, Red and Deep Red Emissions from Cubic K2SiF6: Mn4+andHexagonal K2MnF6Synthesized in HF/KMnO4/KHF2/Si Solutions [J]. Journal of TheElectrochemical Society,2012,159(4): J89
    [217] T. Takahashi, S. Adachi, Synthesis of K2SiF6: Mn4+Red Phosphor from Silica Glassesby Wet Chemical Etching in HF/KMnO4Solution [J]. Electrochemical and Solid-StateLetters,2009,12(8): J69-J71
    [218] H. Riesen, T. Monks-Corrigan, N.B. Manson, Temperature dependence of the R1 linewidth in Al2 O3: Mn4+. Aspectral hole-burning and FLN study [J]. Chemical Physics Letters,2011,
    [219] L.C. Weiss, P.J. McCarthy, J.P. Jasinski, et al., Absorption and magnetic circulardichroism spectra of hexafluoroosmate (IV) and hexafluoroiridate (IV) in the cubichost dicesium hexafluorogermanate [J]. Inorganic Chemistry,1978,17(10):2689-2698
    [220] T. Takahashi, S. Adachi, Mn4+-Activated Red Photoluminescence in K2SiF6Phosphor[J]. Journal of The Electrochemical Society,2008,155(12): E183-E188
    [221] J.C. de Mello, H.F. Wittmann, R.H. Friend, An improved experimental determinationof external photoluminescence quantum efficiency [J]. Advanced materials,1997,9(3):230-232
    [222] J. Ziegler, S. Xu, E. Kucur, et al., Silica‐Coated InP/ZnS Nanocrystals as ConverterMaterial in White LEDs [J]. Advanced materials,2008,20(21):4068-4073
    [223] C. Lin, Y. Zheng, H. Chen, et al., Improving optical properties of white LEDfabricated by a blue LED chip with yellow/red phosphors [J]. Journal of TheElectrochemical Society,2010,157(9): H900-H903
    [224] S. Kim, T. Kim, M. Kang, et al., Highly luminescent InP/GaP/ZnS nanocrystals andtheir application to white light-emitting diodes [J]. Journal of the American ChemicalSociety,2012,134(8):3804-3809