稀土/过渡金属—有机配位聚合物的设计、合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有特殊性能或多功能的金属有机配位聚合物或金属有机骨架材料(MOFs)的研究与材料、物理、生命科学和化学等诸多研究领域密切相关。尤其是研究稀土配合物对于构筑结构新颖的拓扑网络和合成具有独特的光、电、磁、气体分离的新材料等方面具有重要的意义;此外,研究提高MOF材料的憎水性能是解决其工业应用的前提条件,因此具有重大的研究价值。依据晶体工程学原理,本文采用刚性的含氮杂环羧酸配体与过渡金属离子(4d)和稀土离子(4f)合成了一系列结构新颖的4f及4d-4f配位聚合物,探讨了它们的发光、吸附和传感等性能;此外,采用对苯二甲酸与4,4’-联吡啶/4,4’-联吡啶衍生物,在溶剂热条件下与过渡金属自组装成多个MOF新材料,深入探讨疏水基团的引入及其取代位置对MOF材料憎水性能的影响。论文的主要研究内容有:
     第1章介绍了本课题的研究背景,包括基于过渡金属离子、稀土离子或者稀土-过渡混合金属离子构筑的具有光、电、磁、吸附、分离、传感等性能的功能配位聚合物的研究现状和应用,并简要论述了本论文的选题依据。
     第2章探讨了水热条件下4-吡啶甲酸与反丁烯二酸发生原位脱羧和脱水配体耦合反应,并研究了通过原位配体反应生成的新配体构筑成二维配位聚合物的荧光性能。通过控制反应条件,采用浓硝酸作为氧化剂和酸性调节剂,在一定的温度和压力下,反丁烯二酸发生脱羧反应生成二氧化碳和3-羟基丙酸:二氧化碳进一步自身还原耦合生成草酸;3-羟基丙酸与质子化的4-吡啶甲酸通过脱水反应耦合生成3-(4-吡啶甲酸)丙酸。两组新配体与体系中的Eu~(3+)离子进一步构筑成一个新的稀土配位聚合物,{[Eu(C_9H_8NO_4)(C_2O_4)]·2H_2O}n (1),1由一维链Eu-oxalate和3-(4-吡啶甲酸)丙酸配体构筑而成,展现出二维层状结构,常温固态下在359 nm波长激发下发生特征的红色荧光,荧光衰减结果表明1的荧光寿命为368.5微秒。
     第3章描述了分别以2,6-吡啶二羧酸(H2pydc)和4-吡啶甲酸(HIN)为桥联配体合成了四个稀土-过渡混合金属配位聚合物,其组成分别为:[AgLn(pydc)_2(H_2O)3]·x(H_2O) [Ln = Eu, x = 1.25 (2); Ln = Tb, x = 1.25 (3)],和LnAg(OX)(IN)_2·H_2O (Ln = Nd (4); Eu (5))。荧光谱图结果表明含Eu和Tb的配合物在可见光区具有亮而窄的特征荧光发射,荧光衰减曲线表明,2、3和5的荧光寿命分别为431.8、886.8和756.6微秒。
     第4章在水热条件下,浓硝酸作为氧化剂和酸性调节剂,5-甲基-吡嗪-2-羧酸发生原位甲基氧化和脱羧耦合反应生成两种新配体:2,5-吡嗪二羧酸和草酸,与Eu~(3+)离子进一步自组装成具有一维通道的三维微孔稀土金属有机配位聚合物[Eu_2(μ_2-pzdc)(μ_4-pzdc)(μ_2-ox)(H_2O)_4]·8H_2O (6)。研究结果发现,通过原位配体反应不但可以简化反应物原料,缩短反应时间,更重要是增大了晶体尺寸,提高了晶体纯度。配合物6中含有1D亲水孔道和动力学半径为2.1?大小的孔径,除去游离客体分子后的6a的荧光强度具有溶剂效应,对丙酮具有选择性识别,可用于荧光探针。第5章采用配体合成策略,在第二配体4,4’-联吡啶的2-和3-位上分别引入相同数量的疏水基团(甲基)后,与对苯二甲酸及过渡金属离子(Zn~(2+))在溶剂热条件下合成了两个含有1D通道的三维二重穿插MOF材料, [Zn_2(BDC)_2(P_2)]·(DMF)_2·(H_2O) (SCUTC-18)和[Zn_2(BDC)_2(P_3)]·(DMF)·(H_2O)_2 (SCUTC-19)。研究结果表明,与无疏水基团的有机配体构筑的MOF-508 [Zn_2(BDC)_2(P~1)]·(DMF)·(H_2O)_2]相比,疏水基团的引入能大大提高MOF材料的憎水性,而且,相同数量不同位置上的疏水基团对MOF材料憎水性能又有明显区别:疏水基团越靠近金属-羧基氧簇中心,憎水性能越强。此外,SCUTC-18对甲苯具有良好的吸附性能,可应用于除去室内有毒挥发性气体。
Metal-organic coordination polymers or metal-organic frameworks(MOFs), with unique property or multi-functionalities, have been closely related to materials, physics, life sciences and chemistry. The study of lanthanide-contained coordination polymers has important significance in the fields of constructing of intriguing topological nets and synthesizing new materials with unique luminescent, electronic, magnetic and gas separate. Moreover, improving the hydrophobic of MOFs is of great important to the realize industrial applications of MOF materials. According to the theory of molecular engineering, we have focused our study on the reactions of rigid azacyclo-carboxylic acid with lanthanide (4f)/transition (4d) metals. A series of novel coordination polymers containing the 4f or 4d-4f mixed metals were successfully synthesized. The unique luminescent, gas adsorption and sensing properties of these polymers were systematically studied. The main research works of this thesis are as follow:
     In chapter 1, the backgrounds of this study were briefly introduced, including the research progresses of 4d-, 4f- and 4d-4f-contained functional coordination polymers with unique luminescent, magnetic, electric, gas adsorption, separation and sensing propertyes. Finally, the research aims and contents of this thesis were proposed.
     In chapter 2, the in situ decarboxylation and dehydration coupling of fumaric acid and isonicotinic acid under hydrothermal conditions and the luminescent property of an unprecedented two-dimensional coordination polymer containing in situ formed new ligands, 3-(4-pyridinecarboxylate)propionic acid (inpro) and oxalate (ox) moieties were explored. Electrophilic addition of fumaric acid to form unstable 2-hydroxysuccinic acid, which could get decarboxylated with trace quantity of nitric acid under certain temperature and pressure to form CO_2 and 3-hydroxypropionic acid: the in situ reductive coupling of CO_2 generated oxalate anion; the condensation reaction between 3-hydroxypropionic acid and 4-carboxypyridinium moiety through dehydration led to the formation of the Hinpro acid which then coordinated with the Eu(III) ion along with the oxalate anion leading to the formation of the coordition polymer 1, {[Eu(C_9H_8NO_4)(C_2O_4)]·2H_2O}n. 1 displays a two-dimensional layered network constructed by Eu-oxalate chanins and inpor. Upon excitation at 359 nm 1 emited the red fluorescent and shown lifetimes of 368.5μs at room temperature.
     In chapter 3, four new 4d-4f coordination polymers based on 2,6-pyridinedicarboxylate or isonicotinic acid as bridging ligands were obtained, [AgLn(pydc))_2(H_2O)3]·x(H_2O) [Ln = Eu, x = 1.25 (2); Ln = Tb, x = 1.25 (3)],and LnAg(OX)(IN)_2·H_2O (Ln = Nd (4); Eu (5)). The results shown that four 4d-4f coordination polymers emited characteristic fluorescence of lanthanide ions in UV-Visible (UV-Vis) region. The luminescent lifetimes of solid 2, 3 and 5 were measured to be 431.8, 886.8, and 756.6μs, respectively.
     In chapter 4, hydrothermal reaction of 5-methylpyrazine-2-carboxylic acid with trace amount of nitric acid as both oxidant and acidity modifier produced a novel microporous europium-conatining metal-organic framework [Eu2(μ2-pzdc)(μ4-pzdc)(μ2-ox)(H_2O)_4]·8H_2O (6), which contained in situ oxidation of methyl and decarboxylation formed new ligands, 2,5-pyrazinedicarboxylate (H2pzdc) and oxalate (ox) moieties. It was found that in-situ synthesis of ligands from an organic precursor not only simplified the synthesis, but also led to enhanced crystal size and purity. 6 contained one hydrophilic channel within the three-dimensional structure and was able to host molecules with kinetic radii as big as 2.1 ?. The intensity of luminescence of guest-free MOF 6a exhibited solvent-dependent effects, which has the potential applications as a luminescent receptor for reversible and selective molecular sensing.
     In chapter 5, the self-assembly of terephthalic acid and 2,2’-dimethyl-4,4’-bipyridine/3,3’-dimethyl-4,4’-bipyridine with transition metal salt under solvothermal conditions obtained two new microporous metal-organic frameworks, [Zn_2(BDC)_2(P~2)]·(DMF)_2·(H_2O) (SCUTC-18) and [Zn2(BDC)2(P3)]·(DMF)·(H_2O)2 (SCUTC-19), which both featured the same three-dimensional coordination network with 1D open channles. The results indicated that the incorporation of methyl groups enhanced the stability of MOF-508 which constructed by 4,4’-bipyridine, terephthalic acid and Zn~(2+) under standard atmospheric conditions. Furthermore, the moisture stability of the MOFs depended strongly on the positions of the methyl substitutes on the 4,4’-bipyridine linkers. The hydrophobic groups closer to the Zn centers, the hydrophobicity of MOFs was stronger. The combination of high stability in air and hydrophobicity as well as high adsorption capacity for toluene implies that SCUTC-18 has potential capabilities for air-cleaning applications.
引文
[1]徐光宪. 21世纪的配位化学是处于现代化学中心地位的二级学科[J].北京大学学报(自然科学版), 2002, (38):149-152.
    [2]孙为银.配位化学[M].化学工业出版社:北京, 2004.
    [3] Lindoy, L. F. The Chemistry of Macrocyclic Ligand Complexes [M]. Combridge University Press: London, 1989.
    [4] Claessens, C. G.; Stoddart, J. F. J. Review Commentaryπ-πInteractions in Self-assembly [J]. Journal of Physical Organic Chemistry, 1997, (10):254-272.
    [5]许先芳;李志伟.夹心型配合物二茂铁和E5FeE5(E = N, P, As, Sb, Bi)的结构和芳香性[J].中山大学学报(自然科学版), 2008, 47:63-67.
    [6] Breslow, R. Biomimetic Chemistry and Artificial Enzymes:Catalysis by Design [J]. Accounts of Chemical Research, 1995, 28(3):146-153.
    [7] Mingos, D. M.; Wsdes, D. J. Introduction to Cluster Chemistry [M]. Wiley Sons Inc, 1992.
    [8] Fagan, P. J.; Calabreses, J. C.; Malone, B., et al. Metal Complexes of Bnckminsterfnllerene(C60) [J]. Accounts of Chemical Research, 1992, 25(3):134-142.
    [9] Sheldricck, G. M. Shelxtl.5 Reference Manual, sicmens Analytical X-ray Systems [M]. Int. Madison, Wisconsin, USA 1996:307.
    [10] Wilson, A. J. C. International Table For X-ray Crystallography [M]. 1992:280.
    [11] Wen, Y. H.; Zhang, S. S.; Yu, B. H., et al. 1,4-Bis(4-methoxyphenyl)piperazine-2,5-dion [J]. Acta Crystallographica Section E, 2004, 60: o1494.
    [12] Choi, H. J.; Suh, M. P. Self-Assembly of Molecular Brick Wall and Molecular Honeycomb from Nickel(II) Macrocrycle and 1,3,5-benzenetricarboxylate: Guest dependent host structures [J]. Journal of the American Chemical Society, 1998, 120(41):10622-10628.
    [13] Yaghi, O. M.; Li, H.; Groy, T. L. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid [J]. Journal of the American Chemical Society, 1996, 118(38):9096-9101.
    [14] Yaghi, O. M.; Davis, C. E.; Li, G., et al. Selective guest binding by tailored channels in 3D porous zinc(II)-benzenetricarboxylate network [J]. Journal of the American Chemical Society, 1997, 119(12):2861-2868.
    [15] Blake, A. J.; Chamres, N. R.; Hubberstry, P., et al. Inorganic crystal engineering using self-assembly of tailored building-block [J]. Coordination Chemistry Reviews, 1999, 183(1):117-138.
    [16] Solomon, E. I.; Brunold, T. C.; Davis, M. Z., et al. Geometric and electronic structure/function correlations in non-heme iron enzymes [J]. Chemical. Reviews, 2000, 100(1):235-350.
    [17] Kin, C.; Dong, Y.; Que Jar, L. Modeling Nonheuce dirron enzynces:hydrocarbon hydroxylation and desaturation by a high-valent Fe2O2 diamond core [J]. Journal of the American Chemical Society, 1997, 119(15):3635-3636.
    [18] Mizoguchi, T. J.; Daridov, R. M.; Lippard, S. J. Structural and spectroscopic comparisons between (μ-Oxo)-and (μ-hydroxo)bis(μ-carboxylato)diiron(III)complexes that contain all-oxygen-donor ligands [J]. Inorganic Chemistry, 1999, 38(18):4098-4103.
    [19] Yin, L.; Cheng, P.; Yao, X., et al. Towards a model for the oxidized form of purpleacidphosphatase: Crystal structure and magnetic properties of ligands [J]. Journal of the Chemical Society, Dalton Transactions, 1997, (12):2109-2112.
    [20] Kessissoglon, D. P. Homo and mixed-valence EPR action trinuclear manganese complexes [J]. Coordination Chemistry Reviews, 1999, 185-186:837-858.
    [21] Sammes, P. G.; Yahioglu, G. 1,10-phenanthroline:a versatile ligand [J]. Chemical Society Reviews, 1994, 23(5):327-334.
    [22]黄子群.多核配合物的合成及结构表征.硕士学位论文,安徽大学,合肥, 2007.
    [23] Balzani, V.; Cola, L. D. Supramolecular chemistry [M]. Netherlands: Klnwer Academic Publishers, 1992.
    [24]沈良.配位化学的现状和发展[J].湖州师专学报(自然科学). 1999, 21:15-17.
    [25] Vogtle, F.超分子化学[M].张希,林志宏,高倩译.长春:吉利大学出版社,1995:22.
    [26] Breslow R. Biomimetic Chemistry and Artificial Enzymes: Catalysis by Design. Accounts of Chemical Research, 1995, 28(3): 146-153.
    [27] Lindoy L. F. The Chemistry of Macrocyclic Ligand Complexes, Combridge University Press, 1989.
    [28] Mingos D. M.; Wsdes D. J. Introduction to Cluster Chemistry [M]. Prentice Hall, New York, 1990. 6.
    [29] Alldendorf, M. D.; Bauer, C. A.; Bhakta, R. K., et al. Luminescent Metal-Oranic Frameworks [J]. Chemical Society Reviews, 2009, 38(5):1330-1352.
    [30]刘建强.穿插和缠绕金属-有机骨架化合物的构筑和性能研究.博士学位论文,西北大学,陕西,2010.
    [31] William, A. F.; Floriani, C.; Merbach, A. E. Perspectives in Coordination Chemistry [M]. Basel: Velag Helvetica Chimica Acta, 1992.
    [32] Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives [M]. VCH: Weinheim, 1995, 3.
    [33]王文华.芳香羧酸配体构筑的金属、有机超分子配合物的设计、合成.博士论文,兰州大学,兰州,2006.
    [34] Schmidt, G. M. J. Solid State Photochemistry D.Ginsburg (ed.) [M]. Verlag Chemie, Weinheim, 1976.
    [35] Desiraju, G. R. The Crystal as a Entity: Perspectives in upramolecular Chemistry [M]. Wiley, Chichester, 1996, 2.
    [36] Gokel, G. W. Advances in Supramolecular Chemistry: Vol. 7 [M]. JAI Press, Greenwich, 2000.
    [37] Liang, Y. C.; Cao, R.; Su, W. P., et al. Syntheses, Structures, and Magnetic Properties of Two Gadolinium(III)-Copper(II) Coordination Polymers by a Hydrothermal Reaction [J]. Angewandte Chemie International Edition, 2000, 39(18):3304-3307.
    [38] Inoue, K.; Hayamizu, T.; Iwamura, H., et al. Assemblage and Alignment of the Spins of the Organic Trinitroxide Radical with a Quartet Ground State by Means of Complexation with Magnetic Metal Ions. A Molecule-Based Magnet with Three-Dimensional Structure and High TC of 46 K [J]. Journal of the American Chemical Society, 1996, 118(7): 1803-1804.
    [39] Zhang, Y.Z.; Wang, Z. M.; Gao, S. Heterometallic Cr-Mn Complexes Containing Cyanide and Oxalate Bridges [J]. Inorganic Chemistry, 2006, 45(14):5447-5454.
    [40] Toma, L. M.; Lescou?zec, R.; Pasán ,J., et al. [Fe(bpym)(CN)4]-: A New Building Block for Designing Single-Chain Magnets [J]. Journal of the American Chemical Society, 2006, 128(14): 4842-4853.
    [41] Kaneko, W.; Kitagawa, S.; Ohba, M. Chiral Cyanide-Bridged MnIIMnIII Ferrimagnets, [MnII(HL)(H2O)][MnIII(CN)6]·2H2O (L = S- or R-1,2-diaminopropane): Syntheses, Structures, and Magnetic Behaviors [J]. Journal of the American Chemical Society, 2007, 129(2): 248-249.
    [42] LeCloux, D. D.; Davydov, R.; Lippard, S. J. Synthesis and Characterization of Spin-Delocalized Carboxylate-Bridged Cu(I)-Cu(II) Mixed-Valence Complexes Having Only Oxygen Donor Ligands [J]. Journal of the American Chemical Society, 1998, 120(27): 6810-6811.
    [43] Stang, P. J.; Olenyuk, B. Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra [J]. Accounts of Chemical Research, 1997, 30(12): 502-518.
    [44] Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous Coordination Polymers [J]. Angewandte Chemie International Edition, 2004, 43(18): 2334-2375.
    [45] Bradshaw, D.; Claridge, J. B., Cussen, E. J., et al. Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials [J]. Accounts of Chemical Research, 2005, 38(4): 273-282.
    [46] Férey, G.; Mellot-Draznieks, C.; Serre, C., et al. Crystallized Frameworks with Giant Pores: Are There Limits to the Possible? [J]. Accounts of Chemical Research, 2005, 38(4): 217-225.
    [47] Slone, R. V.; Hupp, J. T.; Stern, C. L., et al. Self-Assembly of Luminescent Molecular Squares Featuring Octahedral Rhemium Corners [J]. Inorganic Chemistry, 1996, 35(14): 4096-4097.
    [48] Yu, K. B.; Gou, S. H; You, X. Z., et al. Structure of Catena-Poly{bis(1,1,1,-trifluoro-2,4-pentane- dionato-k2-O,O’)Copper-u-[(4,4-bipyridine)-k-N:kN’]} [J]. Acta Crystallographica Section, C, 1991, 47(12): 2653-2654.
    [49] Lu, J.; Paliwala, T.; Lim, S. C., et al. Coordination Polymers of Co(NCS)2 with Pyrazine and 4,4’-Bipyridine: Synthesis and Structure [J]. Inorganic Chemistry, 1997, 36(5): 923-929.
    [50] Losier, P.; Zaworotko, M. J. A Noninterpenetrated Molecular Ladder with Hydrophbic Cavities [J]. Angewandte Chemie International Edition in English, 1996, 35(23-24): 2779-2782.
    [51] Yaghi, O. M.; Li, H.; Groy, T. L. A Molecular Railroad with Large Pores:Synthesis and Structure of Ni(4,4’-bpy)2(H2O)2(ClO4)2 1.5(4,4’-bpy).2H2O [J]. Inorganic Chemistry, 1997, 36(20): 4292-4293.
    [52] Hanan, G. S.; Arana, C. R.; Lehn, J. M., et al. Synthesis, Structure, and Properties of Dinuclear and Trinuclear Rack-Type RuII Complexes [J]. Angewandte Chemie International Edition in English, 1995, 34(10):1122-1124.
    [53] Chen, H. J.; Yu, W. J.; Chen, X. M., et al. Poly[cadmium(II)- u-4,4’-Oxydianiline-N:N-u-thiocyanato-N:S] [J]. Acta Crystallographica Section C, 2001, 57(6): 1285-1287.
    [54] MacGillivaray, L. R.; Groeneman, R. H.; Atwood, J. L. Design and Self-Assembly of Cavity-Containing Rectangular Grids [J]. Journal of the American Chemical Society,1998, 120(11): 2676-2677.
    [55] Tong, M.-L.; Ye, B. H.; Cai, J. W., et al. Clathration of Two-Dimensional Coordination Polymers: Synthesis and Structure of [M(4,4’-bpy)2(H_2O)_2](ClO_4)_2·(2,4’-bpy)2.H_2O and [Cu(4,4’-bpy)2(H_2O)2] (ClO4)2·(4,4’-H_2bpy)2 (M=CdII, ZnII and bpy=Bipyridine) [J]. Inorganic Chemistry, 1998, 37(11): 2645-2650.
    [56] Fujita, M.; Kwon, Y. J.; Sasaki, O., et al. Interpenetrating Molecular Ladders and Bricks [J]. Journal of the American Chemical Society, 1995, 117(27): 7287-7288.
    [57] Yaghi, O. M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels [J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402.
    [58] Soma, T.; Yuge, H.; Iwamoto, T. Three-Dimensional Interpenetrating Double and Triple Framework Structures in [Cd(bpy)2{Ag(CN)2}2 and[Cd(pyrz){Ag2(CN)3}{Ag(CN)2}] [J]. Angewandte Chemie International Edition in English, 1994, 33(16): 1665-1666.
    [59] Amabilino, D. B.; Stoddart, J. F. Intertwined Structures and Superstructures [J]. Chemical Reviews, 1995, 95(8): 2725-2828.
    [60]许洪彬.多羧酸类配体(tp, btec, H_2IDA,dcbp)构筑的配位聚合物的设计、合成、结构及性质.硕士论文,东北师范大学,长春, 2004.
    [61]宋益善. 4f及d10元素羧酸配合物的合成、结构及其发光性质.博士论文,同济大学,上海,2006.
    [62] Weissman, S. I. Intramolecular energy transfer The fluorescence of complexes of europium [J]. Chemical Physics, 1942, 10(4):214-217.
    [63]陶栋梁,章婷,徐怡庄等.稀土配合物发光中的能量传递研究[J].中国稀土学报, 2001, 19(6):543-547.
    [64]袁晓玲.稀土有机配合物发光及其应用研究概况[J].宜春学院学报(自然科学), 2002, 24:27-30.
    [65] Khreis, O. M.; Curry, R. J.; Somertom, M., et al. Infrared organic light emitting devices using neodymium tris-(8-hydrooxyquoline) [J]. Journal of Applied Physics, 2000, 88:777-780.
    [66]袁良杰.流变相合成法及其应用研究.博士论文,武汉大学,武汉, 2003.
    [67]闫冰,张洪杰,王淑彬等.铽苯二酸同多核和异多核配合物的发光性能[J].应用化学, 1997, 14:84-86.
    [68]尹洪宗,曲祥金,周杰等.铽-镧(镥、钇)-均苯四甲酸共发光体系的研究和应用[J].分析实验室, 1998, 17:44-47.
    [69]赵学辉,彭红建,毛向辉.均苯四甲酸-三苯基氧化膦-铽-钇配合物的高效发光[J].光谱实验室, 1999, 16(2):117-120.
    [70]马文光,杨景和,葛红梅.铽-钆-均苯四甲酸体系的共发光效应及其分析应用[J].分析化学, 1995, 23:183-186.
    [71]赵学辉,毛向辉.锌对均苯四甲酸荧光的强增敏作用及其机理研究[J].湖南有色金属, 1999, 15: 42-44.
    [72]于安池,应立明,赵新生等.稀土配合物的发光特性及其能量传递研究[J].物理化学学报, 1998, 14(9):811-816.
    [73] Liang, C. J.; Zhao, D.; Hong, Z. R., et al. Improved performance of electroluminescent devices based on an europium complex [J]. Applied Physics Letters, 2000, 76(1):67-69.
    [74] Beatrice, A.; Jean-Maric, L.; Gerard, M. Energy transfer luminescence of Europium(III) and Terbium(III) cryptates of macrobicyclic polypridine ligands [J]. Angewandte Chemie International Edition in English, 1987, 26(3):266-267.
    [75]杨池,杨燕生.发光镧系超分子的设计及应用[J].大学化学, 1995, 10(1):6-10.
    [76]张泉平,杜海燕,孙家跃等.光致发光稀土有机配合物材料的研究进展及应用[J].化工新型材料, 2006, 34(6):1-4.
    [77]雷光东,卢志云,朱卫国等.有机荧光防伪材料的制备[J].化学研究与应用, 1999, 11(3):308-311.
    [78]田君,尹敬辉.稀土紫外荧光防伪油墨的制备[J].精细化工, 1999, 16(2):31-32.
    [79]黄春辉.稀土配位化学[M].北京:科学出版社, 1999, 363.
    [80]李振甲,陈泮藻等.时间分辨荧光分析技术与应用[M].北京:科学出版社, 1996, 19.
    [81] Georges, J. Lanthanide-sensitized luminescence and applications to the determination of organic analyses A review [J]. The Analyst, 1993, 118(12):1481-1486.
    [82]刘红梅,贾丹丹,宋爱君等.稀土金属配合物发光性能研究进展及应用[J].中国稀土学报, 2006, 24:10-15.
    [83]程鹏,廖代正.桥联多核配合物的合成及其磁交换作用的评估与预测[J].大学化学, 1994, 9(1):6-11.
    [84]刘斌,廖代正.桥联异双核配合物的设计和合成[J].化学通报, 1997, 7:28-33.
    [85] Chen, X. M.; Yang, Y. Y. Syntheis, structures and magnetic properties of a series of polynuclear copper(Ⅱ)-lanthanide(Ⅲ)complexes assembled with carboxylate and hydroxide ligands [J]. Chinese Journal of Chemistry, 2000, 18(5):664-672.
    [86] Benelli, C.; Gatteschi, D. Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals [J]. Chemical Reviews, 2002, 102(6): 2369-2388.
    [87] Zhuravlrva, M. A.; Chen, X. Z.; Wang, X. P., et al. X-ray and neutron structure detemination and magnetic properties of new quaternary phases Re0.67Ni2Ga5+n-xGex and Re0.67Ni2Ga5+n-xSix (n = 0, 1; Re = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm) Synthesized in liquid Ga [J]. Chemistry of Materials, 2002, 14(7):3066-3081.
    [88] Sakamoto, M.; Manseki, K.; Okawa, H. d-f heteronuclear complexes: synthesis, structures and physicochemical aspects [J]. Coordination Chemistry Reviews, 2001, 219-221:379-414.
    [89] Blake, A. J.; Cherepamov, V. A.; Dunlop, V. A. et al. Synthesis, crystal structures and thermal decomposition studies of a series of copper-lanthanoid complexes of 6-methyl-2pyridone [J]. Journal of Chemical Society, Dalton Transactions, 1994, (18): 2719-2727.
    [90] Wang, S.; Pang, Z.; Smith, D. L. Synthesis and crystal structure of a dinuclear yttrium(Ⅲ)-(lanthanide(Ⅲ)-)copper(Ⅱ) complex with an unusual 2-methyl-2,4,6-tris(trifluoromethyl)-1,3-dioxane-4,6-diolato ligand [J]. Inorganic Chemistry, 1993, 32(23):4992-4993.
    [91] Salta, J.; Chen, Q.; Chang, Y. D. et al. The oxovanadium-organophosphonate system: complex cluster structures [(VO)_6(tBuPO_3)8Cl], [(VO)_4{PhP(O)_2Ph}4Cl]-, and [V18O25(H_2O)2(PHPO3)20Cl4]4- with encapsulated chloride anions prepared from simple precursors [J]. Angewandte Chemie International Edition in English, 1994, 33(7):757-760.
    [92] Schnebeck, R. D.; Freisinger, E.; Lippert, B. A novel highly charged (+12) anion receptor that encapsulates simulataneously NO_3~- and PF6- ions [J]. Angewandte ChemieInternational Edition in English, 1999, 38(1-2):168-171.
    [93] Bencini, A.; Benelli, C.; Caneschi, A., et al. Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(III) and copper(II) ions [J]. Journal of the American Chemical Society, 1985, 107(26):8128-8136.
    [94] Lisowski, J.; Starynowicz, P. Heterodinuclear macrocyclic complexes containing both nickel(Ⅱ) and lanthanide(Ⅲ) ions [J]. Inorganic Chemistry, 1999, 38(6):1351-1355.
    [95] Brechin, E. K.; Harris, S. G.; Parsons, S., et al. Heterometallic complexes containing d- and f-block elements:synthesis and structural characterization of novel Ni-Er and Co-Dy compounds [J]. Journal of the Chemical Society, Dalton Transactions, 1997, (10): 1665-1666.
    [96] Chen, Q. Y.; Luo, Q. H.; Zheng, L. M., et al. A study on the novel d-f heterodinuclear Gd(Ⅲ)-Ni(Ⅲ) cryptate: Synthesis, crystal structure, and magnetic behavior [J], Inorganic Chemistry, 2002, 41(3):605-609.
    [97] Knoeppel, D. W.; Shor, S. G. Unusual one-dimensional ladder structures containing divalent europium and the tetracyanometalates Ni(CN)_(42)- and Pt(CN)42- [J]. Inorganic Chemistry, 1996, 35(18):5328-5334.
    [98] Yi, T.; Gao, S.; Li, B. Edta-linked 4d-3f heterometallic Ln_2M_3(edta)_3(H_2O)_(11)·12H_2O(Ln = Nd, Gd; M = Mn, Co) [J]. Polyhedron, 1998, 17(13-14):2243-2248.
    [99] Ren, Y. P.; Long, L. S.; Mao, B. W., et al. Nanoporous lanthanide-copper(Ⅱ) coordination polymers: syntheses and crystal structures of [{M2(Cu3(iminodiacetate))·8H_2O}n(M = La, Nd, Eu) [J]. Angewandte Chemie International Edition, 2003, 42(5):532-535.
    [100] Liang, Y.; Hong, M.; Su, W., et al. Preparations, structures, and magnetic properties of a series of novel copper(Ⅱ)-Lanthanide(Ⅲ) coordination polymers via hydrothermal reaction [J]. Inorganic Chemistry, 2001, 40(18):4574-4582.
    [101] Chen, X. M.; Aubin, S. M. J.; Wu, Y. L., et al. Polynuclear CuII2MIII6(M = Y, Nd, or Gd) complexes encapsulating a ClO4- anion: [Cu12M6(OH)(H_2O)]8(pyb)12(ClO4)](ClO4)17·nH_2O (pby = pyridine betaine) [J]. Journal of the American Chemical Society, 1995, 117(37):9600-9601.
    [102] Mao, J. G.; Song, L.; Huang, X. Y., et al. Synthesis and crystal structure of a novellanthanide-copper mixed metal complex: Gd_2Cu_3{O(CH_2COO)_2}6·9H_2O [J]. Polyhedron, 1997, 16(6):963-966.
    [103] Zhao, B.; Chen, X. Y.; Cheng, P., et al. Coordination polymers containing 1D channels as selective luminescent probes [J]. Journal of the American Chemical Society, 2004, 126(47):15394-15395.
    [104] Imbert, D.; Cantuel, M.; Bünzli, J. C. G., et al. Extending lifetimes of lanthanide-based near-infrared emitters (Nd, Yb) in the millisecond range through Cr(Ⅲ) sensitization in discrete bimetallic edifices [J]. Journal of the American Chemical Society, 2003, 125(51): 15698-15699.
    [105] Szeto, K. C.; Kongshaug, K. O. Jakobsen, S., et al. Design, synthesis and characterization of a Pt-Gd metal-organic framework containing potentially catalytically active sites [J]. Dalton Transactions, 2008, (15):2054-2060.
    [106] Everett, D. H. IUPAC Mannul of symbols and terminology for physicochemical quantities and units, appendix II: definitions, terminology and symbols in colloid and surface chemistry [J]. Pure and Applied Chemistry, 1972, 31(4):577-638.
    [107] Feng, P.; Bu, X.; Stucky, G. D. Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate [J]. Nature, 1997, 388:735-741.
    [108] Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W., et al. Reticular synthesis and the design of new materials [J]. Nature, 2003, 423:705-714.
    [109] Janiak, C. Engineering coordination polymers towards applications [J]. Dalton Transactions, 2003, (14):2781-2804.
    [110] Seo, J. S.; Whang, D.; Lee, H., et al. A homochiral metal-organic porous material for enantioselective separation and catalysis [J]. Nature, 2000, 404: 982-986.
    [111] Alldendorf, M. D.; Bauer, C. A.; Bhakta, R. K., et al. Luminescent metal-organic frameworks [J]. Chemical Society Reviews, 2009, 38(5):1330-1352.
    [112] Lin, Y., Zhang, L.; Hu, A. X. Three-fold-interpenetrated diamonded coordination frameworks with torus links constructed by tetranuclear building blocks [J]. Crystal Growth & Design, 2009, 9(5):2043-2046.
    [113] Ma, S. Q.; Eckert, J.; Forster, P. M., et al. Further investigation of the effect offramework catenation on hydrogen uptake in metal-organic frameworks [J]. Journal of the American Chemical Society, 2008, 130(47):15896-15902.
    [114] Huang, W.; Wu, D. Y.; Zhou, P., et al. Luminescent and magnetic properties of lanthanide-thiophene-2,5-dicarboxylate hybrid materials [J]. Crystal Growth & Design, 2009, 9(3):1361-1369.
    [115] Prakash, M. J.; Zou, Y.; Hong, S. H., et al. Metal-organic polyhedron based on a CuII paddle-wheel secondary building unit at the truncated octahedron corners [J]. Inorganic Chemistry, 2009, 48(4):1281-1283.
    [116] Shestopalov, M. A.; Cordier, S.; Hernandez, O., et al. Self-assembly of ambivalent organic/inorganic building blocks containing Re6 metal atom cluster: formation of a luminescent honeycomb, hollow, tubular metal-organic framework [J]. Inorganic Chemistry, 2009, 48(4):1482-1489.
    [117] Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers [J]. Angewandte Chemie International Edition in English, 2004, 43(18):2334-2375.
    [118] Pery, J. J.; Perman, J. A.; Zaworotko, M. J. Design and synthesis of metal-organic frameworks using metal-organic polyhedron as supermolecular building blocks [J]. Chemical Society Reviews, 2009, 38(5):1400-1417.
    [119] Sun, Q. F.; Iwasa, J.; Ogawa, D., et al. Self-assembled M_(24)L_(48) polyhedra and their sharp structural switch upon subtle ligand variation [J]. Science, 2010, 328(5982):1144-1147.
    [120] Biradha, K.; Sarkar, M.; Rajput, L. Crystal engineering of coordination polymers using 4,4’-bipyridine as a bong between transition metal atoms [J]. Chemical Communications, 2006, (40):4169-4179.
    [121] Cussen, E. J.; Claridge, J. B.; Rosseinsky, M. J., et al. Fluorescence resonance energy transfer between unnatural amino acids in a structurally modified dihydrofolate reductase [J]. Journal of the American Chemical Society, 2002, 124(33):9674-9675.
    [122] Fletcher, A. J.; Cussen, E. J.; Bradshaw, D., et al. Adsorption of gases and vapors on nanoporous Ni_2(4,4’-bipyridine)_3(NO_3)_4 Metal-organic framework materials templated with methanol and ethanol: structural effects in adsorption kinetics [J]. Journal of the American Chemical Society, 2002, 124(31):9750-9759.
    [123] Fujita, M.; Kwon, Y. J.; Washizu, S., et al. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4’-bipyridine [J]. Journal of the American Chemical Society, 1994, 116(3):1151-1152.
    [124] Noro, S.; Kitaura, R.; Kondo, M. Framework engineering by anions and porous functionalities of Cu(II)/4,4’-bpy coordination polymers [J]. Journal of the American Chemical Society, 2002, 124(11):2568-2583.
    [125] Kondo, M.; Irie, Y.; Miyazawa, M., et al. Synthesis and structural determination of new multidimensional coordination polymers with 4,4’-oxybis(benzoate) building ligands: construction of coordination polymers with heterorganic bridges [J]. Journal of Organicmetallic Chemistry, 2007, 692(1-3):136-141.
    [126] Li, M. X.; Miao, Z. X.; Shao, M., et al. Metal-organic frameworks constructed from 2,4,6-tris(4-pyridyl)-1,3,5-triazine [J]. Inorganic Chemistry, 2008, 47(11):4481-4489.
    [127] Wang, X. L.; Qin, C.; Wang, E. B., et al. An unusual polyoxometalate-encapsulating 3D polyrotaxane framework formed by molecular squares threading on a twofold interpenetrated diamondoid skeleton [J]. Chemical Communications, 2007, (41): 4245-4247.
    [128] Ou, Q. C.; Jiang, L.; Feng, X. L., et al. Vanadium polyoxoanion-bridged macrocyclic metal complexes: from one-dimensional to three-dimensional structures [J]. Dalton Transactions, 2009, (1):71-76.
    [129] Wang, B.; C? té, A. P.; Furukawa, H., et al. Colossal cage in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs [J]. Nature, 2008, 453(8):207-211.
    [130] Lin, W. B.; Rieter, W. J.; Taylor, K. M. L. Modular synthesis of functional nanoscale coordination polymers [J]. Angewandte Chemie Interational Edition, 2009, 48(4):650-658.
    [131] Martin, D. P.; Supkowski, R. M.; LaDuca, R. L. Cadmium dicarboxylate coordination polymers incorporating a long-spanning organodiimine: in situ alkenes isomerization and an unprecedented chiral 658 two-dimensional network [J]. Dalton Transactions, 2009, (3):514-520.
    [132] Kesanli, B.; Cui, Y.; Smith, M. R., et al. Highly interpenetrated metal-organic framework for hydrogen storage [J]. Angewandte Chemie International Edition, 2005,44(1):72-75.
    [133] Yaghi, O. M.; Li, H. L.; Groy, T. L. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid [J]. Journal of the American Chemical Society, 1996, 118(38):9096-9101.
    [134] Li, H.; Eddaoudi, M.; O’Keeffe, M., et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402(18):276-279.
    [135] Eddaoudi, M.; Kim, J.; Rosi, N., et al. Systematic Design of pore size MOFs and their application in methane storage [J]. Science, 2002, 295(5554):469-472.
    [136] Batten, S. R.; Robson, R. Interpenetrating nets:ordered, periodic entanglement [J]. Angewandte Chemie International Edition, 1998, 37(11):1460-1494.
    [137] James, S. L. Metal-organic frameworks [J]. Chemical Society Reviews, 2003, 32(5):276-288.
    [138] Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H., et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283(5405):1148-1150.
    [139] Chae, H. K.; Siberio-Perez, D. Y.; Kim, J., et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature, 2004, 427:523-527.
    [140] Park, K. S.; Ni, Z.; C?té, A. P., et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27):10186-10191.
    [141] Deng, H,; Doonan, C. J.; Furukawa, H., et al. Multiple functional groups of varying ratios in metal-organic frameworks [J]. Science, 2010, 327(5967):846-850.
    [142] Furukawa, H.; Ko, N.; Go, Y. B., et al. Ultrahigh porosity in metal-organic frameworks [J]. Science, 2010, 329(5990):424-428.
    [143] Rosi, N. L.; Eckert, J.; Eddaoudi, M., et al. Hydrogen storage in microporous metal-organic frameworks [J]. Science, 2003, 30(5622):1127-1129.
    [144] Latroche, M.; Surbl, S.; Serre, C., et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101 [J]. Angewandte Chemie International Edition, 2006, 45(48):8227-8231.
    [145] Li, Y.; Yang, R. T. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover [J]. Journal of the American Chemical Society, 2006,128(25):8136-8137.
    [146] Li, Y.; Yang, R. T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover [J]. Journal of the American Chemical Society, 2006, 128(3):726-727.
    [147] Ma, S. Q.; Sun, D. F.; Simmons, J. M., et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake [J]. Journal of the American Chemical Society, 2008, 130(3):1012-1016.
    [148] Mckee, D. W. Separation of an oxygen-nitrogen mixture [P]. US, 3140933, 1964.
    [149] Chao, C. C. Process for separating nitrogen from mixtures thereof with less polar substances [P]. US, 4859217, 1989.
    [150] Coe, C. G.; Kirner, J. F. Pierantozzi, R., et al. Nitrogen adsorption with a divalent cation exchanged lithium x-zeolite [P]. US, 5258058, 1993.
    [151] Fitch, F. R.; Bulow, M.; Ojo, A. F. Adsorptive separation of nitrogen from other gases [P]. US, 5464467, 1995.
    [152] Lemcoff, N. O. Nitrogen separation from air by pressure swing adsorption [J]. Studies in Surface Science and Catalysis, 1991, 120(1):347-370.
    [153] Sircar, S.; Rao, M. B.; Golden, T. C. Fractionation of air by zeolites [J]. Studies in Surface Science and Catalysis, 1991, 120(1):395-423.
    [154] Jones, R. D.; Summerville, D. A.; Basolo, F. Synthetic oxygen carries related to biological systems [J]. Chemical Reviews, 1979, 79(2):139-179.
    [155] Bytheway, L.; Hall, M. B. Theoretical calculations of metal-dioxygen complexes [J]. Chemical Reviews, 1994, 94(3):639-658.
    [156] Dybtsev, D. N.; Chun, H.; Yoon, S. H., et al. Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties [J]. Journal of the American Chemical Society, 2004, 126(1):32-33.
    [157] Chen, B.; Liang, C.; Yang, J., et al. A microporous metal-organic framework for gas-chromatographic separation of alkanes [J]. Angewandte Chemie International Edition, 2006, 45(9):1390-1393.
    [158] Hayashi, H.; C?té, A. P.; Furukawa, H., et al. Zeolite a imidazolate frameworks [J].Nature materials, 2007, (6):501-506.
    [159]林国强;陈耀全;陈新滋.手性合成-不对称反应及应用[M].科学出版社:北京, 2000.
    [160] Inoue, K.; Imai, H.; Ghalsasi, P. S., et al. A three-dimensional ferrimagnet with a high magnetic transition temperature (Tc) of 53 K based on a chiral molecule [J]. Angewandte Chemie International Edition, 2001, 40(22):4242-4245.
    [161] Minguet, M.; Luneau, D.; Lhotel, E., et al. An enantiopure molecular ferromagnet [J]. Angewandte Chemie International Edition, 2002, 41(4):586-589.
    [162] Lee, S. J.; Lin , W. A chiral molecular square with metallo-corners for enantioselective sensing [J]. Journal of the American Chemical Society, 2002, 124(17):4554-4555.
    [163] Inoue, K.; Kikuchi, K.; Ohba, M., et al. Structure and magnetic properties of a chiral two-dimensional ferrimagnet with Tc of 38 K [J]. Angewandte Chemie International Edition, 2003, 42(39):4810-4813.
    [164] Cui, Y.; Evans, O. R.; Ngo, H. L., et al. Rational desing of homochiral solids based on two-dimensional metal carboxylates [J]. Angewandte Chemie International Edition, 2002, 41(7):1159-1162.
    [165] Evans, O. R.; Ngo, H. L.; Lin, W. Chiral porous solids based on lamellar lanthanide phosphonates [J]. Journal of the American Chemical Society, 2001, 123(42):10395-10396.
    [166] Wu, C. D.; Hu, A.; Zhang, L., et al. A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis [J]. Journal of the American Chemical Society, 2005, 127(25):8940-8941.
    [167] Wu, C. D.; Lin, W. Highly porous, homochiral metal-organic frameworks: solvent-exchange-induced single-crystal to single-crystal transformations [J]. Angewandte Chemie International Edition, 2005, 44(13):1958-1961.
    [168]赵晓君.新型金属有机羧酸骨架晶体材料的设计合成、结构与性能研究.博士论文,吉林大学,长春, 2009.
    [169] Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal-organic framewoks [J]. Chemical Society Review, 2009, 38(5):1248-1256.
    [170] Koh, K.; Wong-Foy, A. G.; Matzger, A. J., et al. A porous coordination copolymer with over 5000 m2/g BET surface area [J]. Journal of the American Chemical Society, 2009, 131(12):4184-4185.
    [171] Sejko, N.; Cascales, C.; Gomez-Lor, B., et al. From rational octahedron desing to reticulation serendipity. A thermally stable rare earth polymeric disulfonate family with CdI2-like structure, bifunctional catalysis and optical properties [J]. Chemical Communications, 2002, (13):1366-1367.
    [172] Maspoch, D.; Domingo, N.; Ruiz-Molina, D., et al. A robust nanocontainer based on a pure organic free radical [J]. Journal of the American Chemical Society, 2004, 126(3):730-731.
    [173] Moulton, B.; Lu, J.; Hajndl, R., et al. Crystal engineering of a nanoscale kagomélattice [J]. Angewandte Chemie International Edition, 2002, 41(15):2821-2824.
    [174] Chen, B.; Wang, L.; Zapata, F., et al. A luminescent microporous metal-organic framework for the recognition and sensing of anions [J]. Journal of the American Chemical Society, 2008, 130(21):6718-6719.
    [175] Zhang, H. T.; Li, Y. Y. Z.; Wang, T. W., et al. A ZnII-Based chiral crystalline nanotube [J]. European Journal of Inorganic Chemistry, 2006, (17):3532-3536.
    [176] Zacher, D.; Shekhah, O.; W?ll, C., et al. Thin films of metal-organic frameworks [J]. Chemical Society Review, 2009, 38(5):1418-1429.
    [177] Uemura, T.; Yanai, N.; Kitagawa, S. Polymerization reactions in porous coordination polymers [J]. Chemical Society Reviews, 2009, 38(5):1228-1236.
    [178] Liu, X. G.; Zinc oxide nano- and microfabrication from coordination-polymer templates [J]. Angewandte Chemie International Edition, 2009, 48(17):3018-3021.
    [179] Jung, S.; Cho, W.; Lee, H. J. et al. Self-template-drected formation of coordination-polymer hexagonal tubes and rings, and their calcination to ZnO rings [J]. Angewandte Chemie International Edition, 2009, 48(8):1459-1462.
    [1] Chen, X. M.; Tong, M. L. Solvothermal in situ metal/ligand reactions: a new bridge between coordination chemistry and organic synthetic chemistry [J]. Accounts of Chemical Research, 2007, 40(2): 162-170.
    [2] Zhang, X. M. Hydro(solvo)thermal in situ ligand syntheses [J]. Coordination ChemistryReviews, 2005, 249(11-12):1201-1219.
    [3] Evans, O. R.; Lin, W. Crystal engineering of NLO materials based on metal-organic coordination networks [J]. Accounts of Chemical Research, 2002, 35(7): 511-522
    [4] Zhang, J. P.; Chen, X. M. Crystal engineering of binary metal imidazolate and triazolate frameworks [J]. Chemical Communications, 2006, (16):1689-1699.
    [5] Blake, A. J.; Champness, N. R.; Chung, S. S. M., et al. In situ ligand synthesis and construction of an unprecedented three-dimensional array with silver(I): a new approach to inorganic crystal engineering [J]. Chemical Communications, 1997, (17): 1675-1676.
    [6] Wang, R. H.; Hong, M. C.; Luo, J. H., et al. A new type of three-dimensional framework constructed from dodecanuclear cadmium(Ⅱ) macrocycles [J]. Chemical Communications, 2003, (8):1018-1019.
    [7] Li, X.; Cao, R.; Guo, Z., et al. Hydroxyl-directed dinitration of carboxylate ligands mediated by lead and nickel nitrates and preparation of Pb/Ni heterometallic complexes under hydrothermal conditions [J]. Chemical Communications, 2006, (18):1938-1940.
    [8] Lin, W.; Evans, O. R.; Xiong, R. G., et al. Supramolecular engineering of chiral and acentric 2D networks. Synthesis, structures, and second-order nonlinear optical properties of bis(nicotinato) zinc and bis{3-[2-(4-pyridyl)ethenyl]benzoate}cadmium [J]. Journal of the American Chemical Society, 1998, 120(50):13272-13273.
    [9] Wang, J.; Zhang, Y. H.; Li, H. X., et al. Construction of pyridinethiolate-bridged 2D and 3D coordination networks of d10 metal halides via solvothermal in situ disulfide cleavage reactions [J]. Crystal Growth & Design, 2007, 7(11):2352-2360.
    [10] Evans, O. R.; Xiong, R. G.; Wang, Z., et al. Crystal engineering of acentric diamondoid metal-organic coordination networks [J]. Angewandte Chemie International Edition, 1999, 38(4):536-538.
    [11] Zhang, X. M.; Tong, M. L.; Gong, M. L., et al. Syntheses, crystal structures, and physical properties of dinuclear copper(Ⅰ) and tetranuclear mixed-valence copper(I,II) complexes with hydroxylated bipyridyl-like ligands [J]. Chemistry-A European Journal, 2002, 8(14):3187-3194.
    [12] Zheng, S. L.; Zhang, J. P.; Wong, W. T., et al. A novel, Highly electrical conducting, single-component molecular material:[Ag_2(ophen)_2] (Hophen =1H-[1,10]phenanthrolin-2-one) [J]. Journal of the American Chemical Society, 2003, 125(23):6882-6883.
    [13] Liu, C. M.; Gao, S.; Kou, H. Z. Dehydrogenative coupling of phenanthroline under hydrothermal conditions:crystal structure of a novel layered vanadate complex constructed of 4,8,10-net sheets:[(2,2’-biphen)Co]V3O8.5 [J]. Chemical Communications, 2001, (17):1670-1671.
    [14] Wei, Q. H.; Zhang, L. Y.; Yin, G. Q., et al. Luminescent heteronuclear AuI5AgI8 complexes of {1,2,3-C6(C_6H_4R-4)_3}3- (R = H, CH3, But) by cyclotrimerization of arylacetylides [J]. Journal of the American Chemical Society, 2004, 126(32):9940-9941.
    [15] Yan, Y.; Wu, C. D.; Lu, C. Z. Hydrothermal synthesis of two new transition metal coordination polymers with mixed ligands [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2003, 629(11):1991-1995.
    [16] Tao, J.; Zhang, Y.; Tong, M. L., et al. A mixed-valence copper coordination polymer generated by hydrothermal metal/ligand redox reactions [J]. Chemical Communications, 2002(13): 1342-1343.
    [17] Qu, Z. R.; Zhao, H.; Wang, X. S., et al. Homochiral Zn and Cd coordination polymers containing amino acid-tetrazole ligands [J]. Inorganic Chemistry, 2003, 42(24):7710-7712.
    [18] Zhang, J. P.; Zheng, S. L.; Huang, X. C., et al. Two unprecedented 3-connected three-dimensional networks of copper(Ⅰ) triazolates:in situ formation of ligands by cycloaddition of nitriles and ammonia [J]. Angewandte Chemie International Edition, 2004, 43(2):206-209.
    [19] Xiong, R. G.; Zhang, J.; Chen, Z. F., et al. In situ ligand synthesis and the first crystallographically characterized lanthanide 3-D pillared networks containing benzene-1,4-disulfonate as a building block [J]. Journal of the Chemical Society, Dalton Transactions, 2001, (6): 780-782.
    [20] Cheng, J. K.; Yao, Y. G.; Zhang, J., et al. A simultaneous redox, alkylation, self-assembly reaction under solvothermal conditions afforded a lumincescent copper(I) chain polymer constructed of Cu3I4- and EtS-4-C5H4N+Et Components (Et = CH3CH2) [J]. Journal of the American Chemical Society, 2004, 126(25):7796-7797.
    [21] Zhang, X. M.; Hou, J. J.; Wu, H. S. In situ formation of meso-2,2’-oxydisuccinate via intermolecular dehydration coupling of D,L-malic acid:first coordination polymer of 2,2’-oxydisuccinate involving ether oxygen coordination:[Cd2(meso-odsc)(H2O)] [J]. Dalton Transactions, 2004, (21):3437-3439.
    [22] Li, X.; Cao, R.; Sun, D., et al. A novel Sm-Co polymeric complex formed via metal-mediated oxidation-hydrolysis of orotic acid in a hydrothermal reaction [J]. Inorganic Chemistry Communications, 2003, 6(7): 815-818.
    [23] Sato, Y.; Ohkoshi, S.; Arai, K., et al. Solvatomagnetism-induced faraday effect in a cobalt hexacyanochromate-based magnet [J]. Journal of the American Chemical Society, 2003, 125(47):14590-14595.
    [24] Zhang, M. B.; Zhang, J.; Zheng, S. T., et al. A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper centers by isonicotinate ligands [J]. Angewandte Chemie International Edition, 2005, 44(9):1385-1388.
    [25] Bunzli, J. C. G.; Piguet, C. Lanthanide-containing molecular and supramolecular polymetallic functional assemblies [J]. Chemical Reviews, 2002, 102(6):1897-1928.
    [26] Min, D.; Lee, S. W. Terbium-oxalate-pyridinedicarboxylate coordination polymers suggesting the reductive coupling of carbon dioxide (CO2) to oxalate (C2O42-): [Tb2(3,5-PDC)2(H2O)4(C2O4)]·2H2O and [Tb(2,4-PDC)(H2O)(C2O4)0.5](PDC = pyridinedicarboxylate) [J]. Inorganic Chemistry Communications, 2002, 5(11):978-983.
    [27] Bünzli, J. C.; Piguet, C. Taking advantage of luminescent lanthanide ions [J]. Chemical Society Reviews, 2005, 34(12):1048-1077.
    [28] Sun, Y. Q.; Zhang, J.; Yang, G. Y. A series of luminescent lanthanide-cadmium-organic frameworks with helical channels and tubes [J]. Chemical Communications, 2006, 45:4700-4702.
    [1] Prasad, T. K.; Rajasekharan, M. V.; Costes, J. P. A Cubic 3d-4f structure with only ferromagnetic Gd-Mn interactions [J]. Angewandte Chemie International Edition, 2007, 46(16):2581-2584.
    [2] Plecynik, C. E.; Liu, S. M.; Shore, S. G. Lanthanide-transition-metal complexes: from ion pairs to extended arrays [J]. Accounts of Chemical Research, 2003, 36(7):499-508.
    [3] Li, J. R.; Tao, Y.; Yu, Q., et al. Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels [J]. Chemistry-A European Journal, 2008, 14(9):2771-2776.
    [4] Dinca, M.; Long, J. R. Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg_3(O_2C-C_(10)H_6-CO_2)_3 [J]. Journal of the American Chemical Society, 2005, 127(26):9376-9377.
    [5] Wang, W. G.; Zhou, A. J.; Zhang, W. X., et al. Giant Heterometallic Cu17Mn28 Cluster with Td symmetry and high-spin ground state [J]. Journal of the American Chemical Society, 2007, 129(5):1014-1015.
    [6] Ferey, G.; Mellot-Draznieks, C.; Serre, C., et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area [J]. Science, 2005, 309(5743):2040-2042.
    [7] Zhao, B.; Cheng, P.; Chen, X., et al. Design and synthesis of 3d-4f metal-based zeolite-type materials with a 3D nanotubular structure encapsulated“water”pipe [J]. Journal of the American Chemical Society, 2004, 126(10):3012-3013.
    [8] Zheng, S. L.; Yang, J. H.; Yu, X. L., et al. Syntheses, structures, photoluminescence, and theoretical studies of d10 metal complexes of 2,2’-dihydroxy-[1,1’]binaphthalenyl-3,3’-dicarboxylate [J]. Inorganic Chemistry, 2004, 43(2):830-838.
    [9] Wang, R.; Han, L.; Jiang, F., et al. Three novel cadmium(II) complexes from different conformational 1,1’-biphenyl-3,3’-dicarboxylate [J]. Crystal Growth & Design, 2005, 5(1):129-135.
    [10] Costes, J. P.; Dahan, F.; Wernsdorfer, W. Hererodinuclear Cu-Tb Single-moleculeMagnet [J]. Inorganic Chemistry, 2006, 45(1):5-7.
    [11] Mahata, P.; Natarajan, S. Pyridine- and Imidazoledicarboxylates of zinc: Hydrothermal Synthesis, structure, and properties [J]. European Journal of Inorganic Chemistry, 2005, (11):2156-2163.
    [12] Xiang, S.; Hu, S.; Sheng, T., et al. A fan-shaped polynuclear Gd6Cu12 amino acid cluster: A“hollow”and Ferromagnetic [Gd6(μ3-OH)8] octahedral core encapsulated by six [Cu2] glycinato blade fragments [J]. Journal of the American Chemical Society, 2007, 129(49):15144-15146.
    [13] Kou, H. Z.; Zhou, B. C.; Gao, S., et al. A 2D cyano- and oxamidato-bridged heterotrimetallic CrⅢ-CuⅡ-GdⅢcomplex [J]. Angewandte Chemie International Edition, 2003, 42(28):3288-3291.
    [14] Shiga, T.; Okawa, H.; Kitagawa, S., et al. Setpwise Synthesis and magnetic control of trimetallic magnets [Co_2Ln(L)_2(H_2O)_4][Cr(CN)_6]·nH_2O (Ln = La, Gd; H_2L = 2,6-di(acetoacetyl)pyridine) with 3-D pillared-layer structure [J]. Journal of the American Chemical Society, 2006, 128(51):16426-16427.
    [15] Sun, H. L.; Shi, H.; Zhao, F., et al. Shape-dependent magnetic properties of low-dimensional nanoscale Prussian blue (PB) analogue SmFe(CN)6·4H_2O [J]. Chemical Communications, 2005, (34): 4339-4341.
    [16] Zhao, B.; Chen, X. Y.; Cheng, P., et al. Coordination polymers containing 1D channels as selective lumincescent probes [J]. Journal of the American Chemical Society, 2004, 126(47):15394-15395.
    [17] Cui, H. B.; Zhou, B.; Long, L. S., et al. A porous coordination-polymer crystal containing one-dimensional water chains exhibits guest-induced lattice distortion and a dielectric anomaly [J]. Angewandte Chemie International Edition, 2008, 47(18):3376-3380.
    [18] Zhao, B.; Cheng, P.; Dai, Y., et al. A nanotubular 3D coordination polymer based on a 3d-4f heterometallic assembly [J]. Angewandte Chemie International Edition, 2003, 42(8):934-936.
    [19] Prasad, T. K.; Sailaja, S.; Rajasekharan, M. V. 1-Dimensional and 2-dimensional coordination network structures in the Ba-Ce-dipicH_2 system (dipicH_2 = dipicolinic acid)
    [J]. Polyhedron, 2005, 24(12):1487-1496.
    [20] Zhao, B.; Yi, L.; Cheng, P., et al. Hydrothermal synthesis, crystal structure and luminescent properties of 2d grid-like polymer based on 3d-4d mixed metals [J]. Inorganic Chemistry Communications, 2004, 7(8): 971-973.
    [21] Trombe, J. C.; Mohanu, A. Synthesis and crystal structure of three-dimensional open-framework lanthanide oxalates containing either the guanidinium of tetramethylammonium ions [J]. Solid State Science, 2004, 6(12):1403-1419.
    [22] Dias, A. B.; Viswanathan, S. Luminescent Ln~(3+) nitrobenzoato complexes: first examples of sensitization of green and red emission [J]. Chemical Communications, 2004(8): 1024-1025.
    [23] Wang, Y. W.; Liu, W. S.; Yu, K. B. Spectroscopic and crystal structure of europium(Ⅲ) picrate complexes with novel binol derivatives [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2006, 632(3):482-486.
    [24] Arnold, D. I.; Cotton, F. A.; Matonic, J. H., et al. Bis(N,N’-diphenylformamidine)silver(I) triflate: a three-coordinate silver formamidine compound stabilized by intramolecular hydrogen bonds [J]. Polyhedron, 1997, 16(11):1837-1841.
    [25] Hartshorn, C. M.; Steel, P. J. Self-assembly and X-ray structure of a dimetalloparacyclophane incorporating aπ-πstacked subunit [J]. Inorganic Chemistry, 1996, 35(23):6902-6903.
    [26] Bünzli, J. C. G.; Choppin, G. R. In Lanthanide Probes in life, Chemical and Earth Science. Theory and Practice [M]. The Netherlands, Amsterdam: Elsevier Scientific Publishers, 1989, Chapter 7 (ref:1.2 IC).
    [27] Parker, D. Luminescent lanthanide sensors for pH, pO2 and selected anions [J]. Coordination Chemistry Reviews, 2000, 205(1):109-130.
    [28] Sá, G. F.; Malta, O. L.; Donegá, C. M., et al. Spectroscopic Properties and design of highly luminescent lanthanide coordination complexes [J]. Coordination Chemistry Reviews, 2000, 196(1):165-195.
    [29] Vicentini, G.; Zinner, L. B.; Zukerman-Schpector, J., et al. Luminescence and structure of europium compounds [J]. Coordination Chemistry Reviews, 2000, 196(1):353-382.
    [30] Sun, Y. Q.; Zhang, J.; Yang, G. Y. A series of luminescent lanthanide-cadmium-organic frameworks with helical channels and tubes [J]. Chemical Communications, 2006, 45:4700-4702.
    [1] Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W., et al. Reticular synthesis and the design of new materials [J]. Nature, 2003, 423:705-714.
    [2] Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers [J]. Angewandte Chemie International Edition, 2004, 43(18):2334-2375.
    [3] Li, Y.; Yang, R. T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillower [J]. Journal of the American Chemical Society, 2006, 128(3):726-727.
    [4] Seo, J. S.; Whang, D. A homochiral metal-organic porous material for enantioselective separation and catalysis [J]. Nature, 2000, 404:982-986.
    [5] Lan, A.; Li, K.; Wu, H., et al. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives [J]. Angewandte Chemie International Edition, 2009, 48(13):2334-2338.
    [6] Marques, N.; Sella, A.; Takats, J. Chemistry of the lanthanides using pyrazolylborate ligands [J]. Chemical Reviews, 2002, 102(6):2137-2160.
    [7] Kido, J.; Okamoto, Y. Organo lanthanide metal complexes for electroluminescent materials [J]. Chemical Reviews, 2002, 102(6):2357-2368.
    [8] Xiao, Y.; Wang, L.; Cui, Y., et al. Molecular sensing with lanthanide luminescence in a 3D porous metal-organic framework [J]. Journal of Alloys and Compounds, 2009, 484(1-2):601-604.
    [9] Chen, B.; Yang, Y.; Zapata, F., et al. Luminescent open metal sites within a metal-organic framework for sensing small molecules [J]. Advanced Materials, 2007, 19(13):1693-1696.
    [10] Zhao, B.; Chen, X. Y.; Cheng, P., et al. Coordination polymers contianing 1D channles as selective luminescent probes [J]. Journal of the American Chemical Society, 2004, 126(47):15394-15395.
    [11] Wong, K. L.; Law, G. L.; Yang, Y. Y., et al. A Highly porous luminescent terbium-organic framework for reversible anion sensing [J]. Advanced Materials, 2006, 18(8):1051-1054.
    [12] Chen, B.; Wang, L.; Zapata, F., et al. A luminescent microporous metal-organicframework for the recognition and sensing of anions [J]. Journal of the American Chemical Society, 2008, 130(21):6718-6719.
    [13] Pan, L.; Adams, K. M.; Hernandez, H. E., et al. Porous lanthanide-organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties [J]. Journal of the American Chemical Society, 2003, 125(10):3062-3067.
    [14] Devic, T.; Serre, C.; Audebrand, N., et al. MIL-103, A 3-D Lanthanide-Based Metal Organic Framework with large one-dimensional tunnels and a high surface area [J]. Journal of the American Chemical Society, 2005, 127(37):12788-12789.
    [15] Chandler, B. D.; Yu, J. O.; Cramb, D. T., et al. Series of lanthanide-alkali metal-organic frameworks exhibiting luminescence and permanent microporosity [J]. Chemistry of Materials, 2007, 19(18):4467-4473.
    [16] Kabuto, C.; Kabuto, K.; Sasaki, Y., et al. Unusual hexameric structure in the crystal of sodium propylenediaminetetraacetatoeuropium(III) [J]. Chemical Communications, 1993,(4): 381-383.
    [17] Deng, H.; Li, Y. H.; Qiu, Y. C., et al. Construction of isostructural Ln-Ag(Ln = Eu; Tb; Dy) nano-channel heterometallic coordination frameworks based on pyrazine-2-carboxylate and oxalate ligands [J]. Inorganic Chemistry Communications, 2008, 11(10):1152-1155.
    [18] Rosi, N. L.; Kim, J.; Eddaoudi, M., et al. Rodpackings and metal-organic frameworks constructed from rod-shaped secondary building units [J]. Journal of the American Chemical Society, 2005, 127(5):1504-1518.
    [19] Spek, A. L. PlATON: A Multipurpose Crystallographic Tool, Utrecht University, The Netherlands, 2005.
    [20] Zheng, Y.; Xu, D. M.; Liu, S. X. Three mononuclear copper complexes of 9-hydroxy-9H-fluorene-9-carboxylic acid [J]. Inorganica Chimica Acta, 1999, 294(2):163-169.
    [21] Arnaud, N.; Vaquer, E.; Georges, J. Comparative study of the luminescent properties of europium and terbium coordinated with thenoylthifluoracetone or pyridine-2,6-dicarboxylic acid in aqueous solutions [J]. Analyst, 1998, 123(2):261-265.
    [1] Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M., et al. Reticular Chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks [J]. Accounts of Chemical Research, 2005, 38(3): 76-182.
    [2] Long, J. R.; Yaghi, O. M. The pervasive chemistry of metal-organic frameworks [J]. Chemical Society Reviews, 2009, 38(5):1213-1214.
    [3] Uemura, T.; Yanai, N.; Kitagawa, S. Polymerization reactions in porous coordination polymers [J]. Chemical Society Reviews, 2009, 38(5):1228-1236.
    [4] Lee, J. Y.; Farha, O. K.; Roberts, J., et al. Metal-organic framework materials as catalysts [J]. Chemical Society Reviews, 2009, 38(5):1450-1459.
    [5] Li, J. R.; Kuppler, R.; Zhou, H. C. Selective gas adsorption and separation inmetal-organic frameworks [J]. Chemical Society Reviews, 2009, 38(5):1477-1504.
    [6] Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal-organic frameworks [J]. Chemical Society Reviews, 2009, 38(5):1248-1256.
    [7] Murray, L. J.; Dinc?, M.; Long, J. R. Hydrogen storage in metal-organic frameworks [J]. Chemical Society Reviews, 2009, 38(5):1294-1314.
    [8] Farha, O. K.; Yazaydin, O.; Eryazici, I., et al. De Novo Synthesis of a metal-organic framework material featuring ultra-high surface area and extraordinary gas storage capacities [J]. Nature Chemistry, 2010, 2(11):944-948.
    [9] Yuan, B.; Pan, Y.; Li, Y., et al. A highly active heterogeneous palladium catalyst for the Suzuki-miyaura and ullmmnn coupling reactions of aryl chlorides in aqueous media [J]. Angewandte Chemie International Edition, 2010, 49(24):4054-4058.
    [10] Deng, H.; Doonan, C. J.; Furukawa, H., et al. Multiple Functional Groups of varying ratios in metal-organic frameworks [J]. Science, 2010, 327(5967):846-850.
    [11] Furukawa, H.; Ko, N.; Go, Y. B., et al. Ultrahigh porosity in metal-organic frameworks [J]. Science, 2010, 329 (5990):424-428.
    [12] Huang, L.; Wang, H.; Chen, J., et al. Synthesis, morphology control, and properties of porous metal-organic coordination polymers [J]. Microporous and Mesoporous Materials, 2003, 58(2):105-114.
    [13] Li, Y.; Yang, R. T. Gas adsorption and storage in metal-organic framework MOF-177 [J]. Langmuir, 2007, 23(26):12937-12944.
    [14] Kaye, S. S.; Dailly, A.; Yaghi, O. M., et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5) [J]. Journal of the American Chemical Society, 2007, 129(46):14176-14177.
    [15] Greathouse, J. A.; Allendorf, M. D. The interaction of water with MOF-5 simulated by molecular dynamics [J]. Journal of the American Chemical Society, 2006, 128(33):10678-10679.
    [16] Li, Y.; Yang, R. T. Hydrogen storage in metal-organic and covalent-organic frameworks by spillover [J]. AIChE Journal, 2008, 54(1):269-279.
    [17] Choi, H. J.; Dinc?, M.; Dailly, A., et al. Hydrogen storage in water-stable metal-organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate [J]. Energy & EnvironmentalScience, 2010, 3(1):117-123.
    [18] Pan, L.; Parker, B.; Huang, X., et al. Zn(tbip) (H2tbip = 5-tert-Butyl Isophthalic Acid): A Highly stable guest-free microporous metal organic framework with unique gas separation capability [J]. Journal of the American Chemical Society, 2006, 128(13):4180-4181.
    [19] Nguyen, J. G.; Cohen, S. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification [J]. Journal of the American Chemical Society, 2010, 132(13):4560-4561.
    [20] Wu, T.; Shen, L.; Luebbers, M., et al. Enhancing the stability of metal-organic frameworks in humid air by incoporating water repellent functional groups [J]. Chemical Communications, 2010, 46:6120-6122.
    [21] Leighton, P.; Sanders, J. K. M. Synthesis of Bipyridyl-, Viologen-, and quione-bridged porphyrins [J]. Journal of the Chemical Society, Perkin Transactions 1, 1987, 2385-2393.
    [22] Spek, A. L. PlATON: A Multipurpose Crystallographic Tool, Utrecht University, The Netherlands, 2005.
    [23] Zheng, Y.; Xu, D. M.; Liu, S. X. Three mononuclear copper complexes of 9-hydroxy-9H-fluorene-9-carboxylic acid [J]. Inorganica Chimica Acta, 1999, 294(2):163-169.
    [24] Shiraishi, F.; Ishimatsu, T. Toluene removal from indoor air using a miniaturized photocatalytic air purifier including a preceding adsorption/desorption unit [J]. Chemical Engineering Science, 2009, 64(10):2466-2472.
    [25] Jin, Z.; Zhao, H. Y.; Zhao, X. J., et al. A novel micorporous MOF with the capability of selective adsorption of xylenes [J]. Chemical Communications, 2010, 46:8612-8614.
    [26] Lin X.; Blake, A. J.; Wilson, C., et al. A porous framework polymer based on a Zinc(II) 4,4’-bipyridine-2,6,2’,6’-tetracarboxylate:synthesis, structure, and“Zeolite-like“behaviors [J]. Journal of the American Chemical Society, 2006, 128(33):10745-10753.
    [27] Huo, L.; Lin, Y. Y.; Chen, X. M. Porous metal-organic framework based onμ4-oxo tetrazinc clusters: sorption and guest-dependent luminescent properties [J]. Inorganic Chemistry, 2008, 47(4):1346-1351.