基于多羧酸配体的新型金属—有机超分子的合成、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在光学、电学、磁学、分子识别和催化等领域里具有巨大的应用潜力,设计合成新型功能超分子化合物是当今配位化学、超分子化学、晶体工程学等领域的研究热点之一。本论文选择含碘刚性羧酸配体及自行设计合成了一系列柔性二羧酸配体,通过与d10过渡金属离子和稀土离子自组装,合成了三个系列共17个不同维度的超分子化合物,并通过X-射线单晶衍射、元素分析、X-射线粉末衍射、热重分析、荧光分析等技术对它们进行了表征。全文共分为五章,各章内容如下:
     第一章前言,简单介绍了配位化学、晶体工程学、超分子化学、配位聚合物等基本概念和原理,主要合成方法等。有选择性的重点描述了配位聚合物发展的新方向及新思路。
     第二章中,首先设计合成了六个具有合适角度的柔性二羧酸配体(H2L1~H2L4, H2L9, H2L10),通过它们与过渡金属离子、稀土金属离子的自组装,得到九个金属—有机超分子配合物Cd2(L1)2(DMF)4(H2O)2-H2O(1), Tm2(L1)2(DMF)4(NO3)2(2), Cu4(L3)4(H2O)4·3DMF (3), Cu4(L4)4(DMF)2-(EtOH)2-8DMF-6H2O(4), Mn4(L4)4(DMF)4(H2O)4·6DMF·H2O(5), Mn3(L4)3-(DMF)4-2DMF-3H2O(6), [Zn(L9)(phen)]-4H2O(7), (H2O)2]-2H2O-2EtOH(8)和Mn3(1L2)2(2L2)(DMF)2(H2O)2·5DMF (9)。通过X-射线单晶衍射结构分析得到单晶结构分别为零维金属—有机大环,零维金属—有机配位笼和一维/二维配位聚合物。在零维环状或笼状结构中,柔性配体采取顺式构象,而在一维或者二维结构中,柔性配体采取反式构象或者同时采取顺式与反式两种构象。
     第三章的目标是通过设计改变柔性羧酸配体中羧酸官能团的位置,研究柔性配体中配位基团的取代位置对超分子化合物结构的影响。继续合成了H2L6-H2L8配体,通过它们与金属Cu2+离子自组装,得到了四个基于轮状铜次级构筑单元的金属—有机超分子化合物10-13:配合物Cu2(L6)2(DMF)2·2DMF·H2O(10)和Cu2(L7)2(DMF)2·2DMF(11)是零维分子椅;配合物Cu2(L7)2(bpy)·2DMF·H2O(12)是分子椅构筑的一维链状结构(通过加入4,4'-bipy配体,把零维分子椅连接形成一维结构);配合物Cu2(L8)2(DMF)2·DMF·H2O(13)是含有68元金属有机大环的二维波浪状层状物。在分子椅结构中,配体采取顺式构象,在二维结构中,配体采取反式构象。
     第四章中,使用刚性含碘羧酸配体H2atiip与锌离子或者镉离子自组装得到了四个一维超分子配合物(14~17):[Zn(atiip)(bpy)·3H2O] (14,15), [Cd(atiip)(Im)2] (16, Im=imidazole,咪唑)和[Cd(atiip)(DMF)](17)。配合物14和15是一维金属—有机纳米管,且两者互为超分子异构体;配合物16是一维之字链;配合物17是一维手性螺旋链,通过加入手性诱导剂,实现了手性突破。
     第五章中,我们做出了总结与展望。
The design and synthesis of new functional metal-organic supramolecular complexes in coordination chemistry, supramolecular chemistry, crystal engineering is one of the active research fields in recent years, due to their special properties in new topology, photoelectricity, magnetism, molecular recognition and catalysis etc. In this thesis, we try to synthesize novel coordination complexes by use of flexible and rigid dicarboxylate ligands to assemble with transitional metal ions or rare-earth metal ions. The assembly of dicarboxylate with metal ions yielded 17 novel metal-organic complexes. All complexes have been determined by single-crystal X-ray diffraction、elemental analyses、XRPD analysis、thermal analysis and fluorescence spectroscopy. There are following five chapters:
     In chapter i:A brief introduction of the coordination chemistry, crystal engineering, supramolecular chemistry, coordination polymers and other basic concepts and principles. Selective focus on the development of coordination polymers described in a new direction and new ideas.
     The chapter ii:First designed and synthesized the flexible dicarboxylate ligand (H2L1~H2L4, H2L9, H2L10) with the right angle, by their self-assembly with transition metal ions, we have got nine metal organic complexes: Cd2(L1)2(DMF)4(H2O)2-H2O(2), Tm2(L1)2(DMF)4(NO3)2(2), Cu4(L3)4(H2O)4-3DMF(3), Cu4(L4)4(DMF)2(EtOH)2·8DMF·6H2O(4), Mn4(L4)4(DMF)4(H2O)4·6DMF·H2O(5), Mn3(L4)3(DMF)4·2DMF·3H2O(6), [Zn(L9)(phen)]·4H2O(7), [Zn4(L10)3(μ3-OH)2(H2O)2]·2H2O·2EtOH(8)和Mn3(1L2)2(2L2)(DMF)2(H2O)2·5DMF(9). X-ray diffraction structure analysis showed they were zero-dimensional crystal structure of metal organic macrocycle, zero-dimensional metal-organic coordination cage and one- / two-dimensional coordination polymer. In the zero-dimensional ring or cage-like structure, flexible ligand adopted cis-configuration, but in the one-dimensional or two-dimensional structure, the flexible ligand adopted the trans configuration or both cis- and trans configurations.
     In chapter iii:By changing the positions of the functional groups, there continually synthesized H2L6~H2L8 ligand, the positions of the functional SBUstituents in the central benzene ring change gradually from 1,2-,1,3- to 1,4-position. By applying these flexible ligands to assemble with copper ions, four metal-organic supramolecules (10-13) based on paddlewheel SBU have been isolated. Complexes 10 and 11 are discrete molecular chairs. Complex 12 is a 1D molecular-chair-based coordination polymer. The molecular chairs, similar to that found in 10 and 11, are infinitely connected by the bridging 4,4' -bipy ligands to result in the formation of the 1D chain structure. Complex 13 is a two-dimensional wavelike layer structure containing 68-membered ring. Both L6 and L7 in 10 and 11 adopt cis, cis conformation, while L8 adopts cis, trans conformation, which results in the formation of the 2D layer structure of complex 13.
     In chapter iv, The assembly of iodine-based rigid dicarboxylate ligands H2atiip with zinc or cadmium ion, there are isolated four one-dimensional coordination complexes (14-17):[Zn(atiip)(bpy)·3H2O] (14,15), [Cd(atiip)(Im)2] (16), [Cd(atiip)(DMF)] (17) (Im=imidazole). Complexes 14 and 15 are one-dimensional metal-organic nanotubes, which are supramolecular isomers, complex 16 is a non-chiral zigzag chain, complexes 17 are one-dimensional chiral helical chains(by adding chiral inducer).
     In chapter v, The conclusions and prospects.
引文
[1]S. L. James, Metal-organic frameworks[J], Chem. Soc. Rev.2003,32, 276-288.
    [2]J. A. Darr, M. Poliakoff, New directions in inorganic and metal-organic coordination chemistry in supercritical fluids[J], Chem. Rev.1999,99,495-541.
    [3]G. F. Swiegers, T. J. Malefetse, New self-assembled structural motifs in coordination chemistry[J], Chem. Rev.2000,100,3483-3537.
    [4]L. Brammer, Developments in inorganic crystal engineering[J], Chem. Soc. Rev.2004,33,476-489.
    [5]M. D. Hollingsworth, Crystal engineering:from structure to function[J], Science 2002,295,2410-2413.
    [6]A. M. Beatty, Open-framework coordination complexes from hydrogen-bonded networks:toward host/guest complexes[J], Coord. Chem. Rev. 2003,246,131-143.
    [7]D. Braga, F. Grepioni, Intermolecular interactions in nonorganic crystal engineering [J], Acc. Chem. Res.2000,33,601-608.
    [8]P. Metrangolo, G. Resnati, Halogen bonding:A paradigm in supramolecular chemistry[J], Chem. Eur. J.2001,7,2511-2519.
    [9]M. Nishio, CH/pi hydrogen bonds in crystals[J], Crystengcomm.2004,6, 130-158.
    [10]M. Du, Z. H. Zhang, L. F. Tang, X. G. Wang, X. J. Zhao, S. R. Batten, Molecular tectonics of metal-organic frameworks (MOFs):A rational design strategy for unusual mixed-connected network topologies[J], Chem. Eur. J.2007,13, 2578-2586.
    [11]N. W. Ockwig, O. Delgado-Friedrichs, M. O'Keeffe, O. M. Yaghi, Reticular chemistry:Occurrence and taxonomy of nets and grammar for the design of frameworks [3], Acc. Chem. Res.2005,38,176-182.
    [12]M. O'Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets [J],Acc. Chem. Res.2008,41,1782-1789.
    [13]赵晓君,新型金属—有机羧酸骨架晶体材料的设计合成、结构和性能研究[D],吉林大学化学学院博士学位论文2009,06.
    [14]C. Janiak, Engineering coordination polymers towards applications [J], Dalton Trans.2003,2781-2804.
    [15]U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, Metal-organic frameworks-prospective industrial applications[J], J. Mater. Chem.2006,16,626-636.
    [16]J. L. C. Rowsell, O. M. Yaghi, Metal-organic frameworks:a new class of porous materials[J], Microporous Mesoporous Mater.2004,73,3-14.
    [17]D. J. Collins, H. C. Zhou, Hydrogen storage in metal-organic frameworks[J], J. Mater. Chem.2007,17,3154-3160.
    [18]M. Dinca, A. Dailly, C. Tsay, J. R. Long, Expanded sodalite-type metal-organic frameworks:Increased stability and H-2 adsorption through ligand-directed catenation[J], Inorg. Chem.2008,47,11-13.
    [19]M. Du, X. J. Jiang, X. J. Zhao, Molecular tectonics of mixed-ligand metal-organic frameworks:Positional isomeric effect, metal-directed assembly, and structural diversification[J], Inorg. Chem.2007,46,3984-3995.
    [20]N. L. Rosi, M. Eddaoudi, J. Kim, M. O'Keeffe, O. M. Yaghi, Advances in the chemistry of metal-organic frameworks[J], Crystengcomm.2002,401-404.
    [21]D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe, O. M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks[J], Chem. Soc. Rev.2009,38,1257-1283.
    [22]R. P. Davies, R. Less, P. D. Lickiss, K. Robertson, A. J. P. White, Structural Diversity in Metal-Organic Frameworks Built from Rigid Tetrahedral Si(p-C6H4CO2)(4)(4-) Struts[J], Cryst. Growth Des.2010,10,4571-4581.
    [23]J. Kim, B. L. Chen, T. M. Reineke, H. L. Li, M. Eddaoudi, D. B. Moler, M. O'Keeffe, O. M. Yaghi, Assembly of metal-organic frameworks from large organic and inorganic secondary building units:New examples and simplifying principles for complex structures[J],J. Am. Chem. Soc.2001,123,8239-8247.
    [24]Z. Su, S. S. Chen, J. A. Fan, M. S. Chen, Y. Zhao, W. Y. Sun, Highly Connected Three-Dimensional Metal-Organic Frameworks Based on Polynuclear Secondary Building Units[J], Cryst. Growth Des.2010,10,3675-3684.
    [25]Y. L. Zhao, L. H. Liu, W. Y. Zhang, C. H. Sue, Q. W. Li, O. S. Miljanic, O. M. Yaghi, J. F. Stoddart, Rigid-Strut-Containing Crown Ethers and 2 Catenanes for Incorporation into Metal-Organic Frameworks[J], Chem. Eur. J.2009, 15,13356-13380.
    [26]文桂林,基于Ⅴ型配体2,5-二(4-吡啶基)-1,3,4-噻二唑的分子工程及功能配位聚合物的研究[D],西北大学博士学位论文.2009,04.
    [27]杨庆凤,含梭酸与氮杂环配体的配位聚合物的合成、结构及性能[D],吉林大学博士学位论文2009,06.
    [28]H. Y. He, D. Collins, F. N. Dai, X. L. Zhao, G. Q. Zhang, H. Q. Ma, D. F. Sun, Construction of Metal-Organic Frameworks with 1D Chain,2D Grid, and 3D Porous Framework Based on a Flexible Imidazole Ligand and Rigid Benzenedicarboxylates[J], Cryst. Growth Des.2010,10,895-902.
    [29]G. G. Luo, D. Sun, N. Zhang, R. B. Huang, L. S. Zheng, Low dimensional metal-organic frameworks (MOFs) constructed from simple aminopyrimidyl derivatives:From oligomer to single neutral zigzag chain and doubly ionic chains[J], J. Mol. Struct.2009,938,65-69.
    [30]L. F. Ma, L. Y. Wang, X. K. Huo, Y. Y. Wang, Y. T. Fan, J. G. Wang, S. H. Chen, Chain, pillar, layer, and different pores:A N-(3-carboxyphenyl)-sulfonyllglycine ligand as a versatile building block for the construction of coordination polymers[J], Cryst. Growth Des.2008,8,620-628.
    [31]X. Y. Wei, D. Di, W. Chu, Q. L. Zhu, R. D. Huang, Controllable synthesis of 1D,2D and 3D networks:Three novel metal-organic coordination compounds from 1,3-thiazolidine-2-thione ligand and silver salts[J], Inorg. Chim. Acta.2008,361,1819-1826.
    [32]G. Ferey, Building units design and scale chemistry[J], J. Solid State Chem.2000,152,37-48.
    [33]G. Ferey, Hybrid porous solids:past, present, future[J], Chem. Soc. Rev.2008,37,191-214.
    [34]C. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Metal carboxylates with open architectures[J],Angew. Chem. Int. Ed.2004,43,1466-1496.
    [35]A. Y. Robin, K. M. Fromm, Coordination polymer networks with O-and N-donors:What they are, why and how they are made[J], Coord. Chem. Rev. 2006,250,2127-2157.
    [36]A. F. Wells, Three Dimensional Nets and Polyhedra[M], London:John Wiley.1977.
    [37]A. F. Wells, Structural Inorg. Chem.[M], New York:Oxford University Press.1984.
    [38]S. Qiu, G. Zhu, Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties[J], Coord. Chem. Rev. 2009,253,2891-2911.
    [39]O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials[J], Nature.2003,423, 705-714.
    [40]O. M. Yaghi, M. O'Keeffe, M. Kanatzidis, Design of solids from molecular building blocks:Golden opportunities for solid state chemistry-Preface [J], J. Solid State Chem.2000,152,1-2.
    [41]S. Noro, R. Kitaura, M. Kondo, S. Kitagawa, T. Ishii, H. Matsuzaka, M. Yamashita, Framework engineering by anions and porous functionalities of Cu(Ⅱ)/4,4'-bpy coordination polymers[J], J. Am. Chem. Soc.2002,124,2568-2583.
    [42]高路,柔性配体构筑的配位聚合物的水热合成研究[D],吉林大学博士学位论文2009,06.
    [43]S. R. Halper, L. Do, J. R. Stork, S. M. Cohen, Topological control in heterometallic metal-organic frameworks by anion templating and metalloligand design[J],J. Am. Chem. Soc.2006,128,15255-15268.
    [44]J. L. C. Rowsell, O. M. Yaghi, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks[J], J. Am. Chem. Soc. 2006,128,1304-1315.
    [45]J. A. Zampese, Molecular Cages of Controlled Size and Shape [D], Degree of Doctor of Philosophy in Chemistry in the University of Canterbury. 2007.
    [46]N. L. Rosi, J. Kim, M. Eddaoudi, B. L. Chen, M. O'Keeffe, O. M. Yaghi, Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units[J], J. Am. Chem. Soc.2005,127,1504-1518.
    [47]S. I. Vagin, A. K. Ott, B. Rieger, Paddle-wheel zinc carboxylate clusters as building units for metal-organic frameworks[J], Chemie Ingenieur Technik.2007,79,767-780.
    [48]B. L. Chen, S. C. Xiang, G. D. Qian, Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules[J],Acc. Chem. Res.2010,43, 1115-1124.
    [49]M. Eddaoudi, J. Kim, D. Vodak, A. Sudik, J. Wachter, M. O'Keeffe, O. M. Yaghi, Geometric requirements and examples of important structures in the assembly of square building blocks[J], Proc Natl Acad Sci.2002,99,4900-4904.
    [50]P. Kanoo, K. L. Gurunatha, T. K. Maji, Versatile functionalities in MOFs assembled from the same building units:interplay of structural flexibility, rigidity and regularity[J], J. Mater. Chem.2010,20,1322-1331.
    [51]J. J. Perry Iv, J. A. Perman, M. J. Zaworotko, Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J], Chem. Soc. Rev.2009,38,1400-1417.
    [52]M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Luminescent metal-organic frameworks[J], Chem. Soc. Rev.2009,38,1330-1352.
    [53]H. X. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi, Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks[J], Science.2010,327,846-850.
    [54]C. Jia, X. X. Yuan, Z. F. Ma, Metal-Organic Frameworks (MOFs) as Hydrogen Storage Materials[J], Prog. Chem.2009,21,1954-1962.
    [55]A.Kuc,A.Enyashin,G.Seifert,Metal-organic frameworks:Structural, energetic,electronic,and mechanical properties[J],J.Phys.Chem.B.2007,111, 8179-8186.
    [56]T.Yildirim,M.R.Hartman,Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks[J],Phys.Rev.Lett.2005, 95.21550401-04.
    [57]G.K.H.Shimizu,R.Vaidhyanathan,J.M.Taylor,Phosphonate and sulfonate metal organic frameworks[J],Chem.Soc.Rev.2009,38,1430-1449.
    [58]S.Keskin,J.Liu,R.B.Rankin,J.K.Johnson,D.S.Sholl,Progress, Opporunities,and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metal-Organic Framework Materials[J],Ind. Eng.Chem.Res.2009,48,2355-2371.
    [59]G.S. Papaefstathiou,L. R. MacGillivray,Inverted metal-organic frameworks:solid-state hosts with modular functionality[J],Coord Chem.Rev. 2003,246,169-184.
    [60]S.L.Qiu,G.S.Zhu,Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties[J],Coord Chem.Rev.2009,253,2891-2911.
    [61]孙道峰,新型含羧基及磺酸基配体超分子化合物的设计合成、结构 解析、及性能研究[D],中国科学院研究生院博士学位论文.2003,06.
    [62]A.P.Cote,A.I.Benin,N.W.Ockwig,M.O'Keeffe,A.J.Matzger,O. M.Yaghi,Porous,crystalline,covalent organic frameworks[J],Science 2005,310, 1166-1170.
    [63]H.Furukawa,O.M.Yaghi,Storage of Hydrogen,Methane,and Carbon Dioxide in Highly Porous Covalent organic Frameworks for Clean Energy Applications[J],J.Am.Chem.Soc.2009,,311,8875-8883.
    [64]S.S.Han,H.Furukawa,O.M.Yaghi,W.A.Goddard,Covalent organic frameworks as exceptional hydrogen storage materials[J],J.Am.Chem.Soc. 2008,130,11580-11581.
    [65]R.Banerjee,A.Phan,B.Wang,C.Knobler,H.Furukawa,M.O'Keeffe, 0.M.Yaghi,High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J],Science.2008,319,939-943.
    [66]H.Hayashi,A.P.Cote,H.Furukawa,M.O'Keeffe,O.M.Yaghi, Zeolite a imidazolate frameworks[J],Nat ?Marer.2007,6,501-506.
    [67]K.S.Park,Z.Ni,A.P.Cote,J.Y.Choi,R.D.Huang,F.J. Uribe-Romo,H.K.Chae,M.O'Keeffe,O.M.Yaghi,Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J],Proc Natl Acad Sci.2006, 103.10186-10191.
    [68]A.Phan,C.J.Doonan,F.J.Uribe-Romo,C.B.Knobler,M.O'Keeffe, O.M.Yaghi,Synthesis,Structure,and Carbon Dioxide Capture Properies of Zeolitic Imidazolate Frameworks[J],Acc.Chem.Res.2010,43,58-67.
    [69]B.Wang,A.P.Cote,H.Furukawa,M.O'Keeffe,O.M.Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J],Nature.2008,453,207-U206.
    [70]胡升,含氮/氧多齿配体的有机-无机簇杂化分子材料的合成、结构与 性质研究[D],广州:中山大学博士论文2007,06.
    [71]E.C.CONSTABLE, Metals and Ligand Reaetivity[M], VCH, Weinheim 1996.245.
    [72]T.P.Hu,W.H.Bi,X.Q.Hu,X.L.Zhao,D.F.Sun,Cibstruction of Metal-Organic Frameworks with Novel {Zn8O13} SBU or Chiral Channels through in Situ Ligand Reaction[J],Cryst.Growth Des.2010,10,3324-3326.
    [73]W.B.Lin,Homochiral porous metal-organic frameworks:Why and how?[J],J.Solid state Chem.2005,178,2486-2490.
    [74]L.Q.Ma,C.Abney,W.B.Lin,Enantioselective catalysis with homochiral metal-organic frameworks[J],Chem.Soc.Rev.2009,38,1248-1256.
    [75]L. Q. Ma,W.B.Lin,Chirality-controlled and solvent-templated catenation isomerism in metal-organic frameworks[J],J.Am.Chem.Soc.2008,130, 13834-13835.
    [76]S.-T. Wu, Y.-R. Wu, Q.-Q. Kang, H. Zhang, L.-S. Long, Z. Zheng, R.-B. Huang, L.-S. Zheng, Chiral Symmetry Breaking by Chemically Manipulating Statistical Fluctuation in Crystallization[J], Angew. Chem. Int. Ed 2007,46, 8475-8479.
    [77]M. P. Suh, Y. E. Cheon, Recent advances in the dynamics of single crystal to single crystal transformations in metal-organic open frameworks[J], Aust. J. Chem.2006,59,605-612.
    [78]Y. J. Zhang, T. Liu, S. Kanegawa, O. Sato, Reversible Single-Crystal-to-Single-Crystal Transformation from Achiral Antiferromagnetic Hexanuclears to a Chiral Ferrimagnetic Double Zigzag Chain[J], J. Am. Chem. Soc. 2009,131,7942-7943.
    [79]J. Sun, F. N. Dai, W. B. Yuan, W. H. Bi, X. L. Zhao, W. M. Sun, D. F. Sun, Thermal-Induced Dimerization of Copper Complex through Single-Crystal-to-Single-Crystal (SCSC) Transformation Involving a Change in the Copper Coordination Geometry[J], Angew. Chem. Int. Ed.2011, ASAP.
    [80]J. P. Zhang, X. C. Huang, X. M. Chen, Supramolecular isomerism in coordination polymers[J], Chem. Soc. Rev.2009,38,2385-2396.
    [81]D. F. Sun, Y. X. Ke, T. M. Mattox, B. A. Ooro, H. C. Zhou, Temperature-dependent supramolecular stereoisomerism in porous copper coordination networks based on a designed carboxylate ligand[J], Chem Comm. 2005,5447-5449.
    [82]D. Sun, D. J. Collins, Y. Ke, J.-L. Zuo, H.-C. Zhou, Construction of Open Metal-Organic Frameworks Based on Predesigned Carboxylate Isomers:From Achiral to Chiral Nets[J], Chem. Eur. J.2006,12,3768-3776.
    [83]X. L. Zhao, H. Y. He, F. N. Dai, D. F. Sun, Y. X. Ke, Supramolecular Isomerism in Honeycomb Metal-Organic Frameworks Driven by CH…π Interactions:Homochiral Crystallization from an Achiral Ligand through Chiral Inducement[J], Inorg. Chem.2010,49,8650-8652.
    [84]A. U. Czaja, N. Trukhan, U. Muller, Industrial applications of metal-organic frameworks[J], Chem. Soc. Rev.2009,38,1284-1293.
    [85]J. R. Li, R. J. Kuppler, H. C. Zhou, Selective gas adsorption and separation in metal-organic frameworks[J], Chem. Soc. Rev.2009,38,1477-1504.
    [86]P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L Hamon, G. De Weireld, J. S. Chang, D. Y. Hong, Y. K. Hwang, S. H. Jhung, G. Ferey, High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101[J], Langmuir.2008,24,7245-7250.
    [87]B. Panella, M. Hirscher, Hydrogen physisorption in metal-organic porous crystals[J],Adv. Mater.2005,17,538-541.
    [88]B. Panella, M. Hirscher, H. Putter, U. Muller, Hydrogen adsorption in metal-organic frameworks:Cu-MOFs and Zn-MOFs compared[J], Adv. Funct. Mater.2006,16,520-524.
    [89]A. P. Nelson, O. K. Farha, K. L. Mulfort, J. T. Hupp, Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metal-Organic Framework Materials[J], J. Am. Chem. Soc.2009,131,458-459.
    [90]游效增,分子材料-光电功能化合物[M],上海科技出版社2001.
    [91]洪茂椿,陈荣,梁文平,21世纪的无机化学[M],科学出版社2005.
    [92]J.-P. Zhang, X.-M. Chen, Exceptional Framework Flexibility and Sorption Behavior of a Multifunctional Porous Cuprous Triazolate Framework [J], J. Am. Chem. Soc.2008,130,6010-6017.
    [93]M. Yoshizawa, M. F. M. Tamura, Diels-Alder in Aqueous Molecular Hosts:Unusual Regioselectivity and Efficient Catalysis[J], Science.2006,312, 251-254.
    [94]T. Liu, Y.-J. Zhang, Z.-M. Wang, S. Gao, A 64-Nuclear Cubic Cage Incorporating Propeller-like FeⅢ 8 Apices and HCOO- Edges[J], J. Am. Chem. Soc. 2008,130,10500-10501.
    [95]P. J. Stang, B. Olenyuk, Self-assembly, symmetry, and molecular architecture:Coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra[J], Acc. Chem. Res.1997,30,502-518.
    [96]J. L. Atwood, L. J. Barbour, M. J. Hardie, C. L. Raston, Metal sulfonatocalix 4,5 arene complexes:bi-layers, capsules, spheres, tubular arrays and beyond[J], Coord. Chem. Rev.2001,222,3-32.
    [97]A. Furstner, G. Seidel, N. Kindler, Macrocycles by ring-closing-metathesis, XI:Syntheses of (R)-(+)-lasiodiplodin, zeranol and truncated salicylihalamides[J], Tetrahedron.1999,55,8215-8230.
    [98]J. W. Choi, J. J. Park, M. Park, D. Y. Moon, M. S. Lah, A 2D Layered Metal-Organic Framework Constructed by Using a Hexanuclear Manganese Metallamacrocycle as a Supramolecular Building Block[J], Eur. J. Inorg. Chem. 2008,5465-5470.
    [99]Q. W. Li, W. Y. Zhang, O. S. Miljanic, C. H. Sue, Y. L. Zhao, L. H. Liu, C. B. Knobler, J. F. Stoddart, O. M. Yaghi, Docking in Metal-Organic Frameworks [J], Science.2009,325,855-859.
    [100]M. J. Prakash, M. S. Lah, Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks[J], Chem Comm.2009,3326-3341.
    [101]C.-L. Chen, J.-Y. Zhang, C.-Y. Su, Coordination Assemblies of Metallacyclic, Prismatic and Tubular Molecular Architectures Based on the Non-rigid Ligands[J], Eur. J. Inorg. Chem.2007,2997-3010.
    [102]L. Duan, Z. H. Wu, J. P. Ma, X. W. Wu, Y. B. Dong, Adsorption and Separation of Organic Six-Membered Ring Analogues on Neutral Cd(Ⅱ)-MOF Generated from Asymmetric Schiff-Base Ligand[J], Inorg. Chem.2010,49, 11164-11173.
    [103]Q. K. Liu, J. P. Ma, Y. B. Dong, Adsorption and Separation of Reactive Aromatic Isomers and Generation and Stabilization of Their Radicals within Cadmium(II)-Triazole Metal-Organic Confined Space in a Single-Crystal-to-Single-Crystal Fashion[J], J. Am. Chem. Soc.2010,132, 7005-7017.
    [104]Q. K. Liu, J. P. Ma, Y. B. Dong, Reversible Adsorption and Separation of Aromatics on Cd-II-Triazole Single Crystals[J], Chem. Eur. J.2009,15, 10364-10368.
    [105]Y.-B. Dong, Q. Zhang, L.-L. Liu, J.-P. Ma, B. Tang, R.-Q. Huang, [Cu(C24H22N4O3)].CH2Cl2:A Discrete Breathing Metallamacrocycle Showing Selective and Reversible Guest Adsorption with Retention of Single Crystallinity[J], J. Am. Chem. Soc.2007,129,1514-1515.
    [106]S. J. Dalgarno, N. P. Power, J. L. Atwood, Metallo-supramolecular capsules[J], Coord. Chem. Rev.2008,252,825-841.
    [107]Y. K. Park, S. B. Choi, H. Kim, K. Kim, B. H. Won, K. Choi, J. S. Choi, W. S. Ahn, N. Won, S. Kim, D. H. Jung, S. H. Choi, G. H. Kim, S. S. Cha, Y. H. Jhon, J. K. Yang, J. Kim, Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter[J], Angew. Chem. Int. Ed.2007,46,8230-8233.
    [108]X. L. Wang, C. Qin, E. B. Wang, Z. M. Su, Y. G. Li, L. Xu, Self-assembly of nanometer-scale Cu24I10L12 (14+) cages and ball-shaped Keggin clusters into a (4,12)-connected 3D framework with photoluminescent and electrochemical properties [J], Angew. Chem. Int. Ed.2006,45,7411-7414.
    [109]Q. Fang, G. Zhu, M. Xue, J. Sun, Y. Wei, S. Qiu, R. Xu, A Metal-Organic Framework with the Zeolite MTN Topology Containing Large Cages of Volume 2.5nm3[J], Angew. Chem. Int. Ed.2005,44,3845-3848.
    [110]L. Pirondini, F. Bertolini, B. Cantadori, F. Ugozzoli, C. Massera, E. Dalcanale, Design and self-assembly of wide and robust coordination cages[J], Proc Natl Acad Sci.2002,99,4911-4915.
    [111]R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Carbon nanotubes-the route toward applications[J], Science.2002,297,787-792.
    [112]Y. P. Sun, K. F. Fu, Y. Lin, W. J. Huang, Functionalized carbon nanotubes:Properties and applications[J],Acc. Chem. Res.2002,35,1096-1104.
    [113]D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes[J], Chem. Rev.2006,106,1105-1136.
    [114]P. Avouris, Molecular electronics with carbon nanotubes [J], Acc. Chem. Res.2002,35,1026-1034.
    [115]H. J. Dai, Carbon nanotubes:opportunities and challenges[J], Surf. Sci. 2002,500,218-241.
    [116]S. Datta, Nanoscale device modeling:the Green's function method[J], Superlattices Microstruct.2000,28,253-278.
    [117]C.M. Lieber, Nanoscale science and technology:Building a big future from small things[J], Mrs Bulletin 2003,28,486-491.
    [118]W. Shenton, T. Douglas, M. Young, G. Stubbs, S. Mann, Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus[J],Adv. Mater.1999,11,253-256.
    [119]W. S. Home, C. D. Stout, M. R. Ghadiri, A heterocyclic peptide nanotube [J], J. Am. Chem. Soc.2003,125,9372-9376.
    [120]B. Yang, S. Kamiya, Y. Shimizu, N. Koshizaki, T. Shimizu, Glycolipid nanotube hollow cylinders as SBUstrates:Fabrication of one-dimensional metallic-organic nanocomposites and metal nanowires[J], Chem. Mater.2004,16, 2826-2831.
    [121]C. Park, I. H. Lee, S. Lee, Y. Song, M. Rhue, C. Kim, Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation[J], Proc Natl Acad Sci.2006,103, 1199-1203.
    [122]B. Assfour, G. Seifert, Hydrogen storage in 1D nanotube-like channels metal-organic frameworks:Effects of free volume and heat of adsorption on hydrogen uptake[J], Int. J. Hydrogen Energy.2009,34,8135-8143.
    [123]F. Bu, S. J. Xiao, A 4-connected anionic metal-organic nanotube constructed from indium isophthalate[J], Crystengcomm.2010,12,3385-3387.
    [124]T. Chattopadhyay, M. Kogiso, M. Asakawa, T. Shimizu, M. Aoyagi, Copper(Ⅱ)-coordinated organic nanotube:A novel heterogeneous catalyst for various oxidation reactions[J], Catal. Comm.2010,12,9-13.
    [125]J. C. Jin, Y. Y. Wang, P. Liu, R. T. Liu, C. Ren, Q. Z. Shi, An Unusual Independent 1D Metal-Organic Nanotube with Mesohelical Structure and 1D-> 2D Interdigitation[J], Cryst. Growth Des.2010,10,2029-2032.
    [126]Z. Y. Guo, G. H. Li, L. Zhou, S. Q. Su, Y. Q. Lei, S. Dang, H. J. Zhang, Magnesium-Based 3D Metal-Organic Framework Exhibiting Hydrogen-Sorption Hysteresis[J],Inorg. Chem.2009,48,8069-8071.
    [127]X. C. Huang, W. Luo, Y. F. Shen, X. J. Lin, D. Li, A metal-organic framework containing discrete single-walled nanotubes based on curved trinuclear Cu-3(mu(3)-O)(mu-OH)(triazolate)(2)(+) building blocks[J], Chem Comm.2008, 3995-3997.
    [128]A. Monge, N. Snejko, E. Gutierrez-Puebla, M. Medina, C. Cascales, C. Ruiz-Valero, M. Iglesias, B. Gomez-Lor, One teflon (R)-like channelled nanoporous polymer with a chiral and new uninodal 4-connected net:sorption and catalytic properties[J], Chem Comm.2005,1291-1293.
    [129]S. B. Ren, X. L. Yang, J. Zhang, Y. Z. Li, Y. X. Zheng, H. B. Du, X. Z. You, An infinite photoluminescent coordination nanotube CuSCN(L) center dot(DMF)(0.5)[J], Crystengcomm.2009,11,246-248.
    [130]C.-Y. Su, A. M. Goforth, M. D. Smith, P. J. Pellechia, H.-C. z. Loye, Exceptionally Stable, Hollow Tubular Metal-Organic Architectures:Synthesis, Characterization, and Solid-State Transformation Study[J], J. Am. Chem. Soc.2004, 126,3576-3586.
    [131]X. He, C.-Z. Lu, D.-Q. Yuan, Two 3D Porous Cadmium Tetrazolate Frameworks with Hexagonal Tunnels[J], Inorg. Chem.2006,45,5760-5766.
    [132]B. Zhao, P. Cheng, Y. Dai, C. Cheng, D.-Z. Liao, S.-P. Yan, Z.-H. Jiang, G.-L. Wang, A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly [J],Angew. Chem. Int. Ed. 2003,42,934-936.
    [133]B. Zhao, P. Cheng, X. Chen, C. Cheng, W. Shi, D. Liao, S. Yan, Z. Jiang, Design and Synthesis of 3d-4f Metal-Based Zeolite-type Materials with a 3D Nanotubular Structure Encapsulated "Water" Pipe[J], J. Am. Chem. Soc.2004,126, 3012-3013.
    [134]S. U. Son, K. H. Park, B. Y. Kim, Y. K. Chung, Construction of Cylindrical Nanotubular Materials by Self-Assembly of Co(NCS)2 with Bent-Building Blocks Having Diimidazole Rings[J], Cryst. Growth Des.2003,3, 507-512.
    [135]O.-S. Jung, Y. J. Kim, K. M. Kim, Y.-A. Lee, A 20-A-Thick Interwoven Sheet Consisting of Nanotubes[J], J. Am. Chem. Soc.2002,124, 7906-7907.
    [136]M. Tominaga, M. Fujita, Guest-induced assembly of Pd-II-Linked coordination nanotubes[J], Bull. Chem. Soc. Jpn.2007,80,1473-1482.
    [137]M. Tominaga, M. Kato, T. Okano, S. Sakamoto, K. Yamaguchi, M. Fujita, Stabilization of a self-assembled coordination nanotube by covalent link[J], Chem. Lett.2003,32,1012-1013.
    [138]T. Yamaguchi, S. Tashiro, M. Tominaga, M. Kawano, T. Ozeki, M. Fujita, A 3.5-nm coordination nanotube[J], J. Am. Chem. Soc.2004,126, 10818-10819.
    [139]T. Yamaguchi, S. Tashiro, M. Tominaga, M. Kawano, T. Ozeki, M. Fujita, Self-assembly and host-guest chemistry of a 3.5-nm coordination nanotube [J], Chem. Asian. J.2007,2,468-476.
    [140]S. Tashiro, M. Tominaga, M. Kawano, T. Ozeki, M. Fujita, A 3.5-nm Coordination NanotubeTakumi Yamaguchi[J], J. Am. Chem. Soc.2004,126, 10818-10819.
    [141]M. Hong, Y. Zhao, W. Su, R. Cao, M. Fujita, Z. Zhou, A. S. C. Chan, A Silver(Ⅰ) Coordination Polymer Chain Containing Nanosized Tubes with Anionic and Solvent Molecule Guests[J], Angew. Chem. Int. Ed.2000,39,2468-2470.
    [142]J. Fan, H. F. Zhu, T. A. Okamura, W. Y. Sun, W. X. Tang, N. Ueyama, Novel one-dimensional tubelike and two-dimensional polycatenated metal-organic frameworks[J],Inorg. Chem.2003,42,158-162.
    [143]Y. Qi, Y. X. Che, S. R. Batten, J. M. Zheng, Unprecedented trinodal 4-connected metal-organic frameworks (MOFs) with 2-fold interpenetration[J], Crystengcomm.2008,10,1027-1030.
    [144]H. Frost, R. Q. Snurr, Design requirements for metal-organic frameworks as hydrogen storage materials[J], J. Phys. Chem. C.2007,111, 18794-18803.
    [145]Y. Cui, S. J. Lee, W. Lin, Interlocked Chiral Nanotubes Assembled from Quintuple Helices[J], J. Am. Chem. Soc.2003,125,6014-6015.
    [146]X.-L. Wang, C. Qin, E.-B. Wang, Y.-G. Li, Z.-M. Su, L. Xu, L. Carlucci, Entangled Coordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting[J],Angew. Chem. Int. Ed.2005,44, 5824-5827.
    [147]Y.-B. Dong, Y.-Y. Jiang, J. Li, J.-P. Ma, F.-L. Liu, B. Tang, R.-Q. Huang, S. R. Batten, Temperature-Dependent Synthesis of Metal-Organic Frameworks Based on a Flexible Tetradentate Ligand with Bidirectional Coordination Donors[J], J. Am. Chem. Soc.2007,129,4520-4521.
    [1]S. R. Batten, R. Robson, Interpenetrating Nets:Ordered, Periodic Entanglement [J], Angew. Chem. Int. Ed.1998,37,1460-1494.
    [2]M. H. Keefe, K. D. Benkstein, J. T. Hupp, Luminescent sensor molecules based on coordinated metals:a review of recent developments[J], Coord. Chem. Rev. 2000,205,201-228.
    [3]M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, O. M. Yaghi, Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J], Acc. Chem. Res.2001,34,319-330.
    [4]J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis[J], Nature.2000,404,982-986.
    [5]S. Kitagawa, R. Kitaura, S.-i. Noro, Functional Porous Coordination Polymers[J], Angew. Chem. Int. Ed.2004,43,2334-2375.
    [6]L. R. MacGillivray, J. L. Atwood, Cavity-Containing Materials Based Upon Resorcin[4]arenes by Discovery and Design[J], J. Solid State Chem.2000,152, 199-210.
    [7]J.-M. Lehn, Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture)[J], Angew. Chem. Int. Ed. 1988,27,89-112.
    [8]J. Fan, H. F. Zhu, T. A. Okamura, W. Y. Sun, W. X. Tang, N. Ueyama, Novel one-dimensional tubelike and two-dimensional polycatenated metal-organic frameworks[J], Inorg. Chem.2003,42,158-162.
    [9]A. Kondo, H. Noguchi, H. Kajiro, L. Carlucci, P. Mercandelli, D. M. Proserpio, H. Tanaka, K. Kaneko, H. Kanoh, Coordination symmetry-dependent structure restoration function of one-dimensional MOFs by molecular respiration[J], J. Phys. Chem. B.2006,110,25565-25567.
    [10]W. Zhao, J. Fan, T. Okamura, W. Y. Sun, N. Ueyama, Syntheses, crystal structures and anion-exchange properties of copper(Ⅱ) and cadmium(Ⅱ) complexes containing a novel tripodal ligand[J], New J. Chem.2004,28, 1142-1150.
    [11]W. L. Meng, G. X. Liu, T. A. Okamura, H. Kawaguchi, Z. H. Zhang, W. Y. Sun, N. Ueyama, Syntheses, crystal structures, and magnetic properties of novel copper(Ⅱ) complexes with the flexible bidentate ligand 1-bromo-3,5-bis(imidazol-1-ylmethyl)benzene[J], Cryst. Growth Des.2006,6, 2092-2102.
    [12]Z. H. Zhang, W. L. Meng, T. A. Okamura, L. Y. Kong, W. Y. Sun, N. Ueyama, Lanthanide-organic frameworks with flexible triacid ligand:Structural variation under different reaction conditions[J], Supramol. Chem.2006,18, 317-325.
    [13]W. Zhao, J. Fan, Y. Song, H. Kawaguchi, T. Okamura, W. Y. Sun, N. Ueyama, Syntheses, crystal structures and properties of novel copper(II) complexes obtained by reactions of copper(II) sulfate pentahydrate with tripodal ligands [J], Dalton Trans.2005,1509-1517.
    [14]M. Wu, F. Jiang, W. Wei, Q. Gao, Y. Huang, L. Chen, M. Hong, A Porous Polyhedral Metal-Organic Framework Based on Zn2(COO)3 and Zn2(COO)4 SBUs[J], Cryst. Growth Des.2009,9,2559-2561.
    [15]Lee, Kim, D.-Y. Jung, A Coordination Polymer of Cobalt(Ⅱ)-Glutarate: Two-Dimensional Interlocking Structure by Dicarboxylate Ligands with Two Different Conformations[J], Inorg. Chem.2002,41,501-506.
    [16]A. W. v. d. Made', R. H. v. d. Made, A Convenient Procedure for Bromomethylation of Aromatic Compounds. Selective Mono-, Bis-, or Trisbromomethylation[J], J. Org. Chem.1993,55,1262-1263.
    [17]杨迟,黄永德,陈小明,崔英德,杨燕生,星状六(苯甲酸)的合成、晶体结构及其铽配合物.[J],中国科学2003,6,558-565.
    [18]Z. Cai, J. Tang, M. Tan, Y. Tang, W. Liu, K. Yu, Assembly of novel luminescent binuclear box-like complexes from lanthanide (Ⅲ) and a new flexible tripod polyaromatic acid ligand[J], Inorg. Chem. Comm.2005,8,825-827.
    [19]Sheldrick, G. M. SADABS 2.05[M], University of Gcttingen, Gcttingen.
    [20]SHELXTL 6.10, Bruker Analytical Instrumentation, Madison,2000.
    [21]W. Chen, J.-Y. Wang, C. Chen, Q. Yue, H.-M. Yuan, J.-S. Chen, S.-N. Wang, Photoluminescent Metal-Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates[J], Inorg. Chem.2003,42,944-946.
    [22]W. Clegg, I. R. Little, B. P. Straughan, Zinc carboxylate complexes: structural characterization of the mixed-metal linear trinuclear complexes MZn2(crot)6(base)2 (M=Mn, Co, Ni, Zn, Cd, Mg, Ca, Sr; crot-=crotonate(1-); base=quinoline,6-methylquinoline)[J], Inorg. Chem.1988,27,1916-1923.
    [23]D. Sun, Y. Ke, D. J. Collins, G. A. Lorigan, H.-C. Zhou, Construction of Robust Open Metal-Organic Frameworks with Chiral Channels and Permanent Porosity[J], Inorg. Chem.2007,46,2725-2734.
    [1]N. N. Adarsh, D. K. Kumar, P. Dastidar, Zn(Ⅱ) metal-organic frameworks (MOFs) derived from a bis-pyridyl-bis-urea ligand:effects of crystallization solvents on the structures and anion binding properties[J], Crystengcomm.2008,10, 1565-1573.
    [2]A. Kondo, H. Noguchi, H. Kajiro, L. Carlucci, P. Mercandelli, D. M. Proserpio, H. Tanaka, K. Kaneko, H. Kanoh, Coordination symmetry-dependent structure restoration function of one-dimensional MOFs by molecular respiration[J], J. Phys. Chem. B.2006,110,25565-25567.
    [3]D. K. Kumar, A. Das, P. Dastidar, Exploring conformationally flexible hydrogen-bond-functionalized ligand and counter anions in metal-organic frameworks of Cu(Ⅱ)[J],New J. Chem.2006,30,1267-1274.
    [4]J. Qian, H. Yoshikawa, J. F. Zhang, H. J. Zhao, K. Awaga, C. Zhang, Heterobimetallic Tungsten/Molybdenum(IV)-Copper(II) MOFs Constructed by a Unique 2D-> 3D Architecture and Exhibiting New Topology and Magnetic Properties [J], Cryst. Growth Des.2009,9,5351-5355.
    [5]G. X. Liu, K. Zhu, H. M. Xu, S. Nishihara, R. Y. Huang, X. M. Ren, Five 3D metal-organic frameworks constructed from V-shaped polycarboxylate acids and flexible imidazole-based ligands[J], Crystengcomm.2010,12,1175-1185.
    [6]Y. Liu, Y. Qi, Y. H. Su, F. H. Zhao, Y. X. Che, J. M. Zheng, Five novel cobalt coordination polymers:effect of metal-ligand ratio and structure characteristics of flexible bis(imidazole) ligands[J], Crystengcomm.2010,12, 3283-3290.
    [7]X. J. Wang, C. H. Zhan, Y. L. Feng, Y. Z. Lan, J. L. Yin, J. W. Cheng, Two unusual (4,6)- and 8-connected metal-organic frameworks constructed from flexible 1,4-benzenebis(thioacetic acid) and pyridine-based ligands [J], Crystengcomm.2011, 13,684-689.
    [8]X. Y. Xing, X. Y. Song, P. P. Yang, R. N. Liu, L. C. Li, D. Z. Liao, Bi- and trinuclear cobalt based coordination polymers constructed from aromatic polycarboxylic acids and 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene:Crystal structure and magnetic properties[J], J. Mol. Struct.2010,967,196-200.
    [9]W. L. Meng, G. X. Liu, T. A. Okamura, H. Kawaguchi, Z. H. Zhang, W. Y. Sun, N. Ueyama, Syntheses, crystal structures, and magnetic properties of novel copper(II) complexes with the flexible bidentate ligand 1-bromo-3,5-bis(imidazol-1-ylmethyl)benzene[J], Cryst. Growth Des.2006,6, 2092-2102.
    [10]X. D. Zhu, J. Lu, X. J. Li, S. Y. Gao, G. L. Li, F. X. Xiao, R. Cao, Syntheses, structures, near-infrared, and visible luminescence of lanthanide-organic frameworks with flexible macrocyclic polyamine ligands[J], Cryst. Growth Des. 2008,8,1897-1901.
    [11]C.-L. Chen, J.-Y. Zhang, C.-Y. Su, Coordination Assemblies of Metallacyclic, Prismatic and Tubular Molecular Architectures Based on the Non-rigid Ligands[J], Eur. J. Inorg. Chem.2007,2997-3010.
    [12]Z. Cai, J. Tang, M. Tan, Y. Tang, W. Liu, K. Yu, Assembly of novel luminescent binuclear box-like complexes from lanthanide (Ⅲ) and a new flexible tripod polyaromatic acid ligand[J], Inorg. Chem. Comm.2005,8,825-827.
    [13]杨迟,黄永德,陈小明,崔英德,杨燕生,星状六(苯甲酸)的合成、晶体结构及其铽配合物.[J],中国科学2003,6,558-565.
    [14]A. W. v. d. Made', R. H. v. d. Made, A Convenient Procedure for Bromomethylation of Aromatic Compounds. Selective Mono-, Bis-, or Trisbromomethylation[J], J. Org. Chem.1993,58,1262-1263.
    [15]Sheldrick, G. M. SADABS 2.05[M], University of Gcttingen, Gcttingen.
    [16]SHELXTL 6.10, Bruker Analytical Instrumentation, Madison,2000.
    [17]M. Eddaoudi, J. Kim, D. Vodak, A. Sudik, J. Wachter, M. O'Keeffe, O. M. Yaghi, Geometric requirements and examples of important structures in the assembly of square building blocks[J], Proc Natl Acad Sci.2002,99,4900-4904.
    [18]H. L. Jiang, Q. Xu, Counterion-induced controllable assembly of 2D and 3D metal-organic frameworks:effect of coordination modes of dinuclear Cu(Ⅱ) paddle-wheel motifs[J], Crystengcomm.2010,12,3815-3819.
    [19]M. Tafipolsky, S. Amirjalayer, R. Schmid, First-Principles-Derived Force Field for Copper Paddle-Wheel-Based Metal-Organic Frameworks[J], J. Phys. Chem. C.2010,114,14402-14409.
    [20]S. I. Vagin, A. K. Ott, B. Rieger, Paddle-wheel zinc carboxylate clusters as building units for metal-organic frameworks[J], Chem-ing-tech.2007,79, 767-780.
    [1]R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Carbon nanotubes-the route toward applications[J], Science.2002,297,787-792.
    [2]S. J. Tans, A. R. M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube[J], Nature.1998,393,49-52.
    [3]S. Iijima, Helical microtubules of graphitic carbon[J], Nature.1991,354, 56-58.
    [4]W. S. Home, C. D. Stout, M. R. Ghadiri, A heterocyclic peptide nanotube [J], J. Am. Chem. Soc.2003,125,9372-9376.
    [5]W. Shenton, T. Douglas, M. Young, G. Stubbs, S. Mann, Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus[J], Adv. Mater.1999,11,253-256.
    [6]T. Yamaguchi, S. Tashiro, M. Tominaga, M. Kawano, T. Ozeki, M. Fujita, A3.5-nm coordination nanotube[J], J. Am. Chem. Soc.2004,126,10818-10819.
    [7]F. Bu, S. J. Xiao, A 4-connected anionic metal-organic nanotube constructed from indium isophthalate[J], Crystengcomm.2010,12,3385-3387.
    [8]T. Chattopadhyay, M. Kogiso, M. Asakawa, T. Shimizu, M. Aoyagi, Copper(Ⅱ)-coordinated organic nanotube:A novel heterogeneous catalyst for various oxidation reactions[J], Catalysis Comm.2010,12,9-13.
    [9]B. Assfour, G. Seifert, Hydrogen storage in 1D nanotube-like channels metal-organic frameworks:Effects of free volume and heat of adsorption on hydrogen uptake[J], Int. J. Hydrogen. Energ 2009,34,8135-8143.
    [10]J. C. Jin, Y. Y. Wang, P. Liu, R. T. Liu, C. Ren, Q. Z. Shi, An Unusual Independent 1D Metal-Organic Nanotube with Mesohelical Structure and 1D-> 2D Interdigitation[J], Cryst. Growth Des.2010,10,2029-2032.
    [11]J. L. Atwood, L. J. Barbour, T. J. Ness, C. L. Raston, P. L. Raston, A well-resolved ice-like (H2O)(8) cluster in an organic supramolecular complex[J], J. Am. Chem. Soc.2001,123,7192-7193.
    [12]L. J. Barbour, G. W. Orr, J. L. Atwood, An intermolecular (H2O)(10) cluster in a solid-state supramolecular complex[J], Nature.1998,393,671-673.
    [13]K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Architecture of the photosynthetic oxygen-evolving center[J], Science.2004,303, 1831-1838.
    [14]K. Nauta, R. E. Miller, Formation of cyclic water hexamer in liquid helium:The smallest piece of ice [J], Science.2000,287,293-295.
    [15]J. W. Shin, N. I. Hammer, E. G. Diken, M. A. Johnson, R. S. Walters, T. D. Jaeger, M. A. Duncan, R. A. Christie, K. D. Jordan, Infrared signature of structures associated with the H+(H2O)(n) (n=6 to 27) clusters[J], Science.2004, 304,1137-1140.
    [16]R. Babarao, Y. H. Tong, J. W. Jiang, Molecular Insight into Adsorption and Diffusion of Alkane Isomer Mixtures in Metal-Organic Frameworks[J], J. Phys. Chem. B.2009,113,9129-9136.
    [17]K. Z. Shao, Y. H. Zhao, Y. Q. Lan, X. L. Wang, Z. M. Su, R. S. Wang, Molecular tectonics of metal-organic frameworks based on ligand-modulated polynuclear zinc SBUs and aromatic multicarboxylic acids[J], Crystengcomm.2011, 13,889-896.
    [18]L. Zhang, Q. Wang, T. Wu, Y. C. Liu, Understanding adsorption and interactions of alkane isomer mixtures in isoreticular metal-organic frameworks[J], Chem. Eur. J.2007,13,6387-6396.
    [19]B. Moulton, M. J. Zaworotko, From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J], Chem. Rev. 2001,101,1629-1658.
    [20]B. Assfour, G. Seifert, Hydrogen storage in 1D nanotube-like channels metal-organic frameworks:Effects of free volume and heat of adsorption on hydrogen uptake[J], Int. J. Hydrogen. Energ.2009,34,8135-8143.
    [21]T. D. Hamilton, D. K. Bucar, M. J. Atkinson, G. S. Papaefstathiou, L. R. MacGillivray,1D and 2D metal-organic frameworks functionalized with free pyridyl groups[J], J. Mol. Struct.2006,796,58-62.
    [22]H. Y. He, D. Collins, F. N. Dai, X. L. Zhao, G. Q. Zhang, H. Q. Ma, D. F. Sun, Construction of Metal-Organic Frameworks with 1D Chain,2D Grid, and 3D Porous Framework Based on a Flexible Imidazole Ligand and Rigid Benzenedicarboxylates[J], Cryst. Growth Des.2010,10,895-902.
    [23]J. N. Rebilly, J. Bacsa, M. J. Rosseinsky, 1D Tubular and 2D Metal-Organic Frameworks Based on a Flexible Amino Acid Derived Organic Spacer [J], Chem. Asian. J.2009,4,892-903.
    [24]X. Y. Wei, D. Di, W. Chu, Q. L. Zhu, R. D. Huang, Controllable synthesis of 1D,2D and 3D networks:Three novel metal-organic coordination compounds from 1,3-thiazolidine-2-thione ligand and silver salts[J], Inorg. Chim. Acta.2008,361,1819-1826.
    [25]L. L. Zheng, H. X. Li, J. D. Leng, J. Wang, M. L. Tong, Two photoluminescent metal-organic frameworks constructed from Cd-3(mu(3)-OH) cluster or 1D Zn-5(mu(3)-OH)(2)(mu-OH)(2) chain units and in situ formed bis(tetrazole)amine ligands[J], Eur. J. Inorg. Chem.2008,213-217.
    [26]Cheng, J. B. Lin, J. Z. Gong, A. P. Sun, B. H. Ye, X. M. Chen, Encapsulation of water cluster, meso-helical chain and tapes in metal-organic frameworks based on double-stranded Cd(Ⅱ) helicates and carboxylates[J], Cryst. Growth Des.2006,6,2739-2746.
    [27]X. Ouyang, Z. X. Chen, X. F. Liu, Y. T. Yang, M. L. Deng, L. H. Weng, Y. M. Zhou, Y. Jia, One-dimensional (1D) helical and 2D homochiral metal-organic frameworks built from a new chiral octahydrobinaphthalene-derived dicarboxylic acid[J], Inorg. Chem. Comm.2008,11,948-950.
    [28]Sheldrick, G. M. SADABS 2.05[M], University of Gcttingen, Gcttingen.
    [29]SHELXTL 6.10, Bruker Analytical Instrumentation, Madison,2000.
    [30]K. Biradha, C. Seward, M. J. Zaworotko, Helicale Koordinationspolymere mit groBen chiralen Hohlraumen[J], Angew. Chem.1999, 111,584-587.