含过渡金属离子导电聚苯胺的合成表征及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含过渡金属离子的导电聚苯胺具有与传统的质子酸掺杂聚苯胺不同的功能特性,本文采用氧化过渡金属配合物的方法成功地合成了含过渡金属离子的导电聚苯胺,采用红外,紫外和元素分析等对产物进行了表征,研究了它们的导电性质和热稳定性质。主要内容如下:
     1.合成出本征态聚苯胺以及聚苯胺盐酸盐,研究其FT-IR光谱、UV/VIS电子吸收光谱性质,观察其表面形貌和X射线衍射模式,并考察它们在空气中的热稳定性质、电化学性质以及在常见有机溶剂中的溶解性质,为后面的研究提供了基础数据。
     2.采用UV/Vis光谱方法详细研究在有机溶剂中不同过渡金属离子Cu~(2+)、Fe~(3+)、Co~(2+)、Ni~(2+)与聚苯胺分子链之间的相互作用情况,找到其相互作用的规律,确认过渡金属离子与聚苯胺分子链之间存在较强的配位/掺杂相互作用。
     3.采用在溶液中氧化苯胺与过渡金属配合物的方法合成出含过渡金属离子的导电聚苯胺,并以Cu~(2+)为例详细考察合成条件(包括反应介质、原料配比、反应温度和时间)对合成产物产率和电导率的影响,获得了最优合成条件,并研究其过程中红外光谱的相应变化规律,同时观测了合成产物的形貌,X射线衍射模式,并与本征态及聚苯胺盐酸盐进行比较。元素分析表明过渡金属离子被成功地掺入聚苯胺分子链中。
     4.研究合成产物在氮气和空气中热分解过程的失重情况,并与本征态及聚苯胺盐酸盐进行对比,获得含过渡金属离子的导电聚苯胺样品热分解过程的详细信息,为材料的实际应用提供理论依据。
     5.根据实验结果,提出过渡金属离子掺杂聚苯胺并产生电子导电性的初步机理。
Conducting polyaniline containing transition metal ions have different functional characteristics compared with the polyanilines doped with conventional protonic acid. In this work conducting polyanilines containing transition metal ions were successfully synthesized by oxidizing the complex of aniline with transition metal ions and characterized by FT-IR, UV/Vis spectroscopy and elemental analysis. The ambient temperature electrical conductivity and thermal stability were investigated. The main research contents were as follows:
    1. Intrinsic polyaniline and polyaniline hydrochloride were synthesized and characterized by FT-IR and UV/Vis spectroscopy. The scanning electronic micrograph and X-ray diffraction studies were employed to observe the morphology and crystallization patterns of the resulting products. Their thermal stability and electrochemical properties and solubility in common organic solvents were also investigated. These provided some basic data for further study.
    2. UV/Vis spectroscopy was employed to explore the interaction between the polyaniline molecular chains with transition metal ions such as Cu2+, Fe3+, Co2+, Ni2+. The experimental results demonstrated that the strong complexation/doping interaction existed between the polyaniline chains and transition metal ions.
    3. Conducting polyanilines containing transition metal ions were synthesized by oxidizing the complex of aniline with transition metal ions. Take the copper salt as an example, the influence of the synthetic conditions such as the molar ratio of reactants, reaction medium, temperature and time on the polymer yield and electrical conductivity was discussed. Meanwhile the corresponding FT-IR spectra were studied. The optimal synthetic conditions have been obtained. The SEM morphology and XRD patterns were observed and compared with intrinsic polyaniline and polyaniline hydrochloric salt as well.
    
    
    Elemental analysis results show that transition metal ions have been successfully incorporated into the polymeric chains.
    4. The thermal stability of poly anilines containing transition metal ions was studied by TGA in N2 and static air atmosphere, and compared with intrinsic polyaniline and polyaniline hydrochloric salt. The corresponding thermal decomposition information has been obtained. It provided a theoretical basis for these material's application.
    5. A possible mechanism to explain the resulting conductivity of polyanlines doped with transition metal ions has been proposed based on the experimental results.
引文
1. Heeger A J, Shirakawa H., MaeDiarmid A. G. et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene (CH)_x[J]. Chem. Commun., 1977, 16(6): 578~580.
    2. Heeger A J, MacDiarmid A.G., Shirakawa H., et al., Anisotropic optical properties of pure and doped polyacetylene[J]. Solid State Commun., 1978, 27(5): 489~494.
    3. MacDiarmid A.G. Conducting polymers: what does the future hold?[J]. Synth. Met., 1986, 21(1): 79~83.
    4.贾向明,李光宪,陆玉本,吴兆权.,本征导电复合高分子材料的研究与进展[J].塑料科技,2003,2:43~46.
    5. Pron A, Osterholm J. E., Heeger A. J., et al., Processable conducting polyaniline[J]. Synth. Met. 1993, 57(1): 3520~3525.
    6. Cao Y, Smith P, Heeger A J. Counter-ion induced processibility of conducting polyaniline[J]. Synth. Met., 1993, 57(1 ): 3514~3519.
    7. Heeger A. J. Polyaniline with surfactant counterions conducting polymer materials which are processible in the conducting form[J]. Synth. Met., 1993, 57(1): 3471~3482.
    8.李建科,漆宗能,王佛松.聚合物发光材料[J].高等学校化学学报,1996,17(12):1952~1958.
    9.吴晓光,车晔秋,国外微波吸收材料[M],国防科技大学出版社,长沙,1995,235~246.
    10.陆珉,吴益华,姜海夏.导电聚苯胺的特性及应用[J].化工新型材料,1997,11:16~20.
    11.赵文元,王义军编著,功能高分子材料化学[J],化学工业出版社,北京,1996,120~126
    12. S. A. Chen, W. G. Fang, Polyaniline on surface modification of diatomite: a novel way to obtain conducting diatomite fillers[J]. Macromolecules, 1990, 24: 1242~1249.
    13. Syed A. A., Sinesan M. K., Polyaniline a novel polymeric material[J].
    
    Talanta, 1991, 38(8): 815~820.
    14.万景华,王行方.聚苯胺/聚乙烯复合导电膜研究[J].功能材料.1996,27(4):320~322.
    15. Mackiarmid A. G., Epstein A. J., Optical spectroscopic studies of pernigraniline and emeraldine base forms of polyaniline[J]. Macromol. Symp., 1991, 51: 217~219.
    16.马利,汤琪.导电高分子材料聚苯胺的研究进展[J].重庆大学学报.2002,25(2):124~127.
    17. Baochen Wang, Jingsong Tang, Fosong Wang. Electrochemical Polymerization of Aniline[J]. Synth. Met., 1987, 18(13): 323~328.
    18.沙兆林,苏广均,施磊.导电聚苯胺的合成[J].南通工学院学报,2000,16(1):25~27.
    19. Genies E M, Lapkowske M., Spectroelectrochemical Evidence for an Intermediate in the Electronpolymerization of Aniline[J]. Eleetroanal Chem., 1987, 236(1~2): 189~197.
    20.何波兵,钟安永,陈德本,周宗华.聚苯胺及苯胺共聚物的合成与表征[J].高分子材料科学与工程,2002,18(3):65~69.
    21. Yang H, Bard A J., The Application of Fast Scan Cyclic Voltammetry.Mechanistic Study of the Initial Stage of Electropolymerization of Aniline in Aqueous Solutions[J]. Electroanal Chem, 1992, 339(1~2): 423~449.
    22. MacDiarmid A. G., Epstein A. J., Polyaniline:A Novel Class of Conducting Polymers. Faraday Discuss[J]. Chem Soc., 1989, 88:317~332.
    23. Nechtschein M, Santier C, Travers J P, et al. Water Effects in Polyaniline: NMR and Transport Properties[J]. Syneth. Met., 1987, 18(1~3): 311~316.
    24. Lundberg B, Salaneck W R, Lundsrton I. Pressure Dependent Conductivity of Emeraldine: Absence of Protonic Conductivity[J]. Mol. Cryst. Liq. Cryst., 1988, 160: 225~233.
    25. Epstein A J, Ginder J M, Zou F, et al, Insulator-to-metal Transition in Polyaniline[J]. Synth. Met., 1987, 18(1~3): 303~309.
    
    
    26. Rogers S. A., Kaiser A. B., Thermopower and resistivity of carbon nanotube networks and organic conducting polymers[J]. Current Applied Physics, 2002, (4): 407-410.
    27. Travers J P, Chroboezek J, Decrux F. Transport and Magnetic Resonance Studies of Polyaniline[J]. Mol. Cryst. Liq. Cryst., 1985, 121: 195~199.
    28. Cao Yong, Smith Paul, Heeger A J., Counter-Ion Induced Processibility of Conducting Polyaniline [J]. Synth. Met., 1993, 57(1 ): 3514~3519.
    29. McManus P. M., Yang S. C., Cushman R. J., Electrochemical Doping of Polyaniline: Effects on Conductivity and Optical Spectra[J]. Chem. Commun., 1985, 22: 1556~1557.
    30. McManus P. M., Cushman R. J., Yang S. C., Influence of Oxidation and Protonation on the Electrical Conductivity of Polyaniline[J]. Phys. Chem., 1987, 91: 5813~5818.
    31. GeniesE M., Lapkowske M., Polyaniline Film: Electrochemical Rebox Mecchanisms[J]. Syneth. Met., 1988, 24(1~2): 61~68.
    32. Colaneri N R, Shacklette L W. EMI Shielding Measuirments of Conductive Polymer Blends[J]. IEEE Transactions on Instrumentation and Measurement, 1992, 41(2): 291~297.
    33. Hirao, Toshikazu, Higuchi, Masayoshi, et al., A Novel Redox System for the Palladium(Ⅱ)-Catalyzed Oxidation Based on Redox of Polyanilines[J]. Tetrahedron Letters, 1995, (33) 36: 5925~5928.
    34.黄维恒,闻建勋.高技术有机高分子材料进展[M],北京:化学工业出版社,1994:186~190.
    35. Medina J., Antonio Schwartz, Daniel T., Eleetrodeposition of flow-induced composition modulated NiFe alloys in the uniform injection cell[J]. Electroehimica Acta. 1997, 17: 2679~2684.
    36.黄维恒,闻建勋.高技术有机高分子材料进展[M],北京:化学工业出版社,1994,154~158.
    37. Li J. M., Collins L., Zhang X., Gustafsson K., Efficient gene delivery to
    
    vascular smooth muscle cells using a nontoxic, synthetic .peptide vector system targeted to membrane integrins: a first step toward the gene therapy of chronic rejection[J]. Transplantation Proceedings, 2001,33(1~2): 589~593.
    38. Boyle A., Genies E. M., Lapkowsld M., Application of electronic conducting polymers as sensors. Polyaniline in the solid state for detection of solvent vapours and polypyrrole for detection of biological ions in solutions[J]. Synth. Met., 1989, 28(1-2): 769~774.
    39.李星玮,李晓宣,居明.导电聚苯胺在化学及电化学传感器中的应用[J].化工新型材料,2000,28(9):16~19.
    40.谭松庭,章明秋,曾汉民.屏蔽EMI用导电性高分子复合材料[J].材料工程,1998.5:6~9.
    41. Dhawan S. K., Singh N., Rodrigues D., Electromagnetic shielding behaviour of conducting polyaniline composites[J]. Science and Technology of Advanced Materials, 2003, 4:105~113.
    42. Lee C Y, Song H G, Epstein A J, et al., Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films[J]. Synth. Met. ,1999, 102: 1346~1349.
    43.孔德明,Elamin A,Elmaghor F 等.掺杂聚苯胺磁化率的研究[J].高分子材料科学与工程,1999,15(5):142~145.
    44.张新宇,曾祥云,方洞浦,陈贻瑞.聚苯胺复合材料的电磁吸波性能研究[J].化学工业与工程,1998,15(3):50~53.
    45. Joo J, Epstein A J. Electromagnetic radiation shielding by intrinsically conducting polymer[J]. Appl. Phys. Lett., 1994, 65(18): 2278~2281..
    46. Song H. G., Jeong C. K. ,et al., The study of electrical and magnetic properties of LiPF_6 doped polyaniline[J]. Synthetic Metals. 1999, 98(3): 215~220.
    47. Batich C. D., Laitinen H. A., Zhou H. C., Chromatic Changes in Polyaniline Films[J]. Electrchem. Soc., 1990, 137(3): 883~885.
    48. Kobayashi T., Yoneyarna H., Tamura H., Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes[J]. Electroanal.Chem.
    
    and Interracial Electrochem., 1984, 177(1~2): 281~291.
    49. Akhtar M., Weakliem H. A., Paiste R. M., et al., Polyaniline thin film electrochromic devices[J]. Synth. Met., 1988, 26(3): 203~208.
    50. Gallard J, Nechtschein M, Soutif M, et al., Polymers a Structure Conjuguee Ⅱ [J]. Bull Soc. Chim., 1963, 10: 2209~2213.
    51. Noufi R, Nozik A J, White J, et al., Enhanced Stablitity of Photoelectrodes with Electrogenerated Polyaniline Films[J]. Electrochem. Soc., 1982, 129(10): 2261~2265.
    52. Erdem E., Sacak M., Karakisla M., Synthesis and Properties of Oxalic Acid-dopedd Polyaniline[J]. Polym. Inter., 1996, 39(2): 153~159.
    53. Georgry R. V, Kimbrell W. C., Kuhn H. H., Electrically conductive textile composites Polymer Preprints[J]. Amer. Chem. Sot., 1989, 30(1): 165~168.
    54. Forveille J.L., Olmedo L., Controlling the quality of deposits of polyaniline synthesized on glass fiber fabric[J]. Synth. Met., 1994, 65(1): 5~11.
    55. Delmas G., Marigot R., Wessling B., Phase-change of polyaniline in NMP between 72 and 120°C[J]. Synth. Met., 2001, 119: 325~326.
    56. Palaniappan S. J., Anand P. S., Rao, et al., ZnCl_2-induced changes in the electronic properties of polyaniline-HCl salt and its base[J]. Synth. Met., 1998,95: 57~62.
    57. Takaoka. Kazuchiyo, Otsuka.Takao, Naka. Katsuya, et al., Analysis of X-ray photoelectron spectra of electrochemically prepared polyaniline by DFT calculations using model molecules[J]. Molecular Structure, 2002, 608:175~182.
    58. Yang S. M., Lee H. L., The Conductivity and Morphology of the Blend of Polyaniline and Water Based Polyurethane[J]. Synthetic Metals, 1999, 102: 1226~1227.
    59. Fu. Y, Weiss R. A., Protonation of polyaniline with lightly sulfor/ated polystyrene[J]. Synthetic Metals, 1997, 84:103~104.
    60. Kang E. T., Li Z. F., Neoh K.G., Dong Y. Q., Protonation and deprotonation of polyaniline films and powders: Effects of acid and base concentrations on the
    
    surface intrinsic oxidation states[J]. Synthetic Metals, 1998, 92:167~171.
    61. Wang Jinggong, Neoh K.G., Kang E.T., Preparation of Nanosized Metallic Particles in Polyaniline[J]. Colloid and Interface Science, 2001,239:78~86
    62. Cihaner A., nal A. M., Synthesis and characterization of fluorine-substituted polyanilines[J].. European Polymer Journal, 2001,37:1767~1772
    63. MacDiarmid A. G., Epstein A. J., Secondary doping in polyaniline[J]. Synthetic Metals, 1995, 69: 85~92.
    64. Jozefowicz, Christopher J. F., Diarmaid . Phylogenetic Analysis of Southern Hemisphere Flat Oysters Based on Partial Mitochondrial 16S rDNA Gene Sequences[J]. Molecular Phylogenetics and Evolution, 1998, 10: 426~435.
    65. Yong S. K., Hyuck J. L., Jina Namgoong, et al. Decrease in electrical conductivity upon oxygen exposure in polyanilines doped with HCI[J]. Polymer, 1999, 40: 2209~2213.
    66. Lee K., Heeger A. J., Cao Y., Relectance of conducting polyaniline near the metal-insulator transition[J]. Synethtic Metals, 1995, 69: 261~262.
    67. Lubert K. H., Dunsch L. The influence of protons on the impedance of polyaniline films[J]. Electrochimica Acta, 1998, 43: 813~822.
    68. Neoh K. G., Tay B. K., Kang E. T., Oxidation and ion migration during synthesis and degradation of electroactive polymer-nylon 6 composite films[J]. 2000, 41(1):9~15.
    69. Cai Lin-Tao, Yao Shi-Bing, Improved conductivity and electrical properties of polyaniline in the presence of rare-earth cations and magnetic field[J]. Synth. Met., 1997, 88: 205~208.
    70. Tang jinsong, Jing Xiabin, Wang Baochen, et al., Infrared Spectra of Soluble Polyaniline[J]. Synth. Met., 1988, 24(3): 231~238.
    71.南军义,林薇薇,共聚物酸掺杂接枝聚苯胺的研究[J].功能高分子学报,2000,3:294~300.