稀土氧化物及孔道材料改性NaAlH_4吸放氢性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前储氢材料普遍存在的储氢容量低、放氢速率慢和吸放氢条件苛刻等问题,本文采用机械球磨为制备方法,从材料的结构、形貌、热力学行为和吸放氢特性等方面分别考察了稀土氧化物和孔道材料单独改性及二者复合改性NaAlH4的吸放氢性能。
     首先研究了稀土氧化物Sm2O3、Er2O3和Tm203对NaAlH4的改性,发现复合了三种稀土氧化物的NaAlH4均具有可逆的吸放氢性能,在150℃条件下NaAlH4-Sm2O3、NaAlH4-Er2O3和NaAlH4-Tm2O3体系的放氢量从纯NaAlH4的1 wt%分别增加到了3.90、4.40和4.59wt%。其中Tm2O3对NaAlH4循环吸放氢性能的改善作用最为明显,NaAlH4-Tm2O3体系的5次循环放氢量分别为4.59,1.96,1.51,1.86和1.39 wt%。以Tm203为例,当球磨时间为1 h, Tm2O3含量为10 wt%时,样品的放氢量最大。此外,还发现NaAlH4-Tm2O3体系在120℃条件下也可放氢,放出氢气的量为4.30 wt%。
     其次以大孔Al2O3和介孔SiO2材料为改性剂,研究了单独复合孔道材料NaAlH4的储氢性能。NaAlH4-SiO2体系150℃条件下的放氢量为3.59 wt%,高于NaAlH4-Al2O3体系的3.37 wt%。在此基础上,进一步研究了孔道材料和稀土氧化物复合改性NaAlH4的吸放氢性能,NaAlH4-Tm2O3-SiO2、NaAlH4-Tm2O3和NaAlH4体系的放氢量分别为4.73,4.59和4.36 wt%。孔道材料和稀土氧化物复合对NaAlH4进行改性时,体系表现出相同的放氢规律,即NaAlH4-SiO2-(MxOy,M=Sm,Tm,Er)>NaAlH4-(MxOy,M=Sm,Tm,Er)> NaAlH4-Al2O3-(MxOy,M=Sm,Tm,Er)。
To solve the problems of low storage capacity, low hydrogen release speed, and harsh hydrogen absorption conditions of hydrogen storage materials, we investigated the hydrogen storage capacity of NaAlH4 doped/and co-doped by lanthanide oxides and porous materials from the aspects of structure, morphology, thermoactivity, and hydrogen de/-reabsorption using the ball milling method.
     The catalytic effects of Sm2O3, Er2O3, and Tm2O3 on NaAlH4 were investigated, founding that all lanthanide oxides added can make hydrogen storage of NaAlH4 reversible, and samples could release hydrogen at 150℃with a higher speed. For pristine NaAlH4, NaAlH4-Sm2O3, NaAlH4-Er2O3, and NaAlH4-Tm2O3, the amount of hydrogen released within 8 h increased from less than 1 wt% to 3.90,4.40, and 4.59 wt%, respectively. The addition of Tm2O3 improved the hydrogen storage capacity of NaAlH4 at the maximum extent, reversible hydrogen desorption capacity of NaAlH4-Tm2O3 among five cycles was 4.59,1.96,1.51,1.86 and 1.39 wt%, respectively. The optimum milling time and catalyst dosage is 1 h and weight ratio of 10 wt%. Unexpectedly, NaAlH4-Tm2O3 can also release hydrogen at 120℃with a lower amount of 4.30 wt%.
     In addition, the effects of macroporous Al2O3 and mesoporous silica on NaAlH4 were investigated. The hydrogen storage capacity of NaAlH4-SiO2 and NaAlH4-Al2O3 was 3.59 wt% and 3.37 wt%, respectively. Then the co-effects of lanthanide oxides and porous materials were explored, and the hydrogen storage capacity of NaAlH4-Tm2O3-SiO2, NaAlH4-Tm2O3 and NaAlH4-Tm2O3-Al2O3 was 4.73,4.59 and 4.36 wt%, respectively. Samples co-doped by macroporous Al2O3/mesoporous silca and different lanthanide oxides showed similar hydrogen desorption speed and capacity trend, which was NaAlH4-SiO2-(MxOy,M=Sm,Tm,Er)>NaAlH4-(MxOy,M=Sm,Tm,Er)> NaAlH4-Al2O3-(MxOy,M=Sm,Tm,Er).
引文
[1]艾米·海因策林.2009年全球二氧化碳排放量下降,过去十年二氧化碳排放然快速增长.世界环境,2010,(005):45-46.
    [2]景骆.二氧化碳排放量与我国GDP增长关系的实证研究.郑州航空工业管理学院学报,2010,28(005):24-27.
    [3]王赓,左阿惠,李爱仙,et al.我国氢能技术标准化战略研究.中国标准化,2010,(008):24-26.
    [4]Mori D, Hirose K. Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy,2009,34 (10):4569-4574.
    [5]Aceves S M, Berry G D, Martinez-Frias J, et al. Vehicular storage of hydrogen in insulated pressure vessels. Int J Hydrogen Energy,2006,31 (15):2274-2283.
    [6]王振庭,郑青榕,徐轶群.车载储氢研究新进展.硅谷,2008,(020):169-172.
    [7]Momen G, Jafari R, Hassouni K. On the effect of process temperature on the performance of activated carbon bed hydrogen storage tank. Int J Therm Sci,2010, 49 (8):1468-1476.
    [8]Kidnay A, Hiza M. Physical adsorption in cryogenic engineering. Cryogenics, 1970,10 (4):271-277.
    [9]苏伟,周亚平,魏留芳,et al.微孔结构与表面改性对活性炭吸附储氢能力的影响.新型炭材料,2007,22(002):135-140.
    [10]Ahluwalia R, Peng J. Automotive hydrogen storage system using cryo-adsorptionon activated carbon. Int J Hydrogen Energy,2009,34 (13): 5476-5487.
    [11]范月英,刘敏.纳米碳纤维的储氢性能初探.材料研究学报,1999,13(003):230-233.
    [12]Jung M J, Kim J W, Im J S, et al. Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination. J Ind Eng Chem,2009,15 (3):410-414.
    [13]Salvador F, Sanchez-Montero M, Montero J, et al. Hydrogen storage in carbon fibers activated with supercritical CO2:Models and the importance of porosity. J Power Sources,2009,190 (2):331-335.
    [14]Im J S, Chang Kang S, Bai B C, et al. Effect of thermal fluorination on the hydrogen storage capacity of multi-walled carbon nanotubes. Int J Hydrogen Energy,2011,36 (2):1560-1567.
    [15]Sankaran M, Viswanathan B, Srinivasa Murthy S. Boron substituted carbon nanotubes--How appropriate are they for hydrogen storage? Int J Hydrogen Energy,2008,33 (1):393-403.
    [16]李弘波.多壁和单壁碳纳米管储氢性能的研究:[硕士学位论文].杭州:浙江大学,2003.
    [17]Young K, Fetcenko M, Li F, et al. Structural, thermodynamic, and electrochemical properties of TixZr1-x (VNiCrMnCoAl)2C14 Laves phase alloys. J Alloys Compd, 2008,464 (1-2):238-247.
    [18]Pentimalli M, Padella F, Pilloni L, et al. AB5/ABS composite material for hydrogen storage. Int J Hydrogen Energy,2009,34 (10):4592-4596.
    [19]Ruiz F, Castro E, Peretti H, et al. Study of the different ZrxNiy phases of Zr-based AB2 materials. Int J Hydrogen Energy,2009,35:9879-9887.
    [20]Zhang P, Wang X, Tu J, et al. Effect of surface treatment on the structure and high-rate dischargeability properties of AB5-type hydrogen storage alloy. J Rare Earth,2009,27 (3):510-513.
    [21]Liu X, Feng H, Tian X, et al. Effects of additions on AB5-type hydrogen storage alloy in MH-Ni battery application. Int J Hydrogen Energy,2009,34 (17): 7291-7295.
    [22]Lu D, Li W, Hu S, et al. Uniform nanocrystalline AB5-type hydrogen storage alloy:Preparation and properties as negative materials of Ni/MH battery. Int J Hydrogen Energy,2006,31 (6):678-682.
    [23]Liu S S, Sun L X, Zhang Y, et al. Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4. Int J Hydrogen Energy,2009,34 (19): 8079-8085.
    [24]Qiu C, Opalka S M, Levik O M, et al. Thermodynamic modeling of the Na-Al-Ti-H system and Ti dissolution in sodium alanates. Calphad,2008,32 (4): 624-636.
    [25]Abrashev B, Spassov T, Bliznakov S, et al. Microstructure and electrochemical hydriding/dehydriding properties of ball-milled TiFe-based alloys. Int J Hydrogen Energy,2010,35 (12):6332-6337.
    [26]Abe M, Kuji T. Hydrogen absorption of TiFe alloy synthesized by ball milling and post-annealing. J Alloys Compd,2007,446:200-203.
    [27]孔海宁,韩金玉,常贺英.金属有机骨架材料的合成及应用.化学进展,2005,17(6):10-1115.
    [28]董琪.基于金属有机碳化物的储氢材料的理论研究:[博士学位论文].长春:吉林大学,2010.
    [29]Li H, Eddaoudi M, Okeeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature,1999,402 (6759): 276-279.
    [30]Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks. Science,2003,300 (5622):1127.
    [31]Chen B, Ockwig N W, Millward A R, et al. High H2 adsorption in a microporous metal-organic framework with open metal sites. Angewandte Chemie,2005,117 (30):4823-4827.
    [32]Saha D, Deng S. Hydrogen Adsorption on Metal-Organic Framework MOF-177. Tsinghua Science & Technology,2010,15 (4):363-376.
    [33]袁华军.储氢合金与有机液体所组成浆液的储氢性能研究:[硕士学位论文].杭州:浙江大学,2004.
    [34]张立岩.多相态反应条件下甲基环已烷催化脱氢反应过程的研究:[硕士学位论文].杭州:浙江大学,2006.
    [35]刘凯.基于车载氢源系统的环己烷脱氢技术研究:[硕士学位论文].杭州:浙江大学,2008.
    [36]吴斌,唐安江,施尚国,et al.氢化铝钠合成方法和应用的研究进展.广东化工,2009,36(011):69-70.
    [37]Bogdanovic B, Brand R A, Marjanovic A, et al. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J Alloys Compd,2000,302 (1-2):36-58.
    [38]Bogdanovic B, Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd,1997, 253-254:1-9.
    [39]Pukazhselvan D, Hudson M, Sinha A, et al. Studies on metal oxide nanoparticles catalyzed sodium aluminum hydride. Energy,2010,35(12):5037-5042.
    [40]Kang X D, Wang P, Song X P, et al. Catalytic effect of Al3Ti on the reversible dehydrogenation of NaAlH4. J Alloys Compd,2006,424 (1-2):365-369.
    [41]Sandrock G, Gross K, Thomas G, et al. Engineering considerations in the use of catalyzed sodium alanates for hydrogen storage. J Alloys Compd,2002,330-332: 696-701.
    [42]Zhang S, Lu C, Takeichi N, et al. Reaction stoichiometry between TiCl3 and NaAlH4 in Ti-doped alanate for hydrogen storage:The fate of the titanium species. Int J Hydrogen Energy,2010,36(1):634-638.
    [43]Gupta B K, Srivastava O. Investigations on the structural, microstructural and dehydrogenation/rehydrogenation behavior of Ti doped sodium aluminum hydride materials. Int J Hydrogen Energy,2007,32 (8):1080-1085.
    [44]Xiao X, Chen L, Wang X, et al. The hydrogen storage properties and microstructure of Ti-doped sodium aluminum hydride prepared by ball-milling. Int J Hydrogen Energy,2007,32 (13):2475-2479.
    [45]Fang F, Zhang J, Zhu J, et al. Nature and role of Ti species in the hydrogenation of a NaH/Al mixture. J. Phys. Chem. C,2007,111:3476-3479.
    [46]Lee E-K, Cho Y W, Yoon J K. Ab-initio calculations of titanium solubility in NaAlH4 and Na3AlH6. J Alloys Compd,2006,416 (1-2):245-249.
    [47]Brinks H, Jensen C, Srinivasan S, et al. Synchrotron X-ray and neutron diffraction studies of NaAlH4 containing Ti additives. J Alloys Compd,2004,376 (1-2): 215-221.
    [48]Wang P, Jensen C. Method for preparing Ti-doped NaAlH4 using Ti powder: observation of an unusual reversible dehydrogenation behavior. J Alloys Compd, 2004,379 (1-2):99-102.
    [49]Thomas G J, Gross K J, Yang N Y C, et al. Microstructural characterization of catalyzed NaAlH4. J Alloys Compd,2002,330-332:702-707.
    [50]Sun T, Zhou B, Wang H, et al. The effect of doping rare-earth chloride dopant on the dehydrogenation properties of NaAlH4 and its catalytic mechanism. Int J Hydrogen Energy,2008,33 (9):2260-2267.
    [51]Sun T, Zhou B, Wang H, et al. Dehydrogenation properties of LaCl3 catalyzed NaAlH4 complex hydrides. J Alloys Compd,2009,467 (1-2):413-416.
    [52]Xueping Z, Xin F, Shenglin L. Microstructure and desorption properties study of catalyzed NaAlH4. J Alloys Compd, In Press, DOI: 10.1016/j.jallcom.2011.02.159.
    [53]Liu J, Ge Q. A first-principles study of Sc-doped NaAlH4 for reversible hydrogen storage. J Alloys Compd,2007,446-447:267-270.
    [54]Suttisawat Y, Rangsunvigit P, Kitiyanan B, et al. Catalytic effect of Zr and Hf on hydrogen desorption/absorption of NaAlH4 and LiAlH4. Int J Hydrogen Energy, 2007,32 (9):1277-1285.
    [55]Liu S-S, Sun L-X, Zhang Y, et al. Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4. Int J Hydrogen Energy,2009,34 (19): 8079-8085.
    [56]Varin R, Czujko T, Chiu C, et al. Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled mechanical milling techniques. J Alloys Compd,2009,483 (1-2):252-255.
    [57]Morvan M, Espinat D, Lambard J, et al. Ultrasmall-and small-angle X-ray scattering of smectite clay suspensions. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1994,82 (2):193-203.
    [58]Naik M, Rather S, Zacharia R, et al. Comparative study of dehydrogenation of sodium aluminum hydride wet-doped with ScCl3, TiCl3, VCl3, and MnCl2. J Alloys Compd,2009,471 (1-2):16-22.
    [59]肖学章,陈立新,王新华,et al.络合氢化物Ti-NaAlH4的制备与储氢特性.物理化学学报,2006,22(012):1511-1515.
    [60]Fichtner M. Nanotechnological aspects in materials for hydrogen storage. Adv Eng Mater,2005,7 (6):443-455.
    [61]Gutowska A, Li L, Shin Y, et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angewandte Chemie International Edition,2005, 44 (23):3578-3582.
    [62]Balde C P, Hereijgers B P C, Bitter J H, et al. Sodium alanate nanoparticles-Linking size to hydrogen storage properties. J. Am. Chem. Soc 2008,130 (21): 6761-6765.
    [63]Schuth F, Bogdanovi B, Taguchi A. Materials encapsulated in porous matrices for the reversible storage of hydorgen. USA, WO2005/014469,2003-07.
    [64]Adelhelm P, Gao J, Verkuijlen M, et al. Comprehensive Study of Melt Infiltration for the Synthesis of NaAlH4/C Nanocomposites. Chem Mater:2643-2653.
    [65]Li Y, Zhou G, Fang F, et al. De-/re-hydrogenation features of NaAlH4 confined exclusively in nanopores. Acta Mater,2011,59 (4):1829-1838.
    [66]Zheng S, Fang F, Zhou G, et al. Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica. Chem. Mater,2008,20: 3954-3958.
    [67]Yu X, Wu Z, Chen Q, et al. Improved hydrogen storage properties of LiBH4 destabilized by carbon. Applied Physics Letters,2007,90(3):034106.
    [68]Lee G-J, Shim J-H, Whan Cho Y, et al. Reversible hydrogen storage in NaAlH4 catalyzed with lanthanide oxides. Int J Hydrogen Energy,2007,32 (12): 1911-1915.
    [69]Schuth F. Non-siliceous Mesostructured and Mesoporous Materials. Chem. Mater, 2001,13 (10):3184-3195.
    [70]Hsueh H, Yang C, Zink J, et al. Formation of titanium nitride nanoparticles within mesoporous silica SBA-15. J. Phys. Chem. B,2005,109 (10):4404-4409.
    [71]Andreasen A. Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride. J Alloys Compd,2006,419 (1-2):40-44.
    [72]郑时有.轻质储氢材料的研究:[博士学位论文].上海:复旦大学,2009.
    [73]李翠平.负载金属有序介孔氧化铝催化剂的制备及其应用:[硕士学位论文].北京:北京化工大学,2007.