聚酰亚胺和金属有机框架材料Cu_3(BTC)_2混合中空纤维膜及其气体吸附分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近年来“温室效应”、大气污染等问题的日益凸显,气体的分离方法愈来愈受到全球性的关注。采用膜技术进行气体分离已经成为目前最有效的方法之一,其关键因素在于高效分离膜的研究与开发。本研究以金属有机框架材料为掺杂体,聚酰亚胺为母体材料,合成了复合中空纤维膜,并考察了多种气体的分离效果。
     本文合成了金属有机框架材料Cu3(BTC)2,采用X-射线衍射(XRD)、扫描电镜(SEM)、投射电镜(TEM)等分析技术表征了其结构和形貌,用氮气吸附脱附等温曲线计算材料的比表面积和孔径分布和孔容大小,结果表明Cu3(BTC)2具有高比表面积(1396m2g-1),对CO2具有较强的吸附能力。
     将Cu3(BTC)2混合掺杂于聚酰亚胺中,通过原了力显微镜(AFM)考察了其均匀分散、合成致密平板膜的条件。采用干/湿纺法成功制得PI-Cu3(BTC)2复合中空纤维膜。考察了纺丝液配比、Cu3(BTC)2颗粒度、纺丝温度、压力等条件、酰胺化程序控温等对中空纤维膜的影响。PI-Cu3(BTC)2复合中空纤维膜为非对称膜,其横截面的SEM图显示该膜由致密表面层、指状孔结构层和海绵状结构层构成。Cu3(BTC)2颗粒均匀地分散在致密表面层和指状孔结构中。
     考察了不同纺丝工艺及不同后处理程序所得PI-Cu3(BTC)2复合中空纤维膜对气体通量及分离效率的影响,确定达到最佳分离效率的纺丝工艺及后处理程序。研究了PI-Cu3(BTC)2复合中空纤维膜对氢气、二氧化碳、氧气、氮气和甲烷气体的透过率,与气体的动力学直径大小顺序一致,气体通量为氢气>二氧化碳>氧气>氮气>甲烷。随着Cu3(BTC)2含量增加,氢气的渗透通量增加,而二氧化碳,氧气,氮气和甲烷渗透通量减少。因此对H2气体的选择性均随Cu3(BTC)2含量的增加而显著增加。在Cu3(BTC)26wt%的复合中空纤维膜中,H2渗透性比纯聚酰亚胺中空纤维膜增长了45%,而理论选择性增加了2-3倍。
A worldwide greenhouse effect and the serious problems of air pollution cause a global concerning. At present, the membrane technique is the one of the most promising gases separation strategies; the key point for the membrane technique is to design and fabricate new efficient membrane. In this study, a kind of metal organic framework material, Cu3(BTC)2 was chosen as inorganic additives, while Polyimide (PI) was chosen as the continuous polymer matrix, a series mixed matrix membrane (MMM) hollow fibers were synthesized, and the permeable performance of various gases were investigated.
     MOF nanocrystal Cu3(BTC)2 was synthesized and characterized by XRD, SEM and TEM. The results of nitrogen adsorption-desorption showed that the products possessed a high surface area of 1396 m2/g, and contained highly ordered micropores. It had high CO2 adsorption capacity.
     The images of AFM showed that Cu3(BTC)2 nanocrystals can be highly dispersed into PI matrix without voids. PI-Cu3(BTC)2 MMMs were successfully spun into hollow fiber by the dry/wet-spinning method. The ratio of inorganic additives, the particle size, the spin temperature and pressure, as well as the programmed-temperature imidation proves were investigated to optimize the spin conditions. PI-Cu3(BTC)2 MMM hollow fibers were a kind of in asymmetric membrane. SEM images of the cross-sections revealed the membrane was consisted by surface dense layer, finger-like voids near surface and sponge-like supporting layer. The Cu3(BTC)2 particles were highly dispersed in the surface dense layer and finger-like voids. There was significant plastic deformation of the polymer matrix owing to the strong affinity between the Cu3(BTC)2 and polyimide.
     The gas permeance, as well as the selectivity of PI-Cu3(BTC)2 MMM hollow fibers were investigated. The separation permeance of various gases was in the sequence of H2> CO2> O2> N2>CH4 which was consisted with the gas molecular dynamic diameter sequence. The H2 permeance was remarkably enhanced as the Cu3(BTC)2 loading increased, while the permeance of other gases were decreased. Hence the selectivity of H2 to the other gases was significantly increased. When Cu3(BTC)2 loading was 6wt%, the permeation of the H2 increased 45% while the ideal selectivity increased 2-3 times compared to pure polyimide.
引文
[1]Janiak C. Engineering Coordination Polymers Towards Applications[J]. Dalton Trans. 2003,8:2781-2804
    [2]Dybtsev D N, Chun H, Yoon S H, Kim D. MicroporousManganese Formate:A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties[J]. J Am Chem Soc.2004,126:32-33
    [3]Seo J S, Whang D, Lee H. A Homochiral Metal-Organic Porous Material for Enantioselective Separation and Catalysis[J]. Nature.2000,404:982-986
    [4]Dybev D N, Nuzhdin A L, Chun H. A Homochiral Metal-Organic Material with Perm anent Porosity, Enantioselective Sorption Properties, and Catalytic Activity [J]. Angew Chem Int Ed.2006,45:916-920
    [5]Atwood J L, Lattice K. A Molecular Toolkit for Magnetism [J]. Nature Materials. 2002,1:91-92
    [6]Halder G J, Kepert C J, Moubaraki B. Guest-Dependent Spin Cmssover in a Nanoporous Molecular Framework Material[J]. Science.2002,298:1762-1765
    [7]Evans O R, Lin W B. Crystal Engineering of NLO Materials Based on Metal Organic Coordination Networks[J]. Acc Chem Res.2002,35:511-522
    [8]Chen W, Wang J Y, Chen C. Photoluminescent Metal-Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates[J]. Inorg Chem.2003,42:944-946
    [9]Chael H K, Siberio D Y, Kim J. A route to high surface area, porosity and inclusiong of large molecules in crystals[J]. Nature.2004,427:523-527
    [10]Ferey G, Latroche M, Serre C. Hydrogen Adsorption in the Nanoporous Metal Benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M=Al3+或Cr3+), MIL-53[J]. Chem Commun.2003,10:2976-2977
    [11]Loiseau T, Serre C, Huguenard C. A Rationale for the Large Breathing of the Porous Aluminum Terephthalate(MIL-53) Upon Hydration[J]. Chem Eur J.2004,10: 1373-1382
    [12]Bourrelly S, Lewellyn P L, Serre C. Different Adsorption Behaviors of Methane and Carbon Dioxide in the Isotypic Nanopo Yous Metal erephthalates MIL-53 and MIL-47[J].J Am Chem Soc.2005,127:13519-13521
    [13]Huang L M, Wang H T, Chen J X. Synthesis, Morphology Control, and Properties of Porous Metal-Organic Coordination Polymers[J]. Microorous Mesoporous Mater. 2003,58:105-114
    [14]Rieter W J, Taylor K M L, An H Y. Nanoscale Metal Organic Frameworks as Potential Multimodal Contrast EnhancingAgents[J]. J Am Chem Soc.2006,128: 9024-9025
    [15]Jhung S H, Lee J H, Yoon J W. Microwave Synthesis of Chromium Terephthalate MIL-101 an dits Benzene Sorption Ability[J]. Adv Mater.2007,19:121-124
    [16]魏文英,方键,孔海宁,韩金玉,常贺英.金属有机骨架材料的合成及应用[J].化学进展.2005,17:1110-1115
    [17]贾盛澄,李新华,赵亚娟.多孔金属-有机金属配合物的研究进展—设计、合成及性质[J].世界科技研究与发展.2007,5(29):6-18
    [18]蒯海伟,桑海云.超分子配合物的设计与合成方法简述及实例分析[J].高校理科研究.2006,23:66-67
    [19]杜淼,卜显和.阴离子在构筑配位聚合物网络结构中的作用[J].无机化学学报.2003,19:1-6
    [20]Liu X J, Qiu S L. Synthesis structure and fluorescence properties of a novel two-dimensional inorganic organic framework material Zn3(PTC)2(H2O)8[J]. Chemical Journal of Chinese Universities.2004,25:784-786
    [21]Zheng X J, Li L C, Gao S. Hydrothermal syntheses, structures and magnetic properties of two transition metal coordination polymers with a square grid framework [J]. Polyhedron.2004,23:1257-1262
    [22]Vishnyakov A, Ravikovitch P I, Neimark A V.Nanopore structure and sorption properties of Cu-BTC metal-organic framework[J]. Nano Lett.2003, (6):713-718
    [23]Daren T, Sarkisov L, Yaghi O M. Design of new materials for methane storage [J]. Langmuir.2004,20:2683-2689
    [24]Rowsell J L C, Millward A R, Yaghi O M. Hydrogen sorption in functionalized metal-organic frameworks[J]. J Am Chem Soc.2004,126:5666-5667
    [25]Skoulidas A I. Molecular dynamics simulations of gas diffusion in metal organic frameworks:Argon in CuBTC[J]. J Am Chem Soc.2004,126:1356-1357
    [26]Cussen E J, Claridge J B, Rosseinsky M J. Flexible sorption and transformation behavior in a microporous metal-organic framework[J]. J Am Chem Soc.2002,124: 9574-9581
    [27]Eddaoudi M, Kim J, Rosi N. Infinite secondary building units and forbidden catenation in metal-organic frameworks [J]. Science.2002,295:469-472
    [28]Rosi N L, Eckert J, Yaghi O M. Hydrogen storage in microporous metal-organic frameworks[J]. Science.2003,300:1127-1129
    [29]李胜利.配位聚合物的设计合成与性质研究[J].安徽大学学报(自然科学版).2004,28:57-61
    [30]李敏,张佐光,仲伟虹,潘贻珊.聚酰亚胺树脂研究与应用进展[J].复合材料学 报.2000,17(4):48-52
    [31]王海平,王标兵,胡国胜,陈利,杨云峰.聚酰亚胺的研究进展及应用[J].塑料制造.2007,(11):104-107
    [32]崔永丽,张仲华,江利,欧雪梅.聚酰亚胺的性能及应用[J].塑料科技.2005,(8):50-53
    [33]徐兆瑜.聚酰亚胺树脂开发成热点[J].化工文摘.2005,(5):17-19
    [34]Katz M, Theis R J. New high temperature polyimide Insulation for partial discharge resistance in harsh environments[J]. IEEE electrical Insulation Magazine.1997,13: 24
    [35]丁孟贤,何天白等.聚酰亚胺新型材料[M].北京:科学出版社,1998
    [36]符连社,张洪杰,邵华,等.溶胶一凝胶法制备无机/有机复合材料研究进展[J].材料科学与工程.1999,17(1):84
    [37]Mascia I, Kioul A. Polyimidesilica hybrid materials by sol-gel processing[J]. Mater Sci Lett.1994, (13):641
    [38]Davis M E. Ordered porous materials for emerging applications[J]. Nature.2002,417: 813-821
    [39]Mulder M H V. Basic Principles of Membrane Technology[M]. Dordrecht:Kluwer, 1991
    [40]Hwang S T, Kammermeyer K. Membranes in Separations[M]. Wiley:New York,1975
    [41]Mason E A, Lonsdale H K. Statistical-mechanical theory of membrane transport[J]. Membr Sci.1990,51:1-81
    [42]孙锦玉,周亚明,陈珍霞,屠波,翁林红,赵东元.开放式有机-无机杂化骨架配位聚合物的合成和晶体结构[J].高等学校化学学报.2003,9:1555-1557
    [43]Rowsell L C, Yaghi O M. Hydrogen sorption in functionalized metal-organic frameworks [J]. Microporous Mesoporous Mater.2004,73:3-14.
    [44]李健.金属有机多孔配位聚合物的控制合成研究进展[J].安徽教育学院学报.2007,6(25):60-62
    [45]王丽萍,洪广言.无机-有机纳米复合材料[J].功能材料.1998,29(4):343
    [46]Huang Y, Gu Y. New polyimide silica organic-inorganic hybrids[J]. Appl Poly Sci. 2003,88(9):2210.
    [47]Morikawa A, Iyoku Y, Kakimoto M. Preparation of a new class of polyimide-silica hybrid films by sol-gel process[J]. Polymer.1992, (24):107
    [48]Qin J Q, Zhao H. Double phase separation in preparing polyimide-silica hybrid films by sol-gel method[J]. Polymer.2007, (48):3379
    [49]徐一琨,詹茂盛.纳米二氧化硅目标杂化聚酰亚胺复合材料膜的制备与性能表征[J].航空材料学报.2003,(23):33
    [50]焦宁宁,王建明.聚合物纳米复合材料研究进展[J].石油技术与应用.2001,1:31-35
    [51]李青山,丛军英,王庆瑞,刘丹.聚合物/粘土纳米复合材料研究进展[J].材料科学与工艺.2004,6:45-47
    [52]李传峰,钟顺和.溶胶凝胶法合成聚酰亚胺二氧化钛杂化膜[J].高分子学报.2002,3:326-330
    [53]Sonawane R S. Preparation of titanium(IV) oxide thin photocatalyst by sol-gel dip coating[J]. Mater Chem Phys.2002,77:744-750
    [54]Uchida H. Preparation and properties of sizequantized TiO2 particles immobilized in polyvinyl-pyrrolidinone gel films[J]. Langmuir.1995,11:3725-3729
    [55]Garcfa Z R, Hopfl H. Self-assembly of diorganotin(IV) oxides (R=Me,n-Bu,Ph) and 2,5-pyridinedicarboxylic acid to polymeric and trinuclear macrocyclic hybrids withporous solid-stare structures:Influence of subtituents and solvent on the supra-moecluar structure[J]. J Am Chem Soc.2005,127:3120-3130
    [56]Miller S J, Munson C L, Kulkarni S S, Hasse J, David J. Purification of p-xylene using composite mixed matrix membranes[J]. US Patent.2002,233:500
    [57]Yaghi O M, Keeffe M O, Ockwig N W, Chae H K. Mohamed Eddaoudi & Jaheon Kim. Reticular synthesis and the design of new materials[J]. Nature.2003,423:705-714
    [58]Millward A R, Yaghi O M. Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature [J]. J Am Chem Soc. 2005,127:17998-17999
    [59]Jesse, Rowsell L C, Omar M. Yaghi. Metal-organic frameworks:a new class of porous materials[J]. Microporous Mesoporous Mater.2004,73:3-14.
    [60]Krol J J, Boerrigter M, Koops G H. Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments[J]. J Membr Sci.2001,184:275-286.
    [61]Xu Z L, Chung T S, Huang Y. Effect of polyvinylpyrrolidone molecular weights on morphology, oil/water separation, mechanical and thermal properties of polyetherimide/polyvinylpyrrolidone hollow fiber membranes[J]. J Appl Polym Sci. 1999,74:2220-2233.
    [62]Xu Z L, Qusay F A. Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution[J]. J Membr Sci.2004,233:101-111.
    [63]Cao C, Wang R, Chung T S, Liu Y. Formation of high-performance 6FDA-2,6-DAT asymmetric composite hollow fiber membranes for CO2/CH4 separation[J]. J Membr Sci.2002,209:309-319
    [64]Liu J C, Culp J T, Natesakhawat S, Bockrath B C, Zande B, Sankar S G, Garberoglio G, Johnson J K. Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2:An Effective Activation Procedure[J]. J Phys Chem C.2007,111: 9305-9313
    [65]Kong Y, Du H W, Yang J R, Shi D Q, Wang Y F, Zhang Y Y, Xin W. Study on polyimide/TiO, nanocomposite membranes for gas separation [J]. Desalination.2002, 146:49-55
    [66]Tanaka K, Kita H, Okano M, Okamoto K. Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides[J]. Polymer.1990,33(3):585.
    [67]胡晓宇,梁海先,肖长发.中空纤维膜制备方法研究进展[J].高科技纤维与应用.2009,34:38-44
    [68]胡晓宇,肖长发.熔融纺丝制备中空纤维膜研究进展[J].高分子通报.2008,6:1-3
    [69]Hosseini S S, Lia Y, Chung T S, Liu Y. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles[J]. J Membr Sci.2007,302: 207-217