超级电容器用聚苯胺纳米纤维的制备、改性和电容特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器作为一种介于传统电容器和电池之间的新型储能器件,已经成为了人们关注和研究的热点。导电聚苯胺(PANI)原料易得、合成简便、成本低廉,具有良好的化学稳定性、导电性和赝电容储能特性,被认为是一种极具发展潜力的超级电容器电极材料。特别是具有一维纳米结构的聚苯胺纤维,还具有高比表面积、高长径比和高孔隙率等特点,因而在电极材料领域具有重要的研究价值。
     本文在文献调研基础上,通过选取简便易行的方法合成聚苯胺纳米纤维,系统研究和优化了工艺技术条件,实现了聚苯胺的形貌可控合成;研究了不同形貌聚苯胺电极在硫酸水溶液中的电化学电容性能;对聚苯胺纳米纤维进行了结构修饰,研究了不同结构修饰技术对聚苯胺电极电容特性的影响;采用金属离子对聚苯胺进行掺杂,考察了不同金属离子掺杂聚苯胺电极的电容特性;在此基础上,制备了聚苯胺纳米纤维/活性炭复合材料,研究了复合材料在水系及有机系超级电容器中的电容性能,主要研究结果如下:
     (1)采用化学滴加法、快速混合法以及界面聚合法,通过精确调控合成工艺,可以制备出尺寸均一、形貌规整的聚苯胺纳米纤维,纤维直径在50~100nm之间、长度为500nm至几微米不等;其中化学滴加法和快速混合法具有操作简便、生产效率高、成本低廉等优势,有望实现产业化。
     (2)在硫酸水溶液中,聚苯胺纳米纤维具有比聚苯胺颗粒更高的比容量,0.1A·g-1电流密度下,聚苯胺纳米长纤维的比容量达404F·g-1,聚苯胺纳米短纤维的比容量更高达436F·g-1,而聚苯胺颗粒的比容量仅为392F·g-1。与聚苯胺颗粒相比,聚苯胺纳米长纤维具有更好的功率性能和循环性能,电流密度从0.1A·g-1增加到0.5A·g-1,比容量仅下降了9.7%,1000次循环后容量衰减了17.5%。
     (3)通过大分子有机酸掺杂、共聚和取代的方法实现了聚苯胺的结构修饰。十二烷基苯磺酸(DBSA)和樟脑磺酸(CSA)掺杂聚苯胺具有与盐酸掺杂聚苯胺相当的比容量,但循环性能较差。苯胺与间甲基苯胺共聚所得共聚物PAMD具有与盐酸掺杂聚苯胺相当的导电性和比容量,并且具有更好的循环性能(0.1A·g-1电流密度下比容量为381F·g-1,1000次循环后容量仅衰减15.8%),证实在聚苯胺分子链上引入甲基可以有效改善聚苯胺的循环稳定性。卤代烷与本征态聚苯胺取代反应后得到卤代烷掺杂聚苯胺,其中溴代烷掺杂聚苯胺具有较好的电容特性(0.1A·g-1电流密度下比容量为408F·g-1,1000次循环后容量衰减了20.1%),是一种新型的超级电容器电极材料。
     (4)采用LiCl、ZnCl2、MnCl2和FeCl3掺杂本征态聚苯胺,制备了金属盐掺杂聚苯胺纳米纤维材料PLi、PZn、PMn和PFe。发现LiCl、ZnCl2和MnCl2掺杂属赝质子化掺杂,而FeCl3掺杂既存在赝质子化掺杂反应,又发生氧化还原反应。在硫酸水溶液中,PZn具有最好的电容特性(0.1A·g-1电流密度下比容量为340F·g-1,1000次循环后容量衰减25.6%),而PFe不具备电容特性。在LiPF6有机电解液中,金属盐掺杂聚苯胺可获得远高于盐酸掺杂聚苯胺(PH)的比容量(PLi、PZn、PMn的比容量为123F·g-1、147F·g-1和105F·g-1,PH的比容量仅为47F·g-1),同时还能有效改善聚苯胺材料的循环稳定性和电性能,但存在电压降较大、有效储能电位区间窄等问题。
     (5)通过聚合过程中原位掺杂,制备了不同金属离子与H+共掺杂聚苯胺纳米纤维材料PHLi、PHZn和PHMn。在硫酸水溶液中,与盐酸掺杂聚苯胺纳米纤维(PH)相比,各种共掺杂聚苯胺材料均具有更高的比容量和更好的循环性能(其中PHZn在0.1A·g-1电流密度下比容量为419F·g-1,比PH(404F·g-1)高15F·g-1,1000次循环后容量仅衰减了11.8%)。(6)通过聚合过程中原位复合,制备了盐酸掺杂聚苯胺纳米纤维/活性炭复合材料,当活性炭添加量为苯胺质量的30%时,复合电极具有最小的电荷转移内阻,并且表现出较好的功率性能和循环性能。硫酸水溶液中,盐酸掺杂聚苯胺纳米纤维/活性炭复合电极(PANI/C30)在0.1A·g-1电流密度下比容量为414F·g-1,1000次循环后容量衰减了14.3%;改性聚苯胺纳米纤维/活性炭复合电极(PANI/C-1)在0.1A·g-1电流密度下比容量达427F·g-1,1000次循环后容量衰减10.3%。在LiPF6有机电解液中,改性聚苯胺纳米纤维/活性炭复合电极(PANI/C-2)的比容量达128F·g-1,放电电压降和循环性能也有所改善。
As a kind of new energy storage device combining advantages of the high specific power of dielectric capacitors and the high specific energy of rechargeable batteries, supercapacitor has drawn great attention of academic and industrial circles. Conductive polyaniline (PANI) has been regarded as one of the most potential supercapacitor electrode materials, due to its desirable chemical stability, good conductivity and high faradic pseudo capacitance, as well as the advantages of low cost, facile synthesis and good environmental stability. Especially one-dimensional nano-structure PANI material with high specific surface area, high long-diameter ratio, high porosity and excellent electrical properties, has great research value in electrode field.
     In this paper, PANI nanofiber material was prepared by selecting convenient and easy polymerization methods on the base of review of plentiful literatures. The polymerization conditions were investigated and optimized systematically, thus the PANI appearance can be controlled; the electrochemical capacitance behaviors of PANI with different appearances were studied in H2SO4aqueous solution; several structure modification techniques were studied and the capacitance behaviors of modified PANI were investigated; The capacitive behaviors of PANI doped with different metal salts were studied, then the proper metal type and doping method were confirmed; Finally, on the base of above research, modified and metal doped PANI and activated carbon composites were prepared by in-situ polymerization, meanwhile their capacitance behaviors were investigated in aqueous or organic solution. The main research results and conclusions are as follows:
     (1) Chemical adding, rapid mixing and interfacial polymerization were used to prepare PANI nanofiber. Through strictly control and optimizing polymerization conditions, polyaniline nanofiber with uniform size and good morphology can be prepared. The fiber's average diameter is about50~100nm and length ranges from500nm to several micrometers. Chemical adding and rapid mixing polymerization are promising in industrialization because the advantages of easy operation, low cost and high product efficiency.
     (2) In H2SO4aqueous solution, polyaniline nanofiber exhibits higher specific capacitance (at the current density of0.1A·g-1, long and short polyaniline nanofiber shows the specific capacitance of404F·g-1and436F·g-1respectively, and granular polyaniline shows the specific capacitance of392F·g-1). Compared with granular polyaniline, long polyaniline nanofiber exhibits better power characteristic and cycle performance (electrode capacitance reduces by9.7%when current density increased from0.1A·g-1to0.5A·g-1and degradation of capacitance is about17.5%after1000cycles).
     (3) The structure of polyaniline were modified by doping with macromolecule organic acid, copolymerization and substitution methods. The polyaniline doped by dodecyl benzenesulfonic acid (DBSA) and Camphorsulfonic acid (CSA) show similar specific capacitance but cycle properties are deteriorated compared with that doped by HC1(PH). Aniline-m-toluidine copolymer (PAMD) exhibits the similar conductivity and capacitance behaviors as PH, and performances better in cycle stability (at the current density of0.1A·g-1, the specific capacitance of PAMD is381F·g-1, and degradation of capacitance is about15.8%after1000cycles), which demonstrates that introducing methyl group to polyaniline molecule can improve the cycle stability to some extent. A new N-alkylation of polyaniline materials were prepared by treating the emeraldine base polyaniline directly with various alkyl halides and the acquired polyaniline doped with1-Bromobutane (C4H9Br) exhibits good capacitance behaviors (at the current density of0.1A·g-1the specific capacitance is408F·g-1and degradation of capacitance is about20.1%after1000cycles), which proves it can be used as electrode material for supercapacitor.
     (4) Metal salts doped polyaniline nanofiber (PLi\PZn\PMn\PFe) were obtained by using different metal salts as dopant, and the results show that LiCl、ZnCl2、and MnCl2doping are pseudo-protonation but FeCl3doping is pseudo-protonation with redox reaction. In H2SO4aqueous solution, PZn exhibits the best capacitance behaviors (at the current density of0.1A·g-1, the specific capacitances of PZn is340F·g-1and degradation of capacitance is about25.6%after1000cycles), but PFe exhibits no capacitance nearly. In LiPF6organic electrolyte, metal salts doped polyaniline show much higher specific capacitances than PH (the specific capacitances of PLi、PZn and PMn are123F·g-1、147F·g-1and105F·g-1, but the value of PH is only47F·g-1), moreover it can greatly improve electrode cycle stability and electricity performance, but several problems such as excessive voltage drop and narrow energy storage potential range remain exist.
     (5) Polyaniline nanofiber materials co-doped with various metal ions and H+(PHLi、PHZn and PHMn) were prepared though in-situ doping in polymerization. Compared with that doped with H+(PH), all the co-doped polyaniline electrodes exhibit higher specific capacitance and better cycle stability (at the current density of0.1A·g-1, the specific capacitance of PHZn is419F·g-1and the degradation of capacitance is about11.8%after1000cycles).
     (6) HC1doping polyaniline nanofiber and activated carbon composites were prepared by in situ polymerization. When activated carbon adding quantum is30%of the mass of aniline, the composited electrode shows the lowest charge transfer resistance as well as good power capability and cycle stability in H2SO4soultion (The specific capacitance is414F·g-1at current density of0.1A·g-1and degradation of capacitance is about14.3%after1000cycles). The modified polyaniline nano fiber/carbon composites for aqueous solution (PANI/C-1) can achieve the specific capacitance of427F·g-1and the degradation of capacitance is about10%after1000cycles. Another modified polyaniline nanofiber/carbon composites for organic solution (PANI/C-2) can achieve the specific capacitance of128F·g-1in LiPF6organic electrolyte, the electrode discharge voltage drop reduced greatly and the cycle performance was also improved.
引文
[1]Kotz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta,2000,45(15-16):2483-2498
    [2]Zheng J P, Jow T R. High energy and high power density electrochemical capacitors[J]. Journal of power sources,62(1996):155-159.
    [3]Faggioli E, Rena P, Danel V, et al. Supercapacitors for the energy management of electric vehicles[J]. Journal of Power Sources,1999,84(1999):261-269
    [4]朱磊,吴伯荣,陈晖,等.超级电容器研究及其应用[J].稀有金属,2003,27(3):385-390
    [5]Wang Yong-gang, Wang Zi-dong, Xia Yong-yao. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes [J]. Electrochim. Acta,2005,50(28):5641-5646
    [6]Sakka M A, Gualous H, Mierlo J V, Culcu H. Thermal modeling and heat management of supercapacitor modules for vehicle applications [J]. Journal of Power Sources,2009,197(2):581-587
    [7]Wu Cheng-Yeou, Wu Pu-Wei, Lin Pang. Evaluation on carbon nanocapsules for supercapacitors using a titanium cavity electrode[J]. Journal of Power Sources, 2010,195(15):5122-5129
    [8]B.E. Conway. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage[J]. Journal of Electrochemical Society,1991, 6(1):1439-1448
    [9]袁国辉.电化学电容器[M].北京:化学工业出版社,2006
    [10]Lewandowski A, Galinski M. Practical and theoretical limits for electrochemical double-layer capacitors[J]. Journal of Power Source,2007,173(2):822-828
    [11]Celzard A, Collas F, Mareche J F, et al. Porous electrodes-based double-layer supercapacitors:pore structure versus series resistance[J]. Journal of Power Source,2002,108 (1-2):153-162
    [12]Sarangapani S, Tilak B V, Chen C P. Materials for electrochemical capacitors[J]. Journal of Electrochemical Society,1996,143(10):3791-3799
    [13]HANG Shi. Activated carbons and double layer capacitance[J]. Electrochimica Acta,1996,41(10):1633-1639
    [14]Patake V D, Lokhande C D. Chemical synthesis of nano-porous ruthenium oxide thin films for supercapacitor application[J]. Applied Surface Science, 2008,254(9):2820-2824
    [15]Ghaemi M, Ataherian F, Zolfaghari A. Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode:Effects of physisorbed water and proton conduction[J]. Electrochimica Acta,2008,53(14): 4607-4614
    [16]Dubal D P, Dhawale D S, Salunkhe R R, et al. A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application[J]. Journal of Alloys and Compounds,2009,484(1-2):218-221
    [17]Zhang Fei-bao, Zhou Ying-ke, Li Hu-lin. Nanocrystalline NiO as an electrode material for electrochemical capacitor[J]. Materials chemistry and physics,2004, 83:260-264
    [18]杨红生,周啸,姜翠玲,等.电化学电容器最新研究进展Ⅱ氧化还原电容器[J].电子元件与材料,2003,22(3):38-42
    [19]张娜,张宝宏.电化学超级电容器的研究进展[J].应用科技,2003,30(9):54-
    [20]汪形艳,王先友,黄伟国.超级电容器电极材料研究[J].电池,2004,34(3):192-196
    [21]吕进玉,林志东.超级电容器导电聚合物电极材料的研究进展[J].材料导报,2007,21(3):29-31
    [22]Kwang S R, Kwang M K, Yong J P, et al. Redox supercapacitor using polyaniline doped with Li salt as electrode[J]. Solid State Ionics,2002,152(152-152): 861-869
    [23]Rudge A, Davey J, Raistrick J. Conducting polymers as active materials in electrochemical capacitors [J]. Journal of Power Sources,1994,47(1-2):89-93
    [24]王晓峰,孔祥华,解晶莹,等.高分子聚合物超电容器研究[J].电子元件与材料,2001,20(5):24-27
    [25]Burke A. Ultracapacitors:Why, how, and where is the techno logy [J]. Journal of Power Sources,2000,91(1):37-50
    [26]张治安,邓梅根,胡永达,等.电化学电容器的特点及应用[J].电子元件与材料,2003,22(11):1-5
    [27]Cyrus Ashtiani, Randy Wright, Gary Hunt. Ultracapacitors for automotive applications[J]. Journal of Power Sources,2006, (154):561-566
    [28]刘建斌,易灵芝,王根平,等.超级电容器在光伏发电系统中的应用[J].湖南工业大学学报,2009,23(5):55-59
    [29]Cygan P J, Atwter T B, Jarvis L P. Hybrid power sources for military applications[C]. Battery Conference on Applications and Advances,13th, 1998(13-16):85-90
    [30]陈英放,李媛媛,邓梅根.超级电容器的原理及应用[J].电子元件与材料,2008,27(4):6-9
    [31]于凌宇.新时代革命性电源超级电容器现状与展望(一)[J].电源技术,2008,11:19-23
    [32]张治安,邓梅根,汪斌华,等.电化学混合电容器[J].电池,2004,34(4):295-297
    [33]崔淑梅,段甫毅.超级电容电动汽车的研究进展与趋势[J].汽车研究与开发,2005,(6):31-36
    [34]Jung D Y, Kim Y H, Kim S W, et al. Development of ultracapacitor modules for 42-V automotive electrical sy stems [J]. Journal of Power Sources,2003,114: 366-373
    [35]H.E.becker, eatl. US patent,2800616,1957 (to General Electric)
    [36]Portet C, Taberna P L, Simon P, et al. High power density electrodes for Carbon supercapacitor applications [J]. Electrochimica Acta 2005 (50):4174-4181
    [37]Okajima K, Ohta K, Sudoh M. Capacitance behavior of activated carbon fibers withoxy gen-plasma treatment [J]. Electrochimica Acta,50 (2005):2227-2231
    [38]LI Jun, WANG Xian-you, HUANG Qing-hua, et al. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor[J]. Journal of Power Sources,2006,158(1):784-788
    [39]Jurewicz K, Babel K, Pietrzak R, et al. Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation[J]. Carbon,2006, 44(12):2368-2375
    [40]文越华,曹高萍,程杰,等.纳米孔玻态炭—超级电容器的新型电极材料Ⅰ固化温度对其结构和电容性能的影响[J].新型炭材料,2003,18(3):219-224
    [41]Tamon H, Ishizaka H, Araki T, et al. Control of mesoporous structure of organic and carbon aerogels[J]. Carbon.1998,36(9):1257-1262
    [42]Centeno T A, Stoeckli F. The role of textural characteristics and xygen-containing surface groups in the supercapacitor performances of activated carbons[J]. Electrochimica Acta,2006,52(2):560-566
    [43]Janes A, Kurig H, Lust E. Characterisation of activated nanoporous carbon for supercapacitor electrode materials[J]. Carbon,2007,45(6):1226-1233
    [44]Kim Chan, Yeong-Og Choi, Wan-Jin Lee, et al. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions[J]. Electrochimica Acta,2004,50(2-3):883-887
    [45]Chunsheng Du, Ning Pan. Supercapacitors using carbon nanotubes films by electrophoretic deposition[J]. Journal of Power Sources,2006,160(2): 1487-1494
    [46]邓梅根,张治安,胡永达,等.活化和表面改性对碳纳米管超级电容器性能的影响[J].物理化学学报.2004,20(4):432-435
    [47]Jiang Q, Qu M Z, Zhou G M. A study of activated carbon nanotubes as electrochemical supercapacitors electrode materials[J]. Materials Letters,2002, 57(2002):988-991
    [48]Li Jun, Wang Xian-you, Wang Ying, et al. Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors[J].2008,354(1):19-24
    [49]Li Wencui, Reichenauer G, Fracke J. Carbon aerogel derived from cresol-resorcinol-formaldehyde for supercapacitor [J]. Carbon,2002,40(12): 2955-2959.
    [50]Mayer S T, Pekala R W, Kaschimitter J L. The aerocapacitor:an electrochemical Double-layer energy-storage device[J]. Journal of Electrochemical Society,1993, 140(2):446-451
    [51]FANG Wei-chuan, HUANG Jin-hua, CHEN Li-chyong, et al. Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxide [J]. Journal of Power Sources,2006,160(2):1506-1510
    [52]Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrodematerial for electrochemical capacitors[J]. Journal of Electrochemical Society,1995, 142(8):2699-2703
    [53]Hu C C, Huang Y H. Properties of hydrous ruthenium oxide for electrochemical capacitors [J]. Electrochemica Acta,2001,46:3431-3444
    [54]Lee J K, Pathan H M, Jung K D, et al. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide[J]. Journal of Power Sources,2006,159(2):1527-1531
    [55]Zheng J R, Xin Y. Characterization of RuO2·xH2O with various water contents[J]. Journal of Power Sources,2002,110:86-90
    [56]Subramanian V, Zhu H, Wei B. Nanostructured MnO2:Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. Journal of Power Sources,2006,159(1):361-36
    [57]WU Meng-qiang, GAO Jia-hui, ZHANG Shu-ren, et al. Comparative studies of nickel oxide films on different substrates for electrochemical supercapacitors[J]. Journal of Power Sources,2006,159(1):365-369
    [58]Liu T C, Gpell W, Conway B E. Stage in the development of thick cobalt oxide films exhibiting reversible behavior and pseudocapacitance [J]. Electrochimica Acta,1999,44:2429-2482
    [59]Lin C, Ritter J A, Popov B N. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors [J]. Journal of Electrochemical Society, 1998,145:4097-4103
    [60]Passerini S, Ressler J J, et al. High rate electrodes of V2O5 aerogel [J]. Electrochimica Acta,1999,44:2409-2217
    [61]Wang X, and Zheng J P. The optimal energy density of electrochemical capacitors using two different electrodes[J]. Journal of Electrochemical Society, 2004,151(10):A1683-A1689
    [62]李晶.高比容活性炭与聚苯胺电极材料的研究及有机系超级电容器的工程化制造[D].长沙:中南大学冶金科学与工程学院,2007,13-14
    [63]McNeill R, Weiss D E, Wardlaw J H, Siudak R. Electronic conduction in polymers. I. The chemical structure of polypyrrole[J]. Journal of Chemical,1963, 16:1056-1075
    [64]Bolto B A, Weiss D E. Electronic Conduction in Polymers. Ⅱ. The Electrochemical Reduction of Polypyrrole at Controlled Potential[J]. Journal of Chemical,1963,16:1076-1089
    [65]Bolto B A, McNeill R, Weiss D E. Electronic conduction in polymers. Ⅲ. Electronic properties of polypyrrole[J]. Journal of Chemistry,1963,16: 1090-1103
    [66]Mastragostinoa M, Arbizzanib C, Soavi F. Conducting polymers as electrode materials in supercapacitors[J]. Solid State Ionics,2002,148(3-4):493-498
    [67]Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources,2011,196(1):1-12
    [68]Pasquier A D, Laforgue A, Simon P, et al. A Nonaqueous Asymmetric Hybrid Li4Ti5O12/Poly(fluorophenylthiophene) Energy Storage Device[J]. Journal of Electrochemical Society,2002,149 (2002):A302-A306
    [69]Rudge A, Raistrick I, Gottesfeld S, et al. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors[J] Electrochimica Acta.1994,39(2):273-287
    [70]Ryu K S, Kim K M, Park N G, et al. Symmetric redox supercapacitor with conducting polyaniline electrodes[J]. Journal of Power Sources,2002,103(2): 305-309
    [71]Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources,2006,157 (1):11-27
    [72]Talbi H, Just P E, Dao L H. Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes:applications for supercapacitors[J]. Journal of Applied Electrochemistry,2003,33(6):465-473
    [73]Park J H, Park O O. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes [J]. Journal of Power Sources,2002,111 (1):185-190
    [74]Lota K, Khomenko V, Frackowiak E. Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes compo sites[J]. Journal of Physics and Chemistry of Solids,2004,65(2-3):295-301
    [75]Sivakkumar S R, Saraswathi R. Performance evaluation of poly(N-methylaniline) and polyisothianaphthene in charge-stroage devices[J]. Journal of Power Sources, 2004,137(2):322-328
    [76]Snook G A, Chen G Z. The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance[J]. Journal of Electroanalytical Chemistry,2008,612(1):140-146
    [77]Mastragostino M, Arbizzani C, F Soavi. Polymer-based supercapacitors[J]. Journal of Power Sources,2001,97-98 (3):812-815
    [78]Ryu K S, Lee Y G, Hong Y S, Park Y J, et al. Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor[J]. Electrochimica Acta, 2004,50 (2-3):843-847
    [79]Villers D, Jobin D, Soucy C, et al.The Influence of the Range of Electroactivity and Capacitance of Conducting Polymers on the Performance of Carbon Conducting Polymer Hybrid Supercapacitor[J]. Journal of The Electrochemical Society,2003,150 (6):A747-A752
    [80]Skompska M, Mieczkowski J, Holze R, Heinze E. In situ conductance studies of p- and n-doping of poly(3,4-dialkoxythiophenes)[J]. Journal of Electro analytical Chemistry,2005,577(1):9-17
    [81]Levi M D, Gofer Y, Aurbach D, et al. Simultaneous voltammetric and in situ conductivity studies of n-doping of polythiophene films with tetraalkylammonium, alkali,and alkaline-earth cations[J]. Journal of The Electrochemical Society,2000,147 (3):1096-1104
    [82]Laforgue A, Simon P, Fauvarque J F, et al. Activated carbon/conducting polymer hybrid supercapacitors[J]. Journal of The Electrochemical Society,2003,150 (5): A645-A651
    [83]Hong J I, Yeo I H, Paik W K. Conducting polymer with metal oxide for electrochemica capacitor:poly(3,4-ethylenedioxythiophene) RuOx electrode[J]. Journal of The Electrochemical Society,2001,148 (2):A156-A163
    [84]Ghosh S, Inganas O. Networks of electron-conducting polymer in matrices of ion-conducting polymers:applications to fast electrodes[J]. Electrochemical and Solid-State Letters,2000,3(5):213-215
    [85]Stenger-Smith J D, Webber C K, Anderson N. Poly(3,4-alkylenedioxythiophene)-based supercapacitors:using ionic liquids as supporting electrolytes[J]. Journal of The Electrochemical Society,2002,149 (8):A973-A977
    [86]Hughes M, Chen G Z, Shaffer M S P, et al. Controlling the nanostructure of electrochemically grown nanoporous composites of carbon nanotubes and conducting polymers[J]. Composites Science and Technology,2004,64(15): 2325-2331
    [87]Wang J, Xu Y L, Chen X, Sun X F. Capacitance properties of single wall carbon nanotube/polypyrrole composite films[J]. Composites Science and Technology, 2007,67(14):2981-2985
    [88]Wang J, Xu Y L, Chen X, Du X F. Electrochemical supercapacitor electrode material based on poly(3,4-ethyenedioxythiophene)/polypyrrole composite[J]. Journal of Power Sources,2007,163 (2):1120-1125
    [89]Tripathi S K, Kumar A, Hashmi S A. Electrochemical redox supercapacitors using PVdF-HFP based gel electrolytes and polypyrrole as conducting polymer electrode[J]. Solid State Ionics,2006,177(33-34):2979-2985
    [90]Fan L Z, Maier J. High-performance polypyrrole electrode materials for redox supercapaciators[J]. Electrochemistry Communications,2006,8(6) 937-940
    [91]Boyano I, Bengoechea M, Meatza I de, et al. Improvement in the hybrid as a cathode material for Li ion batteries using PSA as an organic additive [J]. Journal of Power Sources,2007,166(2):471-477
    [92]Boyano I, Bengoechea M, Meatza I de, et al. Influence of acids in the hybrid synthesis and performance as a cathode material[J]. Journal of Power Sources,2007,174(2):1206-1211
    [93]Wang J, Wang C Y, Too C O, Wallace G.G. Highly-flexible fibre battery incorporating polypyrrole cathode and carbon nanotubes anodes[J]. Journal of Power Sources,2006,161(2):1458-1462
    [94]Wang CY, Ballantyne A M, Hall S B, et al. Functionalized polythiophene-coated textile:A new anode material for a fexible battery[J]. Journal of Power Sources, 2006,156(2):610-614
    [95]Sung J H, Kim S J, Jeong S H, et al. Flexible micro-supercapacitors[J]. Journal of Power Sources,2006,162(2):1467-1470
    [96]Hallik A, Alumaa A, Tamm J, et al. Analysis if electrochemical impedance of polypyrrolesulfate and polypyrroleperchlorate films[J]. Synthesis Metal,2006, 156(5-6):488-494
    [97]Wang J, Too C O, Zhou D, Wallace G.G.. Novel electrode substrates for rechargeable lithium/polypyrrole batteries[J]. Journal of Power Sources,2005, 140(1):162-167
    [98]Izadi-Najafabadi A, Tan D T H, Madden J D. Towards high power polypyrrole/carbon capacitors[J]. Synthetic. Metals,2005,152(1-3):129-132
    [99]Yang J Y, Martin D C. Microporous conducting polymers on neural microelectrode arrays:Ⅱ. Physical characterization[J]. Sensors and Actuators A: Physical,2004,113(2):204-211
    [100]Xiao Q F, Zhou X. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor[J]. Electrochimica Acta,2003,48(5): 575-580
    [101]Sung J H, Kim S J, Lee K H. Fabrication of microcapacitors using conducting polymer microelectrodes[J]. Journal of Power Sources,2003,124(1):343-350
    [102]Park J H, Ko J M, Park O O, Kim D W. Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber [J]. Journal of Power Sources,105(1):20-25
    [103]Garcia-Belmonte G, Bisquert J. Impedance analysis of galvanostatically synthesized polypyrrole films. Correlation of ionic diffusion and capacitance parameters with the electro lode morphology[J]. Electrochimica Acta,2002, 47(26):4263-4272
    [104]Amanokura J, Suzuki Y, Imabayashi S, Watanabe M. Polypyrrole/polymer electrolyte composites prepared by in situ electropolymerization of pyrrole as cathode/electrolyte material for facile electron transfer at the solid interface[J]. Journal of The Electrochemical Society,2001,148(4):D43-D48
    [105]Snook G A, Peng C, Fray D J, Chen G Z. Achieving high electrode specific capacitance with materials of low mass specific capacitance:potentiostatically grown thick micro-nanoporous PEDOT films[J]. Electrochemistry Communications,2007,9(1):83-88
    [106]Suematsu S, Oura Y, Tsujimoto H, Kanno H, Naoi K. Conducting polymers films of cross-linked structure and their QCM analysis[J]. Electrochimica Acta, 2000,45(22-23):3813-3821
    [107]Iroh J O, Levine K. Capacitance of the polypyrrole/polyimide composite by electrochemical impedance spectroscopy[J]. Journal of Power Sources,2003, 117(1-2):267-272
    [108]Hashmi S A, Upadhyaya H M. Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte[J]. Solid State Ionics,2002,152-153:883-889
    [109]Ryu K S, Kim K M, Park Y J, et al. Redox supercapacitor using polyaniline doped with Li salt as electrode[J]. Solid State Ionics,2002,152(2):861-866
    [110]Gomez-Romero P, Chojak M, Cuentas-Gallegos K, et al. Hybrid organic-inorganic nanocomposite materials for application in solid state electrochemical supercapacitors[J]. Electrochemistry Communications,2003, 5(2):149-153
    [111]Kulesza P J, Skunik M, Baranowska B, K, et al. Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures[J]. Electrochimica Acta,2006,51(11):2373-2379
    [112]Hussain A M P, Kumar A, Singh F, et al. Effects of 160 MeV Ni2+ ion irradiation on HCl doped polyaniline electrode[J]. Journal of Physics D:Applied Physics,2006,39(4) 750-755
    [113]Ryu K S, Lee Y G, Kim K M, et al. Electrochemical capacitor with chemically polymerized conducting polymer based on activated carbon as hybrid electrode[J]. Synthesis Metal,2005,153(1-3):89-92
    [114]Khomenko V, Frackowiak E, Beguin F. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configuration[J]. Electrochimica Acta,2005,50(12):2499-2506
    [115]Jang J, J Bae, Choi M, Yoon S H. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor[J]. Carbon,2005,43(13): 2730-2736
    [116]Zhang J, Shan D, Mu S L. A rechargeable Zn-poly(aniline-co-m-aminophenol) battery[J]. Journal of Power Sources,2006,161(1):685-691
    [117]Wu M Q, Snook G A, V Gupta, et al. Electrodeposition of composites of conducting polymers and carbon nanotubes for supercapacitors[J]. Journal of Materials Chemistry,2005,15(9):2297-2303
    [118]Ryu K S, Lee Y G, Han K S, et al. Electrochemical supercapacitor based on polyaniline doped with lithium salt and active carbon electrodes[J].2004,175(4) 765-768
    [119]Karami H, Mousavi M F, Shamsipur M. New dry and wet Zn-polyaniline bipolar batteries and prediction of voltage and capacity by ANN [J]. Journal of Power Sources,2006,154(1):298-307
    [120]Gurunathan K, Amalnerkar D P, Trivedi D C. Synthesis and characterization of conducting polymer composite(PAn/TiO2) for cathode materials rechargeable battery[J]. Materials Lettes,2003,57(9-10):1642-1648
    [121]Ryu K S, Kim K M, Hong Y S, et al. The polyaniline electrode doped with Li salt and protonic acid in lithium secondary battery[J]. Bulletin of the Korean Chemical Society Bull,2002,23(8):1144-1148
    [122]Neves S, Fonseca C P. Influence of template synthesis on the performance of polyaniline cathode[J]. Journal of Power Sources,2002,107 (1):13-17
    [123]Oyama N, Hatozaki O. Lithium polymer battery with high energy density[C]. Macromolecule Symposium,2000,156 (1):171-178
    [124]Oyama N, Hatozaki O. Mol. Cryst. Liquid Cryst.349 (2000) 329.
    [125]Volfkovich Y M, Bobe S L, Shlepakov A V, Bagotskii V S. Electrochemical Capacitors[J]. Russian Journal of Electrochemistry,2002,38(9):935-959
    [126]Anand J, Palaniappan S, Sathyanarayana D N. Conducting polyaniline blends and composites[J]. Progress in Polymer Science,1998,23(6):993-1018
    [127]MacDiarmid AG., Chinag J C, Riehter A F. Polyaniline:a new concept in conducting polymers [J]. Synthetic Metals,1987,18(1-3):285-290
    [128]王科,张旺玺.导电聚苯胺的研究进展[J].合成技术及应用,2004,19(1):23-27
    [129]Ginder J M, Richter A F, MacDiarmid A G. Insulator-to-metal transition in polyaniline[J]. Solid State Communications,1987,63(2):97-101
    [130]马永梅,陈春英,过俊石,等.聚苯胺导电复合物的二次掺杂现象[J].科学通报,1997,42(7):707-709
    [131]冀勇斌,李铁虎,王小宪,等.导电高分子材料及其应用[J].材料导报,2005,19(F05):274-276
    [132]于黄中,陈明光,贝承训.导电聚苯胺的特性、应用及进展[J].高分子材料科学与工程,2003,19(4):18-21
    [133]黄美荣,李新贵,王健.导电聚苯胺纳米粒子的合成及应用[J].石油化工,2004,33(3):284-291
    [134]Donghua Zhang, Yangyong Wang. Synthesis and applications of one-dimensional nano-structured polyaniline:An overview[J]. Materials Science and Engineering:B,2006,134(1):9-19
    [135]Li Dan, Huang Jiaxing, Richard B K. Polyaniline Nanofibers:A unique polymer nanostructure for versatile applications[J]. Accounts of chemical research,2009, 42(1):135-145
    [136]Henry D T, Ian N, Julio M D, et al. Substituted polyaniline nanofibers produced via rapid initiated polymerization[J]. Macromolecules,2008,41 (20):7405-7410
    [137]Qiang Jun-feng, Yu Zhu-huan, Wu Hong-cai, Yun Da-qin. Polyaniline nanofibers synthesized by rapid mixing polymerization[J]. Synthetic Metals, 2008,158(13):544-547
    [138]Y Wang, Z Liu, B Han, et al. Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant[J]. Langmuir,2005,21(3):833-836
    [139]Chiou N-R, Epstein A J. Polyaniline nanofibers prepared by dilute polymerization[J]. Advanced materials,2005,17():1679-1683
    [140]Chiou N-R, Epstein A J. A simple approach to control the growth of polyaniline nanofibers[J]. Synthetic Metals,2005,153(1-3):69-72
    [141]Li X, Tian S, Ping Y, et al. One-step route to the fabrication of highly porous polyaniline nano fiber films by using PS-b-PVP diblock copolymers as templates[J]. Langmuir,2005,21():9393-9397
    [142]Smith J A, Josowicz M, Janata J. Polyaniline-gold nanocomposite system[J]. Journal of The Electrochemical Society,2003,150(2003):E384-E388
    [143]Langer J J, Framski G., Golczak S. Polyaniline micro-and nanofibrills[J]. Synthetic Metals,2001,121(1-3):1319-1320
    [144]Huang J X, Virji S, Weiller B H, Kaner R B. Polyaniline Nanofibers:Facile synthesis and chemical sensors[J]. Journal of The American Chemical Society, 2003,125(2):314-315
    [145]Zhang X, Chan-Yu-King R, Jose A, et al. Nanofibers of polyaniline synthesized by interfacial polymerization[J]. Synthetic Metals,2004,145(1):23-29
    [146]Gao Hai-xiang, Jiang Tao, Han Bu-xing, et al. Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles[J]. Polymer,2004,45(9): 3017-3019
    [147]Pillalamarri S K, Blum F D, Tokuhiro A T, et al. Radiolytic synthesis of polyaniline nanofibers:A new templateless pathway[J]. Chemistry of Materials, 2005,17(2):227-229
    [148]Jing X L, Wang Y Y, Wu D, Qiang J P. Sonochemical synthesis of polyaniline nano fibers [J]. Ultrasonics Sonochemistry,2007,14(1):75-80
    [149]Xiong Shan-xin, Wang Qi, Xia He-sheng. Preparation of polyaniline nanotubes array based on anodic aluminum oxide template [J]. Materials Research Bulletin, 2004,39(10):1569-1580
    [150]Gao Yu, Li Xia, Gong Jian, et al. Polyaniline nanotubes prepared using fiber mats membrane as the template and their gas-response behavior[J]. Journal of Physical Chemistry,2008,112(22):8215-8222
    [151]Wu Chun-Guey, Thomas B. Polyaniline wires in oxidant-containing mesoporous channel hosts[J]. Chemistry of Materials,1994,6(8):1109-1112
    [152]Hsieh Bi-Zen, Chuang Hung-Yi, Chao Liang, et al. Formation mechanism of a nanotubular polyanilines prepared by an emulsion polymerization without organic solvent[J]. Polymer,2008,49(7):4218-4225
    [153]Li Gui-cun, Zhang Zhi-kun. Synthesis of dendritic polyaniline nanofibers in a surfactant gel[J]. Macromolecules,2004,37(8):2683 2685
    [154]黄美荣,李新贵.聚苯胺纳米粒子的形成[J].同济大学学报(自然科学版),2005,33(1):83-87
    [155]Qiu Hong-jin, Zhai jin, Li Hong-shu, et al. Oriented growth of self-assembled polyaniline nano wire arrays using a novel methode[J]. Advanced Functional Materials,2003,13(12):925-928
    [156]Ma Xing-fa, Zhang Xiao-bin, Li Yu, et al. Preparation of nano-structured polyaniline composite film via "carbon nanotubes seeding" approach and its gas-response studies[J]. Macromolecular Materials and Engineer,2006,291(1): 75-82
    [157]Zhang Xin-yu, Goux W J, Manohar S K. Synthesis of polyaniline nanofibers by "nano fiber seeding"[J]. Journal of the American Chemical Society,2004, 126(14):4502-4503
    [158]Sumedh P S, Srikanth R A, Vineet D. Catalyst-free synthesis of oligoanilines and polyaniline nanofibers using H2O2[J]. Journal of the American Chemical Society,2009,131 (35):12528-12529
    [159]杨红生,周啸,张庆武.以多层次聚苯胺颗粒为电极活性物质的超级电容器的电化学性能[J].物理化学学报,2005,21(4):414-418
    [160]钟新仙,王芳平,李庆余,等.不同氧化剂制备的聚苯胺电化学性能研究[J].电源技术,2009,33(9):781-783.
    [161]吕新美,吴全富,米红宇,等.低温合成樟脑磺酸掺杂聚苯胺微管的电化学电容行为[J].物理化学学报,2007,23(6):820-824
    [162]黄惠,许金泉,刘小丽,等.复合酸掺杂导电聚苯胺的性能研究[J].化学通报,2009,13(8):744-748
    [163]Gupta V, Miura N. Electro chemically deposited polyaniline nanowire's network [J]. Electrochemical and Solid-State Letters,2005,8 (12):A630-A632
    [164]Gupta V, Miura N. Large-area network of polyaniline nanowires prepared by potentio static deposition process[J]. Electrochemistry Communications,2005, 7(10):995-999
    [165]Gupta V, Miura N. High performance electrochemical supercapacitor from electrochemically synthesized nano structured polyaniline. Materials Letters, 2006,60(2):1466-1469
    [166]Girija T C, Sangaranarayanan M V. Investigation of polyaniline-coated stainless steel electrodes for electrochemical supercapacitors[J]. Synthetic Metals,2006, 156 (2-4):244-250
    [167]Girija T C, Sangaranarayanan M V. Polyaniline-based nickel electrodes for electrochemical supercapacitors-Influence of Triton X-100[J]. Journal of Power Sources,2006,159 (2):1519-1526
    [168]Girija T C, Sangaranarayanan M V. Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors[J]. Journal of Power Sources, 2006,156 (2):705-711
    [169]Zoran Mandic, Marijana Kialjic Rokovic, Tomislav Pokupcic. Polyaniline as cathodic material for electrochemical energy sources:The role of morphology [J]. Electrochimica Acta,2009,54(10):2941-2950
    [170]Chellachamy A A, Chang J H, Kim DY, et al. Electrochemical supercapacitor application of electro less surface polymerization of polyaniline nanostructures[J]. Materials Chemistry and Physics,2009,113(1):14-17
    [171]Dhawale D S, Dubal D P, Jamadade V S, et al. Fuzzy nanofibrous network of polyaniline electrode for supercapacitor application[J]. Synthetic Metals,2010, 160(5-6):519-522
    [172]陈宏,陈劲松,周海晖,等.纳米纤维聚苯胺在电化学电容器中的应用[J].物理化学学报,2004,20(6):593-597
    [173]Ghenaatian H R, Mousavi M F, Kazemi S H, et al. Electrochemical investigations of self-doped polyaniline nano fibers as a new electroactive material for high performance redox supercapacitor. Synthetic Metals,2009, 159(17-18):1717-1722
    [174]Snook G A, Chen G Z. The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance[J]. Journal of Electroanalytical Chemistry,2008,612 (2008):140-146
    [175]Jamadade V S, Dhawale D S, Lokhande C D. Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior [J]. Synthetic Metals,2010,160(9-10):955-960
    [176]Raman Ganesan, Sangaraju Shanmugam, Aharon Gedanken. Pulsed sonoelectrochemical synthesis of polyaniline nanoparticles and their capacitance properties [J]. Synthetic Metals,2008,158(21-24):848-853
    [177]辛凌云,张校刚.界面扩散聚合法制备樟脑磺酸掺杂聚苯胺纳米管或纳米纤维及其电化学行为研究[J].高分子学报,2005,(3):437-441
    [178]赖延清,卢海,张治安,等.聚苯胺纳米纤维的界面聚合法合成及电化学电容行为中南大学学报(自然科学版)[J].2007,38(6):1110-1114
    [179]Sivakkumar S R, KimW J, Choi J A. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors[J]. Journal of Power Sources,2007,171 (2):1062-1068
    [180]Sung Joo-Hwan, Kim Se-Joon, Lee Kun-Hong. Preparation of compact polyaniline films:electrochemical synthesis using agar gel template and charge-storage applications [J]. Journal of Power Sources,2004,126(1-2): 258-267
    [181]Guang-Yu Zhao, Hu-Lin Li. Preparation of polyaniline nanowire arrayed electrodes for electrochemical supercapacitor. Microporous and Mesoporous Materials[J].2008,110(2-3):590-594
    [182]LiuJing liang, Zhou Meng-qi, FanLi-Zhen, et al. Porous polyaniline exhibits highly enhanced electrochemical capacitance performance[J]. Electrochimica Acta,2010,55(5):5819-5822
    [183]Mi Hong-yu, Zhang Xiao-gang, Yang Su-dong, et al. Polyaniline nanofibers as the electrode material for supercapacitor. Materials Chemistry and Physics[J]. 2008,112(1):127-131
    [184]Ryu Kwang Sun, HongY S, Park Y J, et al. Polyaniline doped with dimethylsulfate as a polymer electrode for all solid-state power source system[J]. Solid State Ionics,2004,175(12):759-763
    [185]Comparison of lithium-poly aniline secondary batteries with different dopants of HCl and lithium ionic salts[J]. Journal of Power Sources,2000,88(12):197-201
    [186]Frackowiak E, Khomenko V, Jurewicz K, et al. Supercapacitors based on conducting polymers/nanotubes composites[J]. Journal of Power Sources,2006, 153(5):413-418
    [187]ZHOU Ying-ke, HE Ben-lin, ZHOU Wen-jia, et al. Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites[J]. Electrochimica Acta,2004,49 (2):257-262
    [188]DONG Bin, HE Ben-Lin, XU Cai-Ling, LI Hu-Lin. Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor[J]. Materials Science and Engineering B,2007, 143(6):7-13
    [189]Zhou Yi, Qin Zong-Yi, Li Li, et al. Polyaniline/multi-walled carbon nanotube composites with core-shell structure as supercapacitor electrode materials[J]. Electrochimica Acta,2010,55(12):3904-3908
    [190]Zhang J, Kong L B, Wang B. et al. In-situ electrochemical polymerization of muti-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors[J]. Synthetic Metals,2009,159(3-4):260-266
    [191]Gupta V, Miura N. Influence of the micro structure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites[J]. Journal of Power Sources,2006,157 (1):616-620
    [192]Xing Wei, Zhuo Shuping, Cui Hongyou, et al. Synthesis of polyaniline-coated ordered mesoporous carbon and its enhanced electrochemical properties [J]. Materials Letters,2007,61(23-24):4627-4630
    [193]Chen Wei-Chih, Wen Ten-Chin. Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors[J]. Journal of Power Sources,2003,117(3):273-282
    [194]Li Li-xia, Song Huai-he, Zhang Qin-cang, et al. Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline complsites as electrodes for supercapacitors[J]. Journal of power sources,2009,187(1):268-274
    [195]Wang Yong-Gang, Li Hui-Qiao, Xia Yong-Yao. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance [J]. Advanced Materials,2006,18:2619-2623
    [196]Wang Qin, Li Jian-ling, Gao Fei, et al. Activated carbon coated with polyaniline as an electrode material in supercapacitors[J]. New Carbon Materials,2008, 23(3):275-280
    [197]Ko J M, Song R Y, Yu H J, et al. Capacitive performance of the composite electrodes consisted of polyaniline and activated carbons powder in a solid-like acid gel electrolyte[J]. Electrochimica Acta,2004,50(2):873-876
    [198]Zheng Li-ping, Wang Ying, Wang Xian-you. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors[J]. Journal of Power Sources,2010,195(6):1747-1752
    [199]Jang J, Bae J, Choi M, et al. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor[J]. Carbon,2005,43 (13): 2730-2736
    [200]Wang Da-Wei, Li Feng, Zhao Jin-ping, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode[J]. ACS Nano,2009,3(7):1745-1752
    [201]Yan Jun, Wei Tong, Shao Bo, et al. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance [J]. carbon, 2010,48(2):487-493
    [202]Song R Y, Park J H, Sivakkumar S R. Supercapacitive properties of polyaniline/Nafion/hydrous RuO2 composite electrodes [J]. Journal of Power Sources,2007,166 (1):297-301
    [203]Liu Feng-jin. Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)-polyaniline for supercapacitor[J]. Journal of Power Sources,2008,182(1):383-388
    [204]Zhou Zhang-hua, Cai Nai-cai, Zhou Yun-hong. Capacitive of characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon[J]. Materials Chemistry and Physics,2005,94(2-3):371-375
    [205]Mi Hong-yu, Zhang Xiao-gang, Ye Xiang-guo, et al. Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors[J]. Journal of Power Sources,2008,176(1):403-409
    [206]Sivaraman P, Rath S, Hande V, et al. All-solid-supercapacitor based on polyaniline and sulfonated polymers [J]. Synthetic Metals,2006,156(16-17): 1057-1064
    [207]Park J H, Park O O. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes[J]. Journal of Power Sources,2002,111 (1):85-190
    [208]WANG Xiao-Feng, RUAN Dian-Bo, WANG Da-Zhi, et al. Hybrid electrochemical supercapacitors based on polyaniline and activated carbon electrodes[J]. Acta Physico-Chimica Sin.,2005,21(3):261-266
    [209]张庆武,周啸.聚苯胺混杂型电化学电容器研究[J].电子元件与材料,2005,24(1):35-40
    [210]Ryu K S, Kim K M. A hybrid power source with a shared electrode of polyaniline doped with LiPF6[J]. Journal of Power Sources,2007,165(1): 420-426
    [211]徐浩,延卫,冯江涛.聚苯胺的合成与聚合机理研究进展[J].化工进展,2008,27(10):1561-1568
    [212]Huang J, Kaner R B. A general chemical route to polyaniline nanofibers[J]. Journal of the American Chemical Society,2004,126(3):851-855
    [213]徐瑞芬,夏争艳,赵玮婷,等.HCl气相掺杂对聚苯胺电导率影响规律的探讨[J].化工新型材料,2005,33(10):58-60
    [214]陈华,周祚万,黄艳,等.聚苯胺网状纳米结构的合成与表征.功能材料,2008.39(5):877-880
    [215]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002,78-84
    [216]袁程程,吴广峰,张会轩.樟脑磺酸掺杂聚苯胺的合成及性能研究[J].广州化工,2010,38(1):131-133
    [217]Moghadama P N, Khalafy J, Taheri T. Sonochemical synthetic methods to produce functionalized conducting copolymers[J]. Polymer Advance Technology,2010,21(2):235-243
    [218]Huang Mei-rong, Li xin-gui, Yang Yu-liang, et al. Oxidative copolymers of aniline with o-toluidine:their structure and thermal properties [J]. Journal of Applied Polymer Science,2001,81(2):1838-1847
    [219]马利,汤琪.共聚态苯胺的合成及性能[J].高分子材料科学与工程,2003,19(6):76-79
    [220]Zhao Baozong, Neoh K G, Kang E T, Tan K L. Concurrent N-Alkylation and Doping of Polyaniline by Alkyl Halides[J]. Chemistry of Materials,2000, 12(6):1800-1806
    [221]Srinivasan Palaniappan, Amalrij John, Chellachamy Anbalagan amamath. Mannich-type reaction in solvent free condition using reusable polyaniline catalyst [J]. Journal of Molecular Catalysis A:Chemical,2004,218(1):47-53
    [222]Sathiyanarayanan S, Jeyaprabha C, Venkatachari G. Influence of metal cations on the inhibitive effect of polyaniline for iron in 0.5 M H2SO4[J]. Materials Chemistry and Physics,2008,107(2-3):350-355
    [223]Saprigin A V, Brenneman K R, Lee W P, et al. Li+ doping-induced localization in polyaniline[J]. Synthetic Metals,1999,100(1):55-59
    [224]Kwang Sun Ryu, Bong Wong Moon, Jinsoo Joo, et al. Characterization of highly conducting lithium salt doped polyaniline films prepared from polymer solution[J]. Polymer,2001,42(23):9355-9360
    [225]Show an Chen, Liang Chang Lin. Polyaniline doped by the new class of dopant, ionic salt:structure and properties[J]. Mocromolecules,1995,28,1239-1245
    [226]Yang Chunming, Chen Chunyan. Synthesis, characterization and properties of polyaniline containing transition metal ions. Synthetic Metals,2005,153(1-3): 133-136
    [227]Celly M S. Izumi, Vera R L Constantino, Ana Maria C. Ferreira, et al. Spectroscopic characterization of polyaniline doped with transition metal salts[J]. Synthetic Metals,2006,156(9-10):654-663
    [228]Li Hanlu, Wang Jixiao, Chu Qingxian, et al. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid[J]. Journal of Power Sources,2009,190(2):578-586
    [229]Jayashree Anand, Palle Swapna Rao, S. Palaniappan, et al. ZnC12-induced changes in the electronic properties of polyaniline-HCl salt and its base. Synthetic Metals,1998,95(1):57-62
    [230]Kim Y H, Foster C, Chiang J, Heeger A J. Localized charged excitations in polyaniline:Infrared photoexcitation and protonation studies[J]. Synthetic Metals,1989,29(1):285-890
    [231]Sun Tao, Bi Hong, Zhu Kerong. An infrared and Raman spectroscopic study of polyanilines co-doped with metal ions and H+[J]. Specitochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2007,66(4-5):1364-1368
    [232]Li Xiaoxuan. Improving the electrochemical properties of polyaniline by co-doping with titanium ions and protonic acid[J]. Electrochimica Acta,2009, 54(24):5634-5639
    [233]Zerzy Zawadzki. Analysis of the surface properties of active carbon by infrared spectroscopy[J]. Carbon,1980,18(4):281-285