土壤氮素硝化过程中亚硝态氮的累积及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,人们普遍认为硝化反硝化过程的中间产物---亚硝态氮在陆地和水生生态系统中不会产生长期累积,只是反应过程的瞬间产物。近年来,有研究者在陆地生态系统的细质地土壤和酸性褐土中中发现了高浓度的亚硝态氮,也有研究发现高pH和高铵态氮的土壤会产生亚硝态氮的累积。亚硝态氮由于在食物和饮水方面对人体的危害越来越受到关注。本文通过研究石灰性土壤氮素转化过程中亚硝态氮的累积,探讨了土壤亚硝态氮的累积情况与土壤温度、水分、氮素用量等各影响因子间的关系;并对我国主要土壤氮素的硝化特征及亚硝态氮的累积与土壤性质的关系进行研究。结果表明:
     1.通过对尿素、硫酸铵、硝酸铵、硝酸钠、亚硝酸钠硝化过程中亚硝态氮浓度累积的研究,发现在培养条件下(土壤水分为田间最大持水量(WHC)的60 %,温度为25℃)硝酸钠处理下的土壤中几乎未检测到亚硝态氮,3种铵态氮肥处理均有不同程度的亚硝态氮累积,土壤中亚硝态氮含量依次为硫酸铵>尿素>硝酸铵,亚硝酸钠处理下土壤亚硝态氮浓度在整个培养过程中始终保持在较高水平。说明在培养条件下,土壤中亚硝态氮主要来源于土壤硝化过程,且高浓度的亚硝态氮能在土壤中长时间累积。
     2.分别在施用不同尿素量、不同培养温度及不同水分条件下研究石灰性土壤中亚硝态氮的累积情况及与各影响因子间的关系,发现土壤中亚硝态氮浓度与铵态氮浓度呈极显著正相关(p < 0.01),与硝化速率呈极显著负相关(p < 0.01)。土壤中亚硝态氮浓度随氮肥施用量的增加而增大;随土壤水分含量的增加而上升;培养温度为45℃时亚硝态氮浓度最小,培养温度为25和35℃时土壤亚硝态氮浓度差异较小,且均高于45℃时。土壤中亚硝态氮累积总量与氮肥用量和土壤水分含量均呈显著直线正相关(p < 0.01);亚硝态氮最大浓度与土壤水分含量呈显著直线正相关(p < 0.01),出现在硝化作用5 ~10 d后。
     3.在不同尿素量条件下,土壤中亚硝态氮浓度随尿素施用量的增加而增大,当土壤中C:N约为25:1时(即当尿素施用量为0.4 g·kg-1),土壤亚硝态氮浓度与土壤脲酶活性成显著负相关(p < 0.05);当土壤中C:N大于或小于25:1时,两者无相关性。当尿素用量为0.2 g·kg-1与0.4 g·kg-1时,土壤亚硝态氮浓度与土壤电导率成极显著正相关(p < 0.01);土壤pH的变化与土壤中亚硝态氮的浓度无显著相关性。
     4.全国13种主要土壤亚硝态氮累积的试验表明:亚硝态氮的峰值浓度以褐土最高,其次是淤灌土;黑土、黄壤和棕壤在培养过程中几乎未检测到亚硝态氮。亚硝态氮累积总量以褐土、淤灌土最大,水稻土和砖红壤最小。培养初期(3 d)的亚硝态氮浓度在0~40 mg·kg-1变化不等。各供试土壤中亚硝态氮的峰值浓度、累积总量和培养3d时土壤中的亚硝态氮浓度与土壤pH均呈显著正相关(p < 0.05);土壤黏粒含量与各供试土壤中亚硝态氮峰值浓度呈显著负相关(p < 0.05),与培养3d时土壤中的亚硝态氮浓度呈极显著负相关(p < 0.01);各供试土壤中亚硝态氮累积总量和培养3d时土壤中亚硝态氮浓度与土壤碳酸钙含量均呈显著负相关(p < 0.05);各供试土壤培养3d时土壤中亚硝态氮的浓度与土壤无定形铁呈显著负相关(p < 0.05)。土壤pH、黏粒、无定形铁含量通过直接和间接效应成为影响土壤亚硝态氮峰值浓度、累积总量、培养3天时亚硝态氮的浓度的主要原因,而土壤脲酶活性对三个因变量的作用均很微弱。
     5.我国13种主要土壤中硝态氮的“S”形曲线方程模拟得出,土壤最大硝化作用速率(Kmax)以黄绵土最高,其次是红油土,以砖红壤为最小。硝态氮累积达到最大需要的时间(t0)以水稻土为最长,其次是砖红壤和棕壤,以燥红土和淤灌土最小。土壤最大硝化作用速率(Kmax)与土壤pH值均成显著正相关(p < 0.05),与土壤无定形铁含量成显著负相关(p < 0.05),但达到最大硝化速率需要的时间(t0)与土壤pH值呈显著负相关(p < 0.05)。土壤最大硝化速率(Kmax)与培养3天时土壤中亚硝态氮的浓度呈极显著正相关。经通径分析表明土壤pH值、土壤无定形铁含量、碳酸钙量和土壤阳离子代换量(CEC)是影响土壤最大硝化速率及达到最大硝化速率对应的时间t0的主要因素。
Ever since a long time ago, nitrite was generally regarded as temperatorly intermediate product during nitrification and denitrification in terrestrial and marine ecosystems. Recent years, some study had found that high concentration of nitrite could be exisited in fine texture soil and acidic soil of terrestrial ecosystem. Other study had observed that high soil pH and high ammonium content could result in nitrite accumulation in soil. Due to harmful effects of nitrite from foods and drinking water for human beings, more and more attention had been payed to nitrite production and accumulations. This study mainly focused on nitrite accumulation during nitrogen transformation process, the relationship between soil nitrite accumulation in calcareous soil and the influential factors such as temperature, moisture regimes, nitrogen type, and nitrogen rates and so on were also considered. Meanwhile, the relationship between the soil nitrification characteristic, soil nitrite accumulation and various kinds of soil properties were also discussed. The results were as follows:
     1. The soil nitrite accumulation was studied through studying the urea, ammonium sulphate, ammonium nitrate, sodium nitrate and sodium nitrite transformation in calcareous soil. Under the incubation condition (60%WHC, 25℃), sodium nitrate treatment got undetectable nitrite content. On the contrast, there were nitrite accumulation appeared for all three ammonium nitrogen fertilizers, the nitrite content in soil was decreased in the order ammonium sulphate> urea> ammonium nitrate. Sodium nitrite treatment was kept on high nitrite content during the whole incubation period. Theses indected that soil nitrite accumulation derived from soil nitrogen nitrification and high nitrite concentration could be accumulated in soil for a long time in the current incubition codition.
     2. In the laboratory experiments different fertilizer rates, various moisture contents, and temperature regimes were applied in the same incubations to identify the optimum conditions for nitrite production and accumulation in calcareous soil. Soil nitrite concentration was positively correlated with ammonia content(p < 0.01) and negatively correlated with the nitrification rate for three tested ammonium fertilizers(p < 0.01). Meanwhile, soil nitrite concentration was descended with the increased of fertilizer use amount and soil moisture. Nitrite production was small under incubation temperature of 45℃, there was not any significant difference between incubation temperature of 25℃and 35℃, but soil nitrite concentration were bigger than that soil incubated at 45℃. The total nitrite accumulated amount during incubation period was significantly agreement with nitrogen rates and soil moisture. The maximum nitrite concentration in soil was remarkable correlated with soil moisture content, and appeared 5~ 10 days after fertilizer application. 3. The soil nitrite concentration was increased with the urea dose. While the soil C: N was 25:1 (0.4g urea·kg-1), soil nitrite concentration was negatively correlated with the activity of soil urease(p < 0.05). While the soil C: N was greater or less than 25:1, they were no correlation. The nitrite concentration was positively correlated with soil electrical conductivity while the urea does was 0.2 g·kg-1and 0.4 g·kg-1(p < 0.01). Soil pH was no significantly relation with soil nitrite concentration(p < 0.01).
     4. To study the correlation between nitre accumulation in the thirteen soil of China and soil properties. The result showed that the max nitrite concentration was the most in drab soil, next is colmatage soil, there were not any nitrite was found in black soil, yellow soil and brown soil. Total nitrite accumulation was the most in drab soil and colmatage soil, and the least was paddy soil and lateritic soil. The nitrite concentration after incubation 3 days was in a range of 0~ 40 mg·kg-1. The max nitrite concentration, total nitrite accumulation and the nitrite concentration after incubation 3 days were positively correlated with soil pH. The max nitrite concentration and the nitrite concentration after incubation 3 days were negatively correlated with soil clay grain. The total nitrite accumulation and nitrite concentration after incubation 3 days were negatively correlated with soil calcium carbonate. The nitrite concentration after incubation 3 days was negatively correlated with amorphous iron. pH, caly grain and amorphours iron were the majoy factors influencing the maximum, total and the nitrite concentration after incubation 3 days, while the urease active had the least influence on them.
     5. The changes nitrate accumulation with time was determined during the process of nitrification. The equation NtNO=SNO/ (1+ (EXP (a- bt))) was used to express the accumulation of nitrate with time. The maximal soil nitrification rate Kmax and nitrification time t0 were derived from the equation and used to characterize quantatively the nitrification process in different soils. Kmax of Loessal soil was the highest, Red oil soil was next, and the lowest was Lateritic soil. The t0 of Paddy soil was the longest, Lateritic soil and Brown soil were next, Savanna red soil and Colmatage soil were the shortest. Soil Kmax had a positive correlation with soil pH and had a negatively correlation with soil amorphous iron, but t0 had a sifnificant negative consistant with soil pH. Kmax was remarkable positively correlated with the nitrite concentration after incubation 3 days. With respect to the effect in the path analysis, soil pH, soil amorphous iron, CaCO3 content and CEC were the most sifnificantly influence on Kmax and t0.
引文
[1]国家统计局.中国统计年鉴(1980~2006)[R].北京:中国统计出版社,496- 497.
    [2]李家康,林葆,梁国庆,等.对我国化肥使用前景的剖析[J].植物营养与肥料学报, 2001, 7(1): 1- 10.
    [3]李军,黄敬峰,程家安.我国化肥施用量及其可能污染的时空分布特征[J].生态环境,2003,12(2):145- 149.
    [4]国家统计局农村社会经济调查总队.中国农村经济统计年鉴[Z].北京:中国统计出版社, 2003.
    [5]詹风,刘雪琴,孟涛,等.氮素对农田生态系统的污染现状及对策[J].陕西农业科学, 2006, (1): 45- 65.
    [6]朱兆良,文启孝.中国土壤氮素[M ].南京:江苏科学技术出版社, 1992.
    [7] Kraus H H. The European Parliament and EC Environment Policy, Working Paper W-2. Luxembourg: European Parliament, 1993. 12..
    [8] Goss M J, Barry D A J, Rudolph D L. Contamination in Ontario farmstead domestic wells and its association with agriculture: 1. Results from drinking water wells [J]. Journal of Contaminant Hydrology, 1998, 32 (3/4): 267- 293.
    [9] Jennings G D, Sneed R E, Huffman R H, et al. Nitrate and pesticide occurance in North Carolina Wells. In: Joseph S. ed. International Summer Meeting of the American Society of Agricultural Engineers. Michigan, Frankfort, 1991.
    [10] Overgaard K. Trends in nitrate pollution of groundwater in Denmark [J]. Nordic Hydrology, 1989, 15 (4/5):177- 184.
    [11] Thorburn P J, Biggs J S , Weier K L , et al. Nitrate in groundwatersof intensive agricultural areas in coastal Northeastern Australia [J]. Agricultue, Ecosystems and Enviornment, 2003, 94: 49- 58.
    [12] Spalding R F, Exner M E. Occurrence of nitrate in groundwater- Areview [J]. Journal of Environmental Quality, 1993, 22 (3): 392- 402.
    [13]张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝态氮污染的调查[J].植物营养与肥料学报, 1995, 1 (2): 80- 87.
    [14]刘宏斌,李志宏,张云贵,等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报, 2006, 43(3): 405- 412.
    [15]程智慧,刘旭新,董志刚,等.西安蔬菜主产区土壤硝态氮累积现状与蔬菜产品、浅层地下水氮素污染调查研究[J].西北农业学报, 2008, 17(1): 188- 192, 198.
    [16]巨晓棠,张福锁.中国北方土壤硝态氮的累积及其对环境的影响[J ].生态环境, 2003, 12 (1): 24- 28.
    [17]鲁如坤.土壤—植物营养学原理和施肥[M].北京:化学工业出版社, 1998 :112- .152.
    [18]李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J ]应用生态学报, 2004, 11 (2): 240- 242.
    [19]杨玉惠,张仁陟.黄土高原半干旱地区施氮对土壤硝态氮分布与累积的影响[J].甘肃农业大学学报, 2006,12(6):102- 107.
    [20]同延安,石维,吕殿青等.陕西三种类型土壤剖面硝酸盐累积、分布与土壤质地的关系[J].植物营养与肥料学报, 2005, 22(4): 435- 441.
    [21]徐爱华,于洪斌,丁蕴铮.施用氮肥对蔬菜中硝酸盐积累的影响[J].磷肥与复肥, 2004, 19(1):70- 73.
    [22]张春兰,高祖明,张耀栋,等.氮素形态和NO3--N和NH4+-N配比对菠菜生长和品质的影响[J ].南京农业大学学报, 1990, 13(3): 70- 74.
    [23]胡承孝,邓波儿.施用氮肥对小白菜、番茄中硝酸盐积累的影响[J ].华中农业大学学报, 1992, 11(3): 239- 243.
    [24]艾绍英,黄小红,柯玉诗,等.氮肥形态及施用方式对菠菜生长和硝酸盐累积的影响[J].中国农学通报, 2001, 17(5): 11- 13.
    [25]韦公远.降低蔬菜中硝酸盐累积的技术探讨[J ].山东蔬菜, 2004, (3): 28- 29.
    [26]陈宝明.施氮对植物生长、硝态氮累积及土壤硝态氮残留的影响[J].生态环境, 2005, 15 (3): 603- 632.
    [27]徐杰,石维,同延安.不同氮肥形态对土壤释放N2O的影响[J].土壤通报, 2009, 40(2): 325- 330.
    [28] De Datta S K. Nitrogen transformation in wetland rice ecosystems [J]. Fertilizer Research, 1995, 42: 193- 203.
    [29] Lagreid M, Bockman O C and Kaarstad O. Agriculture,Fertilizers and Environment [M]. Norsk Hydro ASA Porsgrunn, Norway, CABI publishing, 1999, 122- 157, 174-180.
    [30]曹志洪主编.烤烟营养及失调症状图谱[M].南京:江苏科技出版社, 1993, 18-19.
    [31]袁可能.植物营养元素的土壤化学[M].北京:科学出版社, 1983: 21- 76.
    [32]朱兆良.氮肥管理与粮食生产和环境[J ] .土壤学报, 2002, 39(增刊) : 3- 11.
    [33]王家玉,王胜佳,陈义.稻田土壤中氮素淋失研究[J ].土壤学报, 1996, 33 (1): 28- 35.
    [34]张庆利,张民,田维彬.包膜控释和常用氮肥氮素淋溶特征及其对土水质量的影响[J].土壤与环境,2001,10(2):98- 103.
    [35]董悦安,沈照理,等.农田区地下水氮污染和氮转化的实验研究[J ].北京师范大学学报(自然版),2001,37(2):199- 204.
    [36]梁国庆,李书田译.硝酸盐与人类健康[M ].北京:中国农业出版社, 2004. 67- 71.
    [37]张兴昌.坡地土壤氮素与降雨、径流的相互作用机理及模型[J].地理科学进展, 2000, 6: 128- 133.
    [38]王全九,沈晋.降雨条件下黄土坡面溶质随地表径流迁移试验研究[J].水土保持学报, 1993, 7(1): 11- 17.
    [39]张亚丽,张兴昌,邵明安,等.降雨强度对黄土坡面矿质氮素流失的影响[J].农业工程学报, 2004, 20(3): 55- 58.
    [40]孙志高,刘景双.三江平原典型湿地土壤硝态氮和铵态氮垂直运移规律[J].水土保持学报, 2007, 21(6): 25 - 30.
    [41]李艳梅,袁霞,张亚丽,等.黄绵土坡面土壤矿质氮素径流流失与入渗特征研究[J].农业环境科学学报, 2007, 26(1): 246- 251.
    [42] Schubert C, Kanarek M S. Public response to elevated nitrate in drinking water wells in Wisconsin [J]. Archives of Environmental Health, 1999, 54 (4): 242- 247.
    [43]高旺盛,黄进勇.黄淮海平原典型集约农区地下水硝酸盐污染初探[J].生态农业研究, 1999, 7(4): 41- 43.
    [44] Belgiorno V, Napoll R M. Groundwater quality monitoring [J]. Water Science Technology, 2000, 42(1-2): 37- 41.
    [45] Spalding R F, Exner M E. Occurrence of nitrate in groundwater-a review [J]. J. Environment quality,1993, 22: 392- 402.
    [46] Ward M H, Mark S D, Cantor K P. Drinking water nitrate and the risk of non-Hodgkin’s lymphoma [J]. Epidemiology, 1996, 7: 465- 471.
    [47] U. S. Environmental Protection Agency. Drinking water regulations and health advisories. Office of Water, 1995, Washington , DC.
    [48] Dorshelmer W T, Drewry C B, David P F, et al. Removing nitrate from groundwater [J]. Water/ Engineeting & Management, 1997, 12:20-24.
    [49] Flere O M, Zhang T C. Nitrate removal with sulfur limestone autotrophic denitrification processes [J]. J. of Environmental Engineering, 1999, 125(8): 721-729.
    [50]高大文,彭永臻,王淑莹.短程硝化生物脱氮工艺的稳定性[J].环境科学, 2005, 26(1): 63- 67.
    [51]刘建广,张晓健,王占生. BACF处理高氨氮进水的硝化与反硝化作用[J].环境科学, 2006, 27(1): 69 - 73.
    [52]黄娟,王世和,鄢璐,等.潜流型人工湿地硝化和反硝化作用强度研究[J].环境科学, 2007, 28(9): 1965- 1969.
    [53]范经华,范彬,陈朝阳,等.电催化同步降解水中硝酸盐氮和有机氯化物的研究[J].环境化学, 2006, 25(6): 688- 691.
    [54] Choe S, Chang Y Y, Hwang K Y, et al. Kinetics of reductive denitrification by nano scale zero- valent iron[J].Chemosphere, 2000, 41 (8) : 1307 - 1311.
    [55] Westerhoff P. Reduction of nitrate, bromate, and chlorateby zero valent iron (Fe0) [J]. J Environ Eng, 2003, 129(1): 10 - 16.
    [56] Louis A S, Vojvodic- Vukovic M. Rates of nitrate removal from groundwater and denitrification in a constructed denitrification wall [J]. Ecol Eng, 2000, 14(3): 269 - 278.
    [57] Chew C F, Zhang T C. In-situ remediation of nitrate contaminated ground water by electrokinetics/ iron wall processes [J]. Water Sci Technol, 1998, 38 (7): 135 -142.
    [58]范潇梦,关小红,马军.零价铁还原水中硝酸盐的机理及影响因素[J].中国给水排水, 2008, 24(14): 5- 9.
    [59]顾莹莹,高孟春,贾永刚,等.海绵铁还原水中硝酸盐的初步研究[J].中国给水排水, 2006, 22(7): 82- 88.
    [60]冯艳平,李俊国,毕娜,等.球形海绵铁还原去除水中硝酸盐的静态研究[J].环境科学与技术, 2008, 31(6): 14- 18.
    [61] Robertson G P. Nitrification and denitrification in humid tropical ecosystems : potential controls on nitrogen retention[J]. Mineral Nutrients in Tropical Forest and Savanna Ecosystems. Blackwell Scientific Publications, Oxford, 1989, 55- 69.
    [62] Breuer L R, Kiese and Butterbach-Bahl K. Temperature and moisture effects on nitrification rates in tropical rain forest soils [J]. Soil Sci. Soc. Am. J., 2002, 66: 834- 844.
    [63]周才平,欧阳华.长白山两种主要林型下土壤氮矿化速率与温度的关系[J].生态学报, 2001, 21(9): 1469- 1473.
    [64]张树兰,杨学云,吕殿青等.温度、水分及不同氮源对土壤硝化作用的影响[J].生态学报, 2002, 22(12): 2147- 2153
    [65]杨丽娟,张玉龙.保护地菜田土壤硝酸盐积累及其调控措施的研究进展[J].土壤通报, 2001, 32(2): 66- 69.
    [66] Reichman G A, Grunes D L, Viets F G. Effect of soil moisture on ammonification and nitrification in two Northern Plains soils [J]. Soil Sci. Soc. Am. Proc., 1966, 30: 363- 366.
    [67] Ingwersen J K, Butterbach– Bahl R, Gasche O, et al. Barometric process separation: New method for quantifying nitrification, denitrification and nitrous oxide sources in soils [J]. Soil Sci. Soc. Am. J., 1999, 63: 117- 128.
    [68]储燕宁,孙权,于大华,等.灌淤土施氮后土壤硝态氮的动态变化[J].农村生态环境, 2003, 19(4): 31- 34.
    [69]左余宝,Yasukazu HOSEN,褚海燕.不同水分含量对潮土和火山灰土硝化动态的影响[J].土壤肥料, 2004 (5):21- 24.
    [70]袁巧霞,武雅娟,艾平等.温室土壤硝态氮积累的温度、水分、施氮量耦合效应[J].农业工程学报, 2007, 23(10): 192- 197.
    [71]李辉信,胡锋,刘满强,等.土壤氮素的矿化和硝化作用特征.土壤, 2000, 32 (4) : 194- 197.
    [72] SahawatKL. Nitrification in some tropical soils [J]. Plant and Soil, 1982, 65: 281 - 286.
    [73]丁洪,王跃思,项虹艳,等.福建省几种主要红壤性水稻土的硝化与反硝化活性[J].农业环境科学学报, 2003, 22 (6) : 715- 719.
    [74] Hankinson T R, Schmidt E L. An acidophilic and a neutrophilic Nitrobacter strain isolated from the numerically predominant nitrite - oxidizing population of an acid forest soil [J]. Appl. Environ. Microbiol., 1988, 54: 1536- 1540.
    [75] Martikainen P J, De Boer W. Nitrous oxide production and nitrification in acidic soil from a Dutch coniferous forest [J]. Soil Biology & Biochemistry, 1993, 25: 343- 347.
    [76] Duggin J A, Voight G K, Bormann F H. Autotrophic and heterotrophic nitrification in response to clear - cutting northern hardwood forest [J]. Soil Biology and Biochemistry, 1991, 23: 779 - 787.
    [77] Robertson G P. Nitrification in forested ecosystems [M]. Phil.Trans. Roy. Soc. Lond, 1982, 296: 445- 457.
    [78] Verchot L V, Groffman P M, Frank D A. Landscape versus ungulate control of gross mineralization and gross nitrification in semi - arid grasslands of Yellowstone National park[J]. Soil Biology& Biochemistry, 2002, 34: 1691- 1699.
    [79]崔敏,冉炜,沈其荣.水溶性有机质对土壤硝化作用过程的影响[J].生态与农村环境学报, 2006, 22(3): 45- 50.
    [80] Prosser J I. Autotrophic Nitrification in Bacteria[ J ]. Advances in Microbial Physiology, 1989, 30: 125 - 181.
    [81] Okabe S, Oozawa Y, Ratak H, et al. Relationship Between Population Dynamics of Nitrifiers in Biofilms and Rector Performance at Various C∶N Ratios [ J ]. Water Research, 1996, 30 (7): 1563 - 1577.
    [82]冉炜,沈其荣,郑金伟.土壤硝化作用过程中亚硝态氮的累积研究[J].土壤学报, 2000a, 37(4): 474 - 481.
    [83]张杨珠,杨志海,吴名宇,等.有机无机肥配合施用对菜园土壤及蔬菜硝酸盐类动态的影响[J].农村生态环境, 2005, 21 ( 3) :38 - 42.
    [84]蔡海洋,徐茜,范光南,等.不同氮肥的硝化速率及其在烤烟上的施用效应比较[J].福建农业学报, 2003, 18(3): 173- 177.
    [85]张国桢,李世清.三中氨态氮肥在石灰性土壤中硝化作用的模拟研究[J].干旱地区农业研究,2007, 25(6): 177- 211.
    [86]巨晓棠,刘学军,张福锁.不同氮肥施用后土壤各氮库的动态研究[J].中国生态农业学报, 2004, 12(1): 92- 94.
    [87]王曙光,侯彦林,郭伟.不同肥土比对NO3-N浓度变化的影响研究[J].植物营养与肥料学报, 2004, 10(2): 148~151
    [88]张金波,宋长春.土壤氮素转化研究进展[J].吉林农业科学, 2004, 29(1): 38- 43, 46.
    [89] Zhang X L, Wang Q B, Li L H, et al. Seasonal variations in nitrogen mineralization under three land use types in a grassland landscape [J]. Acta oecologica, 2008, 34: 322 - 330.
    [90]陆安详,赵云龙,王纪华,等.不同土壤利用类型下氮、磷在土壤剖面中的分布特征[J].生态学报, 2007, 27(9): 3923- 3929.
    [91]黄绍敏,宝德俊等.土壤中硝态氮含量的影响因素研究[J].农业环境保护, 2001, 20 (5) :351- 354.
    [92]丁洪,蔡贵信,王跃思,等.华北平原几种主要类型土壤的硝化及反硝化活性[J].农业环境保护, 2001, 20(6): 390- 393
    [93]李世清,李生秀,李凤民.石灰性土壤剖面氮素的矿化和硝化作用[J].兰州大学学报, 2000, 36 (1): 98- 104.
    [94]范晓晖,朱兆良.我国几种农田土壤硝化势的研究[J].土壤通报, 2002, 33(2): 124- 125.
    [95]张树兰,杨学云,吕殿青,等.几种土壤剖面的硝化作用及其动力学特征[J].土壤学报, 2000, 37(3): 375- 379.
    [96]范晓晖,林德喜,沈敏,等.长期试验地潮土的矿化与硝化作用特征[J].土壤学报, 2005a, 42(2): 340- 343.
    [97]范晓晖,孙永红,林德喜等.长期试验地红壤与潮土的矿化和硝化作用的特征比较[J].土壤通报, 2005b, 36(5): 672- 674.
    [98]王斯佳,韩晓增,侯雪莹.长期施肥对黑土氮素矿化与硝化作用特征的影响[J].水土保持学报, 2008, 22(2): 170- 173.
    [99]张云舒,刘骅,王西和,等.灰漠土长期试验地氮素矿化和硝化作用的特征[J].新疆农业科学, 2008, 45(4): 700- 703.
    [100]杨春霞,李永梅.双氰胺对不同质地红壤中尿素的硝化抑制作用研究[J].中国生态农业学报, 2006, 14(2): 111-113.
    [101]刘常珍,赵言文,胡正义,等.硫元素对蔬菜地土壤NO3-淋溶损失的影响[J].南京农业大学学报, 2004, 27(3): 54- 57.
    [102]孙爱文,石元亮,尹宏斌,等.硫脲对脲酶活性和尿素氮转化的试验出报[J].土壤通报, 2003, 34(6): 554- 557.
    [103]刘常珍,胡正义,赵言文,等.元素硫和双氰胺对菜地土壤铵态氮硝化抑制协同效应研究[J].植物营养与肥料学报, 2008, 14(2): 334- 338.
    [104]王德汉,彭俊杰,林辉东,等.木质素磺酸盐对尿素氮素转化与蔬菜硝酸盐积累的影响[J].环境科学, 2003, 24(3): 141- 145.
    [105]史云峰,武志杰,陈利军,等. 1-羟甲基- 3,5-二甲基吡唑(DMHMP)的硝化抑制效应初探[J].土壤通报, 2007a, 38(4): 722- 726.
    [106]郑福丽,石元亮.抑制剂对尿素转化及土壤中氮的影响研究[J].土壤通报, 2007, 38(2): 412- 414.
    [107]孙志梅,刘艳军,梁文举,等.新型脲酶抑制剂LNS与双氰胺配合施用对菜田土壤尿素氮转化及蔬菜生长的影响[J].土壤通报, 2005, 36(1): 803- 805.
    [108]许超,吴良欢,冯涓,等.硝化抑制剂DMPP对菜园土壤铵态氮与硝态氮含量的影响[J].湖南农业大学学报, 2003, 29(5): 388- 390.
    [109]许超,吴良欢,郑旭颖,等.硝化抑制剂DMPP对菜园土供肥特征的影响[J].农业环境科学学报, 2007, 26(1): 269- 272.
    [110]史云峰,武志杰,陈利军,等. 3,5-二甲基吡唑磷酸盐(DMPZP)对土壤硝化作用的影响[J].应用生态学报, 2007b, 18(5): 1033- 1037.
    [111]孙志梅,武志杰,陈利军,等. 3, 5-二甲基吡唑对尿素氮转化及NO3—N淋溶的影响[J].环境科学, 2007, 28(1): 176- 171.
    [112]俞巧钢,陈英旭,张秋玲,等. DMPP对菜地土壤氮素淋失的影响研究[J].水土保持学报,2006, 20(4): 40- 43.
    [113]俞巧钢,陈英旭,张秋玲,等. DMPP对氮素垂直迁移转化及淋溶损失的影响[J].环境科学, 2007, 28(4): 813- 818.
    [114] Burns L C, Stevens R J, Smith R V, et al. The occurrence and possible sources of nitrite in a grazed, fertilized, grassland soil [J]. Soil Biology & Biochemistry, 1995a, 27: 47- 59.
    [115]薛泉宏.微生物学[M].北京:世界图书出版社, 2000: 315- 316.
    [116] Burns L C, Stevens R J, Laughlin R J. Determination of the simultaneous production and consumption of soil nitrite using 15N [J]. Soil Biology & Biochemistry, 1995b, 27: 839- 844.
    [117] Paul E A, Clarke F E. Soil Microbiology and Biochemistry [M]. San Diego: Academic Press, 1989
    [118]马立珊,钱敏仁.太湖流域水环境硝态氮和亚硝态氮污染的研究[J].环境科学, 1987, 8 (2): 60 - 65.
    [119] Akimoto F. Cross- correlation analysis of atmospheric trace concentrations of N2O, CH4 and CO2 determined by continuous gas- chromatographic monitoring [J]. Energy, 2005, 30: 299- 311.
    [120] Hill M J. Nitrates and nitrites in food and water [M]. Ellis Harwood, ChiChester: CRC, 1991.
    [121]Smith R V, Foy R H, Lennox C D, et al. Occurrence of NO2- in the Longh Neagh river system [J]. Environ. Qual., 1995, 24: 952- 959.
    [122]金相灿,朱萱.我国主要湖泊和水库水体的营养特征及其变化[J].环境科学研究, 1991, 4: 11 - 20.
    [123]黄家柱.苏锡常地区地下水资源开发利用与环境保护[J].农村生态环境, 1998, 14(1): 10- 13.
    [124] Cao Z H, Cai Z C. Options for inorganic fertilizer consumption and environment conservation in China [J]. In Cao Z H, Pawlowski L. ed. Chemistry for Protection of the Environment. Nanjing: Nanjing University Press, 1999. 20- 27.
    [124]徐星凯,王子健,刘琰.稀土元素对土壤中尿素水解及其水解产物行为的影响[J].应用生态学报, 2001, 12(5):739- 742.
    [125] Morrill L G, Dawson J E. Patterns observed for the oxidation of NH4+ to NO3- by soil organisms [J]. Soil Science of America Proceedings, 1967, 31: 757- 760.
    [126] Passioura J B, Wetselaar R. Consequence of banding nitrogen fertilizer in soil II. Effects of the growth of wheat roots [J]. Plant and Soil, 1972, 36: 461- 473.
    [127] Wetselaar R, Passioura J, Singh B R. Consequences of banding nitrogen fertilizer in soil. Effects on nitrification [J]. Plant and Soil, 1972, 36: 159- l 75.
    [128] Elliot G C. Effects of inhibitors of microbial activity on urea hydrolysis and nitrification in a soilless potting medium [J]. Acta Horticulture, 1989, 238: 173- 180.
    [129] Shen Q R., Ran W. Mechanisms of nitrite accumulation occurring in soil nitrification [J]. Chemosphere, 2003, 50: 747- 753.
    [130] Jones R D, Schwab A P. Nitrate leaching and nitrite occurrence in a fine- textured soil [J]. Soil Science, 1993, 155, 272-281.
    [131] Singh M, Pabbi S, Bhattacharya A K, et al. Nitrite accumulation in coastal clay soil of India under inadequate subsurface drainage [J].Agricultural Water Management, 2007, 91: 78- 85.
    [132]张树兰.陕西几种土壤中硫酸铵的硝化作用及其影响因素[J].干旱地区农业研究, 1998, 16 (1) : 64 - 68.
    [133]李生秀,王子华,王喜庆.不同水分及施肥对土N、P变化的影响[J].干旱地区农业研究, 1993 (增刊): 93- 98.
    [134]李世清,李生秀.影响土壤水解速率的一些因子[J].植物营养与肥料学报, 1999, 5(2): 156- 162.
    [135]黄绍文,金继运.土壤特性空间变异研究进展[J].土壤肥料, 2002 (1): 8- 14.
    [136]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000: 432- 437.
    [137]丁洪,王跃思,项虹艳,等.灰泥土中不同氮肥品种反硝化损失与N2O排放量的差异[J].生态环境, 2004, 13(4): 643- 645.
    [138]刘义,陈劲松,刘庆,等.土壤硝化和反硝化作用及影响因素研究进展[J].四川林业科技, 2006, 27(2): 36- 40.
    [139]田建强.反硝化过程中亚硝酸盐的影响因素[J].有色冶金设计与研究, 2008, 29(3): 42- 44.
    [140]梁东丽,方日尧,李生秀,等.硝、铵态氮肥对旱地土壤氧化亚氮排放的影响[J].干旱地区农业研究, 2007, 25(1): 67- 72.
    [141]冉炜,沈其荣,郑金伟.尿素浓度、培养时间和温度对土壤尿素水解过程的影响[J].南京农业大学学报, 2000b, 23(2): 43- 46, 321- 329.
    [142] Petra M. Structure and Functional of the Soil Microbial Community in a Long time Fertilizer Experiment [J]. Soil Biology&Biochemistry, 2003, 35: 453- 461.
    [143] AonM A , ColaneriA C.Temporal and Spatial Evolution of Enzymatic Activities and Phychemical Properties in an Agricultural Soil[J ].Applied Soil Ecology, 2001, 18: 255- 270.
    [144] Bendinga G D, Turnera M K et al.Microbial and Biochemical Soil Quality Indicators and Their Potential for Different iating Areas under Contrasting Agricultural Management Regimes [J ]. Soil Biology & Biochemistry, 2004, 36: 1785-1792.
    [145]陈济琛,林新坚,韩闽毅,等.微生物代谢产物I38 N2对土壤脲酶活性抑制作用研究[J].植物营养与肥料学报,1996, 2 (1) :74- 78.
    [146] Bremner J M and Mulvaney R L. Urease activity [M]. In: Burns RG (ed.) Soil enzymes, Academic Press, New York, 1978, 148- 196.
    [147] Anthonisen A C. Inhibition of nitrification by ammonia and nitrous acid [J]. JWPCF, 1976, 48(5): 835~852.
    [148]方士,李筱焕. pH值对高氨氮废水亚硝化/反亚硝化速率的影响[J].高校化学工程学报, 2001, 15(04): 0346- 05.
    [149]李东坡,武志杰,陈利军,等.长期培肥黑土脲酶活性动态变化及其影响因素[J].应用生态学报, 2003, 14 (12): 2208- 2212.
    [150]赫余祥.土壤微生物[M].科学出版社, 1982: 67- 91.
    [151]山西省太原农业学校主编.农业微生物学[M].农业出版社, 1980: 169- 187.
    [152]鲁如坤,时正元,赖庆旺.红壤养分退化研究(Ⅱ)—尿素和碳按在红壤中的转化[J].土壤通报, 1995, 26(6): 241- 243.
    [153] Monaghan R M, Barraclough D. Some chemical and physical factors affecting the rate and dynamics of nitrification in urine- affected soil [J]. Plant and Soil, 1992, 143, 11 - 18.
    [154]关松荫,张德生,张志明.土壤酶及其研究法[M].北京:农业出版社, 1986: 297- 313.
    [155]明道绪.通径分析[M].雅安:四川农业大学出版社.1990. Ming D X. Path Anlysis. Ya’an: Agriculture Press of Sichuan, 1990.
    [156] Bhatt G M. Significance of path coefficient analysis in association. Euphytica, 1973, 22 (2): 338- 343.
    [157]袁志发,周静芋主编.多元统计分析[M].北京:科学出版社, 2000: 128- 138.
    [158] Vega- Jarquin C, Valenzuela E C, Neria G I, et al. Is nitrate reduction to nitrite possible in glucose- amended alkaline saline soil under aerobic conditions [J] ? Soil Biology & Biochemistry, 2008, 40: 2796- 2802.
    [159] Gilliam, F. S., Yurish, B. M. and Adams, M. B. Temporal and spatial variation of nitrogen transformations in nitrogen-saturated soils of a central Appalachian hardwood forest [J]. Can. J .For. Res. 2001, 31: 1768- 1785.
    [160]贺发云,尹斌,蔡贵信,等.菜地和旱作粮地土壤氮素矿化和硝化作用的比较[J].土壤通报, 2005, 36(1): 41- 44.
    [161]辜运富,张小平,涂仕华,等.长期定位施肥对紫色水稻土硝化作用及硝化细菌群落结构的影响[J].生态学报, 2008, 28(5): 4212- 0312.
    [162] Sahrawat K L. Nitrification in some tropical soils [J]. Plant and Soil, 1982, 65: 281- 286.
    [163] Sabey B R, Frederick L R, Bartholomew W V. The formation of nitrate from ammonium nitrogen in soilsⅢInfluence of temperature and initial population of nitrifying organisms on the maximum rate and delay period [J]. Soil Sci Soc Am. Proc. 1959, 23: 462- 465.
    [164] Hadas A S, Feigenbaum A F, Portnoy K.Nitrification rates in profiles of differently managed soil types [J]. Soil Sci Sco Am J, 1986, 50: 633- 639.
    [165] Tong Y A, Emteryd O, Grip H et al. Soil NH4+ fixation and fertilizer N recovery as affected by soil moisture and fertilizer application methods [J]. Pedosphere, 2004, 14(2): 247- 252.
    [166] Cai G X, Gao Y C, Yang N C. Direct estimation of nitrogen gases emitted from flooded soils during denitrification of applied nitrogen [J]. Pedosphere, 1991, 1(3): 241- 251.
    [167] Cai G X, Yang N C, Lu W F, et al. Gaseous loss of N from fertilizer applied to a paddy soil in south- eastern China [J]. Pedosphere, 1992, 2: 209 - 217.
    [168] Rully A N, Wilfred F M, Roling N M, et al. Changes in nitrification and bacterial community structure upon cross-inoculation of scots pine forest soils with different initial nitrification rates [J]. Soil Biology & Biochemistry, 2008: 1- 8.
    [169] Dancer W S, Peterson L A, Chesters G. Ammonification and nitrification of N as influenced by soil pH and previous N treatments [J]. Soil Sci. Amer. Proc. 1973, 37: 67- 69.
    [170] Katyal J C, Cater M F and Vlek P L G. Nitrification activity in submerged soil and its relation todenitrification loss [J]. Biol. Fertil. Soil. 1988, 7: 16- 22.
    [171]李良谟.第六章硝化作用[A].朱兆良,文启孝编著,中国土壤氮素[C].南京:江苏科学技术出版社. 1992, 94- 122.
    [172]张耀栋,孙维纶,宋木兰译.含氮化合物在土壤中的转化[M].北京:农业出版社,1984, 125- 127.
    [173] Tisdale S L, Nelson W L.孙秀廷,等译.土壤肥力与肥料[M].北京:科学出版社, 1984, 74- 92.
    [174] Chao W L, Gan K D, Chao C C. Nitrification and nitrifying potential of tropical and subtropical soils [J]. Biology and Fertility of Soils, 1993, 15(2): 87- 90.
    [175] Anderson Q E. The effect of low temperatures on nitrification of ammonia in Cecil sandy loam [J]. Soil Sci, Soc. Am. Proc., 1960, 24: 286- 289.