石灰性土壤硝化作用模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝化作用是氮素在土壤中的重要转化过程,研究硝化作用是提高氮素利用效率,合理施用氮肥的重要基础。本实验以干润均腐土(Cal-Ustic Isohumasols)为供试土壤,通过调控培养温度和水分等实验条件,设置不同NH4~+-N添加量、N/P、NH4~+-N的伴随离子等,在室内进行恒温培养,在定期测定土壤中NH4~+-N和NO3~--N含量及pH变化的基础上,对测定结果进行统计分析和数学模拟回归,依据Michaelis-Menten反应动力假说,分别建立了不同NH4~+-N添加量、不同N/P和不同伴随离子NH4~+-N和NO3~--N变化硝化动力学模型,并通过数学方法分析了回归模型及其硝化速率方程的特点,通过研究取得以下主要结果: 1.分别确立了在硝化过程中的NH4~+-N和NO3~--N变化动力学模型:式中:N tNO为培养期间NO3~--N积累量S NO为NO3~--N积累量的渐近值N tNH为培养期间NH4~+-N剩余量S 0为NH4~+-N添加量(已知量) S NH为NH4~+-N消耗量的渐近值t为实验培养时间a和b为常数在上述方程的基础上,将土壤中通过其它来源的NH4~+-N和NO3~--N补充后,进一步确了在硝化过程中NH4~+-N和NO3~--N变化的动力学模型:式中:a、b、c和d为常数。该模型主要改包括了土壤有机氮的矿化。并由此导出NH4~+-N和NO3~--N随时间变化的速率方程。2.发现最大硝化速率与NH4HCO3添加量无关。NH4~+-N最大减少速率变化在13.048~19.908 mg/kg.d之间,NH4~+-N减少速率达到最大的时间较NO3~--N增加速率达到最大的时间短;NO3~--N增加最大速率变化在4.294一9.884 mg瓜g.d之间,N03一N增加达到最大速率的时间(t。)较NH4十一N减少速率达到最大的时间长。t。随N’H4十一N添加量的增加而延长。t。N。变化在l·469一6·492d之间,t。NH变化在0·612一2·18ld之间,同一水平N’H4十一N添加量的t。NH较tox。早出现0 .1 842一5.252d,即一变化在13.0450一19.9075 mg/kg.d之间,1.366一9.554 mg/k g.d之间,说明钙积干润均腐土的硝化作用属于硝化作用缓慢型。NH4十一N消耗量的渐近值大于N03一N积累量的渐近值,说明土壤中NH4十一N并未全部转化为N03一N,NH4十一N还存在有其它形式转化。在1 00mg瓜g干土NH4十一N添加量范围内,NH4十一N消耗和N03一N增加速率随NH4十一N添加量的增加而增加。在同一NH4十一N添加水平下,不同利用方式的土壤NH4十一N消耗速率相同或相近,N03一N增加速率相同或相近。
     3.在NH犷一N添加的同时添加水溶性磷酸盐,由于形成磷酸盐缓冲体系。可有效降低十壤中NH;分压,抑制了NH,HCO;加入后十壤nH的增加,降低氨挥分,此应未添加水溶性磷酸盐处理(3:0、2:0和1:0)时长,oNO t较对应未添加水溶性磷酸盐处理(3:0、2:0和1:0)时短,NH NO S≈S。说明水溶性磷酸盐能够促进硝化作用的进行;Cl-能够延缓NH+-N的硝化,NH4Cl处理的NH+-N消耗和NO3~--N增加速率在较长时间内(1 w)维持在较低水平,随后升至与(NH4)2SO4相当。SO42-对NH4~+-N的硝化作用具有一定促进作用。总体上伴随离子对NH4~+-N最大消耗和NO3~--N最大增加速率影响不大。伴随离子对NH4~+-N起始消耗和NO3~--N起始增加速率均存在较为明显的影响。
     4.钙积干润均腐土NO3~--N增加最大速率(5.8~8.8 mg/kg.d)接近于一固定值与肥料种类无关。NH+-N的消耗最大速率(7.8~3.5 mg/kg.d)变幅较大,与肥料性质和土壤生物性质有关。
     5.在考虑土壤中其它NH4~+-N其它去向时,土壤中NH4~+-N消耗和NO3--N增加规律存在着巨大的差异,NH4~+-N消耗速率明显高与NO3--N增加增加速率(约50%),且培养后期(可能铵是土壤颗粒固定和生物固定)NH4~+-N消耗速率曲线出现再次升高现象。说明培养前期存在着其它形式的NH4~+-N消耗,培养后期存在着NH4~+-N释放现象。
The nitrification is an important nitrogen transformation in soils. Studying on nitrification is an important foundation for increasing the nitrogen using efficiency and rationally using nitrogen fertilizers. Our research used indoors fosters method, and the experiment used the fresh Cal-Ustic Isohumasols as sample soils. The two main factors of the experiment were the temperature and soil moisture with controlling the dosage of nitrogen fertilizer, N/P, and the anion of the Ammonium nitrogen. It is different monitored that contents of the NH4~+-N, NO3~--N & pH changes regulation of everyday. According to the Michaelis-menten kinetic, difference nitrification kinetics models of the NH4~+-N & NO3—N were established. The main conclusions were shown as follows:
     1. Difference nitrification kinetics models of the NH4~+-N & NO3~-N were established: N tNO: Dynamic content of nitrification nitrogen S NO: Approach value of nitrification nitrogen t : Time a, b: Constant The above models were modified by recruiting the absorbing NH4~+-N & NO3~--N by other creature. Get the new nitrification kinetics models shown as blow: a, b,c,d: Constant 2.The application amount of NH4HCO3 is not correlative with the rate of nitrification .The max- rate of the NH4~+-N lessening is in the range of 13.0480~19.9075 mg/kg.d, whose time (t oNH) is shorter than the rate of the NO3~--N adding to rise maximum. The max- rate of the NO3~--N adding is in the range of 13.0480~19.9075 mg/kg.d, and its time (t oNO) is longer than the rate of the NH4~+-N lessening to rise maximum. The t ois along with extension the dosage of nitrogen fertilizer rising. In the same dosage of nitrogen fertilizer, the t oNH is 0.1842~5.252 d shorter than the t oNO,In other words,the range of 13.0480~19.9075 mg/kg.d and the is in the range of 1.3662~9.8840mg/kg.d, and therefore, The results indicated that the notification of the Cal-Ustic Isohumasols is a slow-release type. The asymptotic value of the NH4~+-N lessening is bigger than the asymptotic value of the NO3~--N ( S NO < SNH). It is indicated that the part NH4~+-N was oxidized and remain was made use of other. In the 100mg/kg dry soils range dosage of nitrogen fertilizer, the rate of the NH4~+-N lessening and the NO3~--N adding move up for the dosage of nitrogen fertilizer, the rate of the NH4~+-N lessening and the NO3~--N adding is approximate in the different recovery soil.
     3. The nitrogen and phosphoric combination can form the phosphoric acid salt buffer system. The phosphoric acid salt could markedly decreased N loss by ammonium volatilization. Because of the decrease of differential pressures of ammonium and pH of soil increased rise, the is similar to the . It is higher than the dosage of nitrogen. The t oNH is longer than the dosage of nitrogen (3:0,2:0,1:0) and the t oNO is shorter than the dosage of nitrogen (3:0,2:0,1:0). The asymptotic value of NH4~+-N similar to the asymptotic value of NO3~--N ( S NH≈SNO).The phosphoric acid salt can repress the ammonia volatilization, and it can promote the proceeding notification. The chloride anion inconspicuous influxes rate of the NH4~+-N lessening and rate of the NO3~--N adding. Its main influence the NH4~+-N releasing, it is result that nitrifying is low. The sulfate anion can offer“O-”. It advances the ammonium nitrogen boring. The anion inconspicuous influence the max-rate of the NH4~+-N lessening and rate of the NO3~--N adding. It conspicuous influence the original rate of the NH4~+-N lessening & the rate of the NO3~--N adding. The fertilizers is in the chemistry in the soil behavior, it is effected the NH4~+-N many to change.
     4.In the Cal-Ustic Isohumasols, the max-rate of the NO3~--N adding approximate is a constant (5.8~8.8mg/kg.d), which have nothing to do with type of fertilizers. The max-rate of the NH4~+-N lessening have a big extent (7.8~23.5 mg/kg.d), which is relative with the characteristics of fertilizers and soil’s biota characters.
     5. There is significant different rate that the rate of the NH4~+-N lessening & the NO3~--N adding when we think creature factor in the soil (about 50%). And the rate of the NH4~+-N lessening again rise up in the indoor fosters last term, which revealed that other forms of the NH4~+-N were lessening in the prophase and the ammonium nitrogen was boring in the anaphase.
引文
[1] 朱兆良,文启孝.中国土壤氮素[M].江苏科技出版社.1990,94-120.
    [2] 张维理,田哲旭,张宁等.中国北部的施氮肥对地下水中的硝酸盐污染调查[J].植物营养与肥料学报,1995,1(2):80-87.
    [3] 黄益宗,冯宗炜,王效科等.硝化抑制剂在农业上应用的研究进展[M].土壤通报,2002,33(4),310-315
    [4] 李世清,李生秀.淹水培养条件下铵态氮肥对土壤氮素的激发效应[J].植物营养与肥料学报,2001,7(4):361-367.
    [5] 王曙光,候彦林.尿素肥斑氮肥形态转化初探[J]. 植物营养与肥料学报,2004,10(6):594-598.
    [6] 张夫道.氮素营养研究中几个热点问题[J]. 植物营养与肥料学报,1998,4(4):331-338
    [7] Freney J R,Frevit A C F,De Datta S K et al.The interdependence of ammonia volatilization and denitrication as nitrogen loss processes in flood rice fields in Philippine[J].Bio.Soils,1990,9:31-36.
    [8] Maede M,Zhao B Z,Ozaki Y et al.Nitrate leaching in an andisol treated with different types of fertilizers[J]].Envion.Pollution,2003,121:477-487.
    [9] 李世清,李生秀.影响土壤尿素水解速率的一些因子[J].植物营养与肥料学报,1999,5(2):156-162.
    [10] 李生秀,王子华,王喜庆.不同水分对塿土 N、P 变化的影响土壤[J].干旱地区农业研究 1993,增刊:156-162.
    [11] 张树兰 , 杨学云 , 吕殿青等 . 温度、水分及不同氮源对土壤硝化作用的影响 [J]]. 生态学报,2002,(12):2147-2153.
    [12]王曙光,候彦林,郭伟.不同肥土比对 NO3--N 浓度变化的影响研究[J].植物营养与肥料学报,2004,2(10):148-151.
    [13]冉炜,沈其荣,郑金伟等.土壤硝化过程中亚硝酸盐的累积研究[J].土壤学报,2000(4):474-481.
    [14]Alexander M. Nitrification. In: Wily J, Sons. Eds. Introduction to soil microbiology. 2nd ed. New York,1977,251-257
    [15]Papen H, von Berg R. A most probable number (MPN) method for the estimation of cell numbers of heterotrophic nitrify bacteria in soil. Plat and Soil, 1998,199:123-130
    [16]郑士民,颜望民,钱新民著.自养微生物[M].科学出版社.1983,25-37
    [17]Belser,L.W..Population ecology of nitrifying bacteria.Annual Review of Microbiology[J].1979,33:309-309
    [18]Walker,N.,Soil Microbiology[M]. A Critical Review,pp.133-146.Butter/Worths/London and Boston.1981
    [19]陈华葵,李阜棣,陈文新,曹燕珍,土壤微生物学[M].上海科技出版社,1981
    [20]Zhou Qi,Chen,H.K.The activity of nitrifying and denitrifying bacteria in paddy soil.Soil Sci.1983,135:31-34
    [21]金芳.不同条件下土壤硝化作用产生 NO2-的研究[A].北京农业大学硕士生毕业论文,1988
    [22]Alexander,M..Introduction to Soil Microbiology. 2nd edtion. 1977,251-271. New York/Sonta/Barara/London/Sydney/Tronte
    [23]Dance,W.S.,Peterson,L.A.,And Chesters,G.,Ammonification of nitrogen as influenced by soil pH and previous treatments[J].Soil Sci.Amer.proc.,1973,37:67-69.
    [24]王一明,彭光浩.异养硝化微生物的分子生物学研究进展[J] .土壤,2003,35(5):378-386.
    [25]Focht D.D,Verstraete W.Biochemical ecology of nitrification and denitrification[C].In:Alexander M. ed.Advances in Microbial ecology [A].New Yok: Plenum Press,1977,135-214.
    [26]Bock E ,Koops HP,H.Cell biology of nitrifying bacteria[C].In:Prosser Jl.Ed.Nitrification [A].Oxford:IRL Press,1977,135-214.
    [27]Duggin JA,Voigt GK ,Bormann FH.Autotrophic and heterotrophic nitrification in response to clare-cutting northern hardwood forest[J].Soil Biol.Blchem.1991,23:779-789.
    [28]陶运平.硫代硫酸铵对土壤硝化作用的影响[J].土壤学报.1997,34(4):467-474.
    [29]张树兰.陕西几种土壤中硫酸铵的硝化作用及其影响因素[J].干旱地区农业研究,1998,1(16):64-68.
    [30]沈其荣, 冉炜,曹志洪.土壤硝化作用过程中亚硝态氮的累积研究[J].土壤学报,2000,37(4):474-481.
    [31]鲁如坤.微域土壤学—一个可能的土壤学新分支[J]. 土壤学报,1999,36(2):287-288.
    [32]黄绍文,金继运.土壤特性空间变异研究进展[J].土壤肥料,2002(1)8-14.
    [33]M.K.Abbasi,W.A.Adams.Estimation of simultaneous nitrification and denitrification in grassland soil associated with urea-N using 15N and nitrification inhibitor[J].Biol Fertil Soils(2000)31:38-44.
    [34]梁东丽,同延安,Ove Emteryd 等.灌溉和降水对旱地土壤 N2O 气态损失的影响[J].植物营养与肥料学报,2002,8(3):298-302.
    [35] 张亚丽 , 张兴昌 , 邵明安等 . 降雨强度对黄土坡面矿质氮素流失的影响 [J]. 农业工程学报,2004,20(3):55-58.
    [36]习金根,周建斌.不同灌溉施肥方式下尿素态氮在土壤中迁移转化特性的研究[J].植物营养与肥料学报,2003,9(3):271-275.
    [37]张树兰,同延安,梁东丽等.氮肥用量及施用时间对土体中硝态氮移动的影响[J].土壤学报,2004,41(2):270:277.
    [38]姜翠玲,夏自强,崔广柏.土壤含水量与氮化合物迁移转化的相关性分析[J].河海大学学报(自然科学版)2003,31(3):241-245.
    [39] 李 世 清 , 李 生 秀 . 有 机 物 料 和 氮 肥 相 互 作 用 对 微 生 物 体 氮 的 影 响 [J]. 微 生 物 学 通报,2000,27(3):157-162.
    [40]李世清, 李生秀. 淹水培养条件铵态氮肥对土壤氮素的激发效应[J]. 植物营养与肥料学报,2001,7(4):361-367.
    [41]F.Azam.S, Gill.S, Farooq .A, Lodhi. Effect of CO2 on nitrification and immobilization of NH4-N[J]. Biol Fertil Soils(2004)40:427-431.
    [42]B. W. Hiitsch. Methane oxidation in arable soil as inhibited by ammonium, nitrite, andorganic manurewith respect to soil pH[J]. Biol Fertil Soils(1998)28:27-35.
    [43]Flowers,T. H.,and O’callaghan.J. R, Nitrification in soils incubated with pig slurry or ammonium sulphate[J]. Soil Biol. Biochem. 1983, 15:337-342.
    [44]李良谟,潘映华,周秀如等. 太湖地区主要类型土壤的硝化作用及其影响[J].土壤,1987,19:289-293.
    [45]李世清,李生秀,李凤民.石灰性土壤剖面氮素的矿化和硝化作用[J].兰州大学学报(自然科学版),2000,36(1):98-104.
    [46]朱兆良,文启孝.中国土壤氮素[M].江苏科学技术出版社,1990,100-101.
    [47]周礼恺.土壤脲酶活性与尿素肥料在土壤中的转化[M].土壤学进展,1984,(1)1-9
    [48]Aulakh,M.S.,Renne,D.A..Azide effects upon nitrous oxide emission and transformations of nitrogen in soil[M]. Can.Soil Sci.,1984,65:205-212
    [49]Huck,R.D..Nitrification inhibitors.In “Organic Chemicals intheSoil Enviroment”,Vol.2 (Goring,C.S.I.,and Hamakerm,J.W. Editors),pp.,1971,655-666.Narcel Dekker,New York
    [50] 过维钧,刘茂林.氮肥增效剂(脲酶)对小麦的增产效果[M].土壤.1978,(6):217-219
    [51] 李良谟 , 臧双 , 周秀如 , 潘映华 . 西吡对抑制硝化过程和其他微生物活性的影响 . 土壤学报,1981,(1):58-70
    [52]Li liangmo,Zang shuang,Zhou xiuru,Pan yinghua.Effect of Nitrapyrin on the inhibition of nitrification in some paddy soils of China. Institute of Soil Science,Academia Sinica(ed),Proceeding of Symposium on Paddy Soils[A],pp.,1981,837-844. Science Press,Beijing/Springer-Verlag/Heidelberg/New York
    [53] 中国科学院农业丰产研究丛书编委会[M],水稻丰产的土壤环境,1961,188-207.科学出版社
    [54] 李世清 , 高亚军 , 李生秀 . 土壤养分的空间变异性及确定样本容量的研究 [J]. 土壤与环境,2000,9(1):56-59.
    [55] 张 树 兰 , 杨 学 云 , 吕 殿 青 等 . 几 种 土 壤 剖 面 的 硝 化 作 用 及 其 动 力 学 特 征 [J]. 土 壤 学报.2000,37(3):372-379.
    [56]周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表现盈亏Ⅱ夏玉米[J].生态学报,2002,22(1):48-53.
    [57]武晓峰,张思聪,唐杰.节水灌溉条件下冬小麦生长期田间氮素迁移转化试验[J].清华大学学报(自然科学版),1998,38(1):92-95.
    [58] 刘宏斌 , 李志宏 , 张云责等 . 北京市农田土壤硝态氮的分布与累积特征 [J]. 中国农业科学,37(5):692-698.
    [59] 储 燕 宁 , 孙 权 , 于 大 华 . 灌 淤 土 施 氮 后 土 壤 硝 态 氮 的 动 态 变 化 观 点 [J]. 农 村 生 态 环境,2003,19(4):31-34,58.
    [60]Mclaren,A.D.Temporal and vectorial reactions of nitrogen in soil. Can. J. Soil Sci.,1970,50:97-109
    [61] Sabey B R, Frederick L R, Bartholomew W V. The formation of nitrate from ammonium nitrogen in soil:Ⅲ . Influence of temperature and initial population of nitrifying organisms on the maximum rate and delay period. Soil Sci. Sco. Am. Proc.,1959,23:462-465
    [62]Sabey B R, Frederick L R, Bartholomew W V. The formation of nitrate from ammonium nitrogen in soil:IV. Use of the delay and maximum rate phases for making quantitative predictions. Soil Sci. Sco. Am. Proc.,1969,33:276-278
    [63] 张 树 兰 , 杨 学 云 , 吕 殿 青 等 . 几 种 土 壤 剖 面 的 硝 化 作 用 及 其 动 力 学 特 征 [J]. 土 壤 学报,2000,37(3):372-379
    [64]同延安、张文孝、韩稳社等.不同氮肥种类在塿土及黄绵土中的转化[J].土壤通报,1994,25(3):107-108
    [65]Reichman,G.A .et al.,Soil Sci.Sco.Am.Pro.,30(3):363-366,1966
    [66]Flowers,T.H. and J.R. Q’Callagha, Soil. Biochem.,15(3):337-342,1983
    [67]李良谟,潘映华,周秀如等. 太湖地区主要类型土壤的硝化作用及其影响[J].土壤,1987,19:289-293.
    [69]Parker, D. T. and W. E. Larson, Soil Sci. Sco. Am. Pro., 26:238-242,1962
    [70]李振高,俞慎.土壤硝作用~反硝化作用研究进展[J].土壤,1997,6:281~286
    [71]樊军,郝明德,党廷辉.旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响[J].土壤与环境,2000,9(1):23~26
    [72]刘晓宏,田梅霞,郝明德.黄土旱塬长期轮作施肥土壤剖面硝态氮的分布与累积[J].土壤肥料,2001.(1):9~12
    [73]张维理,田哲旭,张宁等.中国北部的施氮肥对的地下水中的硝酸盐污染调查[J].植物营养与肥料学报,1995,1(2):80~87
    [74]冉炜,沈其荣,郑金伟等.土壤硝化过程中亚硝酸盐的累积研究[J].土壤学报,2000(4):474~481
    [75]李良谟,潘映华,周秀如等.太湖地区主要类型土壤的硝化作用及其影响[J].土壤,1987,19:289~293
    [76]Sabey B R, Frederick L R, Bartholomew W V. The formation of nitrate from ammonium nitrogen in soil:Ⅲ . Influence of temperature and initial population of nitrifying organisms on the maximum rate and delay period. Soil Sci. Sco. Am. Proc.,1959,23:462-465
    [77]Sabey B R, Frederick L R, Bartholomew W V. The formation of nitrate from ammonium nitrogen in soil:IV. Use of the delay and maximum rate phases for making quantitative predictions. Soil Sci. Sco. Am. Proc.,1969,33:276-278
    [78]McLaren, A. D. temporal and vectorial reactions of nitrogen in soil. Can.J. Soil Sci.,1970, 50:97-109
    [79] 张 树 兰 , 杨 学 云 , 吕 殿 青 等 . 几 种 土 壤 剖 面 的 硝 化 作 用 及 其 动 力 学 特 征 [J]. 土 壤 学报,2000,37(3):372-379
    [80]唐启义,冯明光著.实用统计分析及其 DPS 数据处理系统[M].科学出版社.2002,418-490
    [81] Sabey B R, Frederick L R, Bartholomew W V. The formation of nitrate from ammonium nitrogen in soil:IV. Use of the delay and maximum rate phases for making quantitative predictions. Soil Sci. Sco. Am. Proc.,1969,33:276-278
    [82]袁可能编著.植物营养元素的土壤化学[M].科学出版社,1983,133-145;71-75
    [83] 朱兆良,文启孝主编.中国土壤氮素[M].江苏科技出版社.1990,94-120
    [84]张维理,田哲旭,张宁等.中国北部的施氮肥对的地下水中的硝酸盐污染调查[J].植物营养与肥料学报,1995, 1 (2):80-87
    [85]Freney J R, Frevit A C F, De Datta S K et al. The interdependence of ammonia volatilization and denitrication as nitrogen loss processes in flood rice fields in Philippine[J].Bio.Soils,1990,9:31-36
    [86]Maede M,Zhao B Z,O zaki Y et al. Nitrate leaching in an anisole treated with different types of fertilizers[J].Environ.Pollution,2003,121:477-487
    [87]李世清,李生秀.影响土壤尿素水解速率的一些因子[J].植物营养与肥料学报1999,5 (2):156-162
    [88]李生秀,王子华,王喜庆.不同水分及施肥对塿土N、P变化的影响土壤[J].干旱地区农业研究.1993.增刊:93-98
    [89]黄绍文,金继运.土壤特性空间变异研究进展[J].土壤肥料.2002(1)8~14
    [90]张树兰,杨学云,吕殿青等.温度、水分及不同氮源对土壤硝化作用的影响[J].生态学报.2002(12):2147-2153
    [91]王曙光,侯彦林、郭伟.不同肥土比对NO3--N浓度变化的影响研究[J].植物营养与肥料学报2004. 2 (10):148-151
    [92]李振高,俞慎.土壤硝作用-反硝化作用研究进展[J].土壤,1997,6:281-286
    [93]樊军,郝明德,党廷辉.旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响[J].土壤与环境,2000,9(1):23-26
    [94]刘晓宏,田梅霞,郝明德.黄土旱塬长期轮作施肥土壤剖面硝态氮的分布与累积[J].土壤肥料,2001。(1):9-12
    [95]冉炜,沈其荣,郑金伟等. 土壤硝化过程中亚硝酸盐的累积研究[J].土壤学报. 2000 (4):474-481
    [96]朱兆良,文启孝.硝化作用[M]. 中国土壤氮素我国.江苏科技出版社.1992,94-120
    [97]李良谟,潘映华,周秀如等.太湖地区主要类型土壤的硝化作用及其影响[J].土壤,1987,19:289-293
    [98]Jingchang Fu, Woodard H J and Hossener L R. Nitrification in high chloride zones near fertilizer brads in a calcareous soil[J]. J. of Plant Nutr.,1994,17(4):607-629
    [99]H mlstead E H et al. 氯-重要植物营养元素研究新进展[A]. 胡思农. 硫、镁和微量元素在作物营养平衡中的作用国际学术讨论会[C].成都:成都科技大学出版社,1993,483-493
    [100]崔玉珍,金安世,张玉龙等.微量元素氯的硝化抑制效应及对作物品质的影响[A]. 胡思农. 硫、镁和微量元素在作物营养平衡中的作用国际学术讨论会[C].成都:成都科技大学出版社,1993,500-503
    [101]张树兰,杨学云,吕殿青等. 温度、水分及不同氮源对土壤硝化作用的影响[J].生态学报,2002,25(12):2146-4153
    [102]Hadas A S, Feigenbaum A F, Portnoy K. Nitrification rates in profiles of differently managed soil types. Soil Sci, Sco. Am. J., 1986,50:633-639
    [103]同延安,张文孝,韩稳社等.不同氮肥种类在塿土及黄绵土中的转化[J].土壤通报,1994,25(3):107-108
    [104]McLaren,A,Dtemporal and vectorial reactions of nitrogen in soil.Can.J.Soil. Sci.,1970,50:97-109
    [105]Tanji K K. Modeling of soil nitrogen cycle. In. Stevenson F J. ed. Nitrogen in Agricultural Soils. Agronomy, 1982,22:721-772
    [106]伍期图,李良谟. 味精废水中 NH4+-N 的微生物氧化及其动力学. 土壤,1990 (5):245-250
    [107] 张 树 兰 , 杨 学 云 , 吕 殿 青 等 . 几 种 土 壤 剖 面 的 硝 化 作 用 及 其 动 力 学 特 征 . 土 壤 学报,2000,37(3):372-379
    [108]李娟英,赵庆祥. 氨氮生物硝化分段动力学特征研究. 安全与环境学报,2005,5(4):46-48
    [109]Van Veen J A,Frissel M J. In Frissel m J,Van Veen J A.ed. Simulation Model of the Behaviur of Soil-Plant Systems. Center for Agricultural Pulishing and Ducumentation(PU-DOC), wageningen, The Netherlands. 1981,126-144
    [110]Hadas A S, Feisgenhaum A F, Portnoy K, Nitrification rates inprofiles of differently managed soil types. Soil. Sci. Am. J., 1986,50:633-639
    [111]唐启义,冯明光著.实用统计分析及其 DPS 数据处理系统[M].科学出版社.2002,418-490
    [112] 同延安、张文孝、韩稳社等.不同氮肥种类在塿土及黄绵土中的转化[J].土壤通报,1994,25(3):107-108
    [113] 孙兆林著.MATLAB6.āχ图象处理[M].清华大学出版社 2002
    [114]鲁如坤.土壤和农业化学分析法[M].北京:中国科学技术出版社,2000