CO_2调控等规聚丁烯-1晶型结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2以其独特性质在聚合物加工中得到广泛应用。简单改变CO2温度和压力可调节CO2与聚合物间的相互作用,影响聚合物的物理化学性质,使聚合物晶型转变和结晶过程发生变化,进而达到对聚合物晶型结构的调控。等规聚丁烯-1是一种性能优异的多晶态半结晶聚合物,复杂的晶型转变严重限制了等规聚丁烯-1的广泛应用和发展,对等规聚丁烯-1晶型结构调控一直是研究热点。应用CO2调控等规聚丁烯-1晶型结构,提供了一种解决等规聚丁烯-1复杂晶型转变的新方法。本文首次对CO2环境中等规聚丁烯-1晶型转变和结晶行为进行了系统研究。
     首先,研究了CO2诱导等规聚丁烯-1晶型Ⅱ向晶型Ⅰ转变过程。结果表明,晶型Ⅱ在5 MPa C02中升温熔融过程中即能全部转变为晶型Ⅰ,CO2可显著促进晶型Ⅱ向晶型Ⅰ转变。晶型转变前后等规聚丁烯-1结晶度未发生明显改变,表明晶型Ⅱ向晶型Ⅰ转变只发生在晶区。通过高压原位红外光谱研究了不同CO2温度和压力时等规聚丁烯-1晶型Ⅱ向晶型Ⅰ转变动力学,发现晶型转变速率随CO2温度的增加而降低,随CO2压力的增加而增加。控制晶型Ⅱ向晶型Ⅰ转变在低温高压CO2中进行,能够使晶型转变过程在几分钟内完成,是迄今报道的促进晶型Ⅱ向晶型Ⅰ转变最有效的方法。
     然后,研究了CO2诱导等规聚丁烯-1晶型Ⅲ转变过程。结果表明,CO2可促进更多的晶型Ⅲ转变为晶型Ⅰ',也可促进晶型Ⅲ向晶型Ⅰ'转变在较低温度下进行。晶型Ⅲ向晶型Ⅰ'转变及晶型Ⅰ'的完善,能降低晶型Ⅲ和晶型Ⅰ'的熔融自由能垒,抑制熔融过程中晶型Ⅱ形成,使晶型Ⅲ和晶型Ⅰ'直接熔融。通过高压原位红外光谱定量研究了等规聚丁烯-1晶型Ⅲ向晶型Ⅰ'转变动力学,发现晶型Ⅲ向晶型Ⅰ'转变可能包括转变初期的瞬间成核和后期的二次随机成核两个过程,绝大多数晶型Ⅲ通过第一个过程转变为晶型Ⅰ'。CO2同时也改变晶型Ⅲ退火过程中晶型Ⅱ的形成过程,由常压N2中的“固态-固态”转变过程改变为CO2中“熔融-重结晶”过程。利用偏光显微镜研究了晶型Ⅲ转变过程对球晶形貌的影响,晶型Ⅲ向晶型Ⅰ'的“固态-固态”转变过程不影响等规聚丁烯-1球晶中片晶取向,而CO2中晶型Ⅲ向晶型Ⅱ的形成过程改变等规聚丁烯-1球晶中片晶取向。
     第三,研究了CO2中等规聚丁烯-1晶型Ⅲ升温过程中的晶型Ⅱ重结晶行为,发现晶型Ⅲ熔融过程中向晶型Ⅱ的转变由两个过程组成:“固态-固态”转变过程和“熔融-重结晶”过程。CO2压力的增加明显抑制“固态-固态”转变过程,使通过“熔融-重结晶”过程形成晶型Ⅱ的相对含量逐渐升高。将非等温结晶动力学计算应用于晶型Ⅲ升温中晶型Ⅱ重结晶过程时,发现非等温结晶动力学参数Kc在3 MPa C02时明显减小,表明非等温结晶机理改变。高压原位红外光谱对等规聚丁烯-1晶型Ⅱ熔融过程的进一步研究证实晶型Ⅲ在3 MPa C02中熔融时重结晶机理确实已变化,晶型Ⅱ全部通过“熔融-重结晶”过程形成。晶型Ⅲ在4 MPa CO2中熔融时,晶型Ⅱ结晶峰和熔融峰消失是由CO2对晶型Ⅱ的强塑化作用引起。
     第四,研究了CO2中熔融态等规聚丁烯-1非等温结晶行为。等规聚丁烯-1非等温结晶峰温度随CO2压力的增加线性下降。等规聚丁烯-1在0.5-8 MPa CO2中结晶为晶型Ⅱ,在10 MPa CO2以上结晶为晶型Ⅰ'。发现一种新的熔融态等规聚丁烯-1结晶为晶型Ⅰ'的非等温结晶过程。定量研究了CO2中熔融态等规聚丁烯-1非等温结晶动力学,发现Avrami指数随CO2压力的增加而减小,表明结晶过程逐渐改变。高压原位红外光谱对等规聚丁烯-1非等温结晶过程的研究证实等规聚丁烯-1在10-18 MPa CO2中由熔融态结晶为晶型Ⅰ'。偏光显微镜直接观察到了等规聚丁烯-1非等温结晶过程及机理随C02压力变化的过程。
     最后,研究了CO2发泡等规聚丁烯-1过程中晶型结构的变化。通过高压差式扫描量热仪确定了晶型Ⅰ和晶型Ⅰ'的发泡窗口。等规聚丁烯-1晶型Ⅰ发泡过程,抑制熔融态向晶型Ⅰ'结晶,使其直接结晶为晶型Ⅰ。等规聚丁烯-1晶型Ⅰ'发泡过程也可使晶型Ⅰ'熔融态直接结晶为晶型Ⅰ。这些结果表明,利用等规聚丁烯-1发泡过程中基体形变使分子链取向能改变结晶过程,可直接从熔融态获得低密度多孔等规聚丁烯-1晶型Ⅰ材料。
CO2 has been extensively used in polymer processing owing to its attractive properties. Dissolution of CO2 in polymer will affect the polymer properties in both melt and solid states. Moreover, the activity of CO2 can be easily tuned by changing temperature and pressure, which provides us a technique to manipulate crystalline modification transition and crystallization of polymers. Isotactic poly-1-butene (iPB-1) is a polymorphous semi crystal polyolefin with many outstanding properties. However, the relatively complex phase transition restricts its commercialization. Manipulation of the crystal modification of iPB-1 by using CO2 provides a potential solution to overcome the drawback. In this work, the crystal modification transformation and crystallization of iPB-1 under CO2 is systematically studied for the first time. The details are shown as follows:
     CO2-Inducted crystal phase transition from formⅡto I in iPB-1. CO2 substantially promoted the phase transition rate of formⅡtoⅠ, and formⅡtransformed completely to the formⅠduring the melting process under 5 MPa. The total crystallinity of iPB-1 samples before and after CO2 treatment did not seem to change dramatically, which indicated the phase transition was only occurred in the crystal region. Meanwhile, in-situ high-pressure Fourier transform infrared spectroscopy (FTIR) was used to investigate the phase transition of formⅡtoⅠat various CO2 temperatures and pressures. It was shown that the phase transition rate was increased with increased pressure and decreased with increased temperature. The phase transition of formⅡto formⅠcompleted in several minutes under low temperature and high pressure CO2, which was the most efficient ever reported method to accelerate the phase transition.
     CO2-Induced polymorphous phase transition of iPB-1 with form III. The application of CO2 promoted more formⅢto transform into form I', and also made the phase transformation of formⅢto I'occur at a lower temperature. The phase transition of form III to ' and the perfection of form I'crystal lowered the free energy barrier for melting of form III and I', thereby making formsⅢand I'melt directly. The phase transition kinetics of CO2-induced phase transition of formⅢto I'was studied by in-situ high-pressure FTIR. It was shown that the phase transition of formⅢto I'might be comprised two stages:the initial instantaneous nucleation and random nucleation. Most of formⅢtransformed into form I'in the first stage. Meanwhile, the formation of formⅡwas changed from the solid-solid phase transition under ambient N2 to the melt-recrystallization under CO2. The crystalline morphology of the C2-treated iPB-1 with form III was also investigated using the polarized optical microscopy (POM). To obtain the strong orientation, the formation processes of form II displayed the following order:melt crystallization at ambient condition> melt recrystallization under CO2>phase transition upon annealing at ambient condition.
     Effect of CO2 on the recrystallization of formⅡfrom iPB-1 with formⅢduring heating. The formation of formⅡduring heating of formⅢcomprised two processes:the solid-solid phase transition and the melt-recrystallization. The solid-solid phase transition of formⅡwas inhibited gradually with increasing CO2 pressure, making relatively more formⅡgenerate through the melt-recrystallization. The nonisothermal recrystallization kinetics of formⅡwas then analyzed by the modified Avrami method. Significant changes in the Avrami parameters at CO2 pressure of 3 MPa indicated a change in the recrystallization mechanism. In-situ high-pressure FTIR was also applied to detected the phase transition of formⅢunder compressed CO2. The results showed that the formⅡrecrystallization mechanism did change at 3 MPa, at which formⅡwas recrystallized from the completely melt state. The directly melt of formⅢinto the melt state at 4 MPa was ascribed to the plasticization effect of CO2.
     Effect of CO2 on the nonisothermal crystallization behaviors of iPB-1 melt. The nonisothermal crystallization peak temperature of iPB-1 decreased linearly with increasing CO2 pressure. The crystallized crystal structure of iPB-1 changed from formⅡunder 0.5-8 MPa CO2 to formⅠ' under CO2 at above 10 MPa. A new approach to obtain formⅠ' was found during the nonisothermal crystallization of iPB-1 under high pressure CO2. Furthermore, the modified Avrami method was used to analyze nonisothermal crystallization kinetics of iPB-1 from the melt. The results showed that the gradually reduced n in the nonisothermal crystallization of iPB-1 with the increased CO2 pressure, indicating the possible change in the crystallization mechanism with increasing CO2 pressure. In situ high pressure FTIR measurement of the nonisothermal crystallization evidenced the formⅠ'was directly generated from iPB-1 melt under 10-18 MPa CO2. The gradually changed crystallization process and mechanism was also directly detected by using POM.
     Effect of CO2 foaming process on the crystal modification of iPB-1. The high pressure differential scanning calorimeter (DSC) was used to determine the temperature window for foaming iPB-1 with formsⅠorⅠ'. The foaming process of iPB-1 using CO2 inhibited the crystallization of formⅠ' from the melt and made the iPB-1 melt directly transform into formⅠ. It indicated that the deformation of the iPB-1 matrix changed the crystallization behavior, and the porous stable formⅠwas directly generated after the foaming.
引文
[1]闵恩泽.绿色化学与化工.北京:化学工业出版社,2000
    [2]廖传华,王重庆.超临界流体与绿色化学.北京:中国石化出版社,2007
    [3]韩步兴.超临界流体科学与技术.北京:中国石化出版社,2005
    [4]尹恩华.超临界流体与纳米医药.北京:化学工业出版社,2010
    [5]朱自强.超临界流体技术-原理和应用.北京:化学工业出版社,2000
    [6]Nalawade, S. P., Picchioni, F., Janssen, L. P. B. M. Supercritical carbon dioxide as a green solvent for processing polymer melts:Processing aspects and applications. Progress in Polymer Science,2006,31(1):19-43
    [7]钱保功.高聚物的转变与松弛.北京:科学出版社,1986
    [8]Natta, G. Progress in the stereospecific polymerization. Die Makromolekulare Chemie, 1960,35(1):94-131
    [9]Woods, H. M., Silva, M. M. C. G., Nouvel, C., Shakesheff, K. M., Howdle, S. M. Materials processing in supercritical carbon dioxide:Surfactants, polymers and biomaterials. Journal of Materials Chemistry,2004,14(11):1663-1678
    [10]Eckert, C. A., Knutson, B. L., Debenedetti, P. G. Supercritical fluids as solvents for chemical and materials processing. Nature,1996,383(6598):313-318
    [11]Marubayashi, H., Akaishi, S., Akasaka, S., Asai, S., Sumita, M. Crystalline structure and morphology of poly(1-lactide) formed under high-pressure CO2. Macromolecules,2008, 41(23):9192-9203
    [12]Kiran, E. Polymer miscibility, phase separation, morphological modifications and polymorphic transformations in dense fluids. The Journal of Supercritical Fluids,2009, 47(3):466-483
    [13]Kikic, I. Polymer-supercritical fluid interactions. The Journal of Supercritical Fluids, 2009,47(3):458-465
    [14]Young, J. L., DeSimone, J. M. Frontiers in green chemistry utilizing carbon dioxide for polymer synthesis and applications. Pure and Applied Chemistry,2000,72(7):1357-1363
    [15]Kemmere, M. F., Meyer, T. Supercritical carbon dioxide:In polymer reaction engineering. Weinheim:Wiley-VCH,2006
    [16]Kendall, J. L., Canelas, D. A., Young, J. L., DeSimone, J. M. Polymerizations in supercritical carbon dioxide. Chemical Reviews,1999,99(2):543-564
    [17]DeSimone, J. M., Guan, Z., Elsbernd, C. S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science,1992,257(5072):945-947
    [18]DeSimone, J. M., Maury, E. E., Menceloglu, Y. Z., McClain, J. B., Romack, T. J., Combes, J. R. Dispersion polymerizations in supercritical carbon dioxide. Science,1994, 265(5170):356-359
    [19]Yoganathan, R. B., Mammucari, R., Foster, N. R. Dense gas processing of polymers. Polymer Reviews,2010,50(2):144-177
    [20]Kazarian, S. G. Polymer processing with supercritical fluids. Polymer Science Series C, 2000,42(1):78-101
    [21]Liu, Z., Song, L., Dai, X., Yang, G, Han, B., Xu, J. Grafting of methyl methylacrylate onto isotactic polypropylene film using supercritical CO2 as a swelling agent. Polymer,2002, 43(4):1183-1188
    [22]Tong, G.-S., Liu, T., Hu, G.-H., Zhao, L., Yuan, W.-K. Supercritical carbon dioxide-assisted solid-state free radical grafting of methyl methacrylate onto polypropylene. The Journal of Supercritical Fluids,2007,43(1):64-73
    [23]Dong, Z., Liu, Z., Han, B., Pei, X., Liu, L., Yang, G. Modification of isotactic polypropylene films by grafting methyl acrylate using supercritical CO2 as a swelling agent. The Journal of Supercritical Fluids,2004,31(1):67-74
    [24]Li, D., Han, B., Liu, Z. Grafting of 2-hydroxyethyl methacrylate onto isotactic poly(propylene) using supercritical CO2 as a solvent and swelling agent. Macromolecular Chemistry and Physics,2001,202(11):2187-2194
    [25]Galia, A., De Gregorio, R., Spadaro, G, Scialdone, O., Filardo, G. Grafting of maleic anhydride onto isotactic polypropylene in the presence of supercritical carbon dioxide as a solvent and swelling fluid. Macromolecules,2004,37(12):4580-4589
    [26]Liu, T., Hu, G.-H., Tong, G.-S., Zhao, L., Cao, G.-P., Yuan, W.-K. Supercritical carbon dioxide assisted solid-state grafting process of maleic anhydride onto polypropylene. Industrial & Engineering Chemistry Research,2005,44(12):4292-4299
    [27]Tong, G-S., Liu, T., Hu, G.-H., Hoppe, S., Zhao, L., Yuan, W.-K. Modelling of the kinetics of the supercritical CO2 assisted grafting of maleic anhydride onto isotactic polypropylene in the solid state. Chemical Engineering Science,2007,62(18-20):5290-5294
    [28]Tong, G.-S., Liu, T., Zhao, L., Hu, L.-X., Yuan, W.-K. Supercritical carbon dioxide-assisted preparation of polypropylene grafted acrylic acid with high grafted content and small gel percent. The Journal of Supercritical Fluids,2009,48(3):261-268
    [29]Muth, O., Hirth, T., Vogel, H. Polymer modification by supercritical impregnation. The Journal of Supercritical Fluids,2000,17(1):65-72
    [30]Berens, A. R., Huvard, G. S., Korsmeyer, R. W., Kunig, F. W. Application of compressed carbon dioxide in the incorporation of additives into polymers. Journal of Applied Polymer Science,1992,46(2):231-242
    [31]Li, B., Hu, G.-H., Cao, G.-R, Liu, T., Zhao, L., Yuan, W.-K. Supercritical carbon dioxide-assisted dispersion of sodium benzoate in polypropylene and crystallization behavior of the resulting polypropylene. Journal of Applied Polymer Science,2006,102(4):3212-3220
    [32]Li, B., Hu, G.-H., Cao, G-R, Liu, T., Zhao, L., Yuan, W.-K. Effect of supercritical carbon dioxide-assisted nano-scale dispersion of nucleating agents on the crystallization behavior and properties of polypropylene. The Journal of Supercritical Fluids,2008,44(3):446-456
    [33]Uzer, S., Akman, U., Hortacsu, O. Polymer swelling and impregnation using supercritical CO2:A model-component study towards producing controlled-release drugs. The Journal of Supercritical Fluids,2006,38(1):119-128
    [34]Alsoy, S., Duda, J. L. Processing of polymers with supercritical fluids. Chemical Engineering & Technology,1999,22(11):971-973
    [35]Zhai, W., Wang, H., Yu, J., Dong, J.-Y., He, J. Foaming behavior of isotactic polypropylene in supercritical CO2 influenced by phase morphology via chain grafting. Polymer,2008,49(13-14):3146-3156
    [36]Jiang, X.-L., Liu, T., Xu, Z.-M, Zhao, L., Hu, G.-H., Yuan, W.-K. Effects of crystal structure on the foaming of isotactic polypropylene using supercritical carbon dioxide as a foaming agent. The Journal of Supercritical Fluids,2009,48(2):167-175
    [37]Xu, Z.-M., Jiang, X.-L., Liu, T., Hu, G.-H., Zhao, L., Zhu, Z.-N., Yuan, W.-K. Foaming of polypropylene with supercritical carbon dioxide. The Journal of Supercritical Fluids,2007, 41(2):299-310
    [38]Tomasko, D. L., Li, H., Liu, D., Han, X., Wingert, M. J., Lee, L. J., Koelling, K. W. A review of CO2 applications in the processing of polymers. Industrial & Engineering Chemistry Research,2003,42(25):6431-6456
    [39]Tsivintzelis, I., Pavlidou, E., Panayiotou, C. Biodegradable polymer foams prepared with supercritical C2-ethanol mixtures as blowing agents. The Journal of Supercritical Fluids, 2007,42(2):265-272
    [40]Lopez-Periago, A., Vega, A., Subra, P., Argemi, A., Saurina, J., Garcia-Gonzalez, C., Domingo, C. Supercritical CO2 processing of polymers for the production of materials with applications in tissue engineering and drug delivery. Journal of Materials Science,2008, 43(6):1939-1947
    [41]Reis, R. L., Duarte, A. R., Mano, J. F. Supercritical fluid processing of biopolymers and biomedical materials. The Journal of Supercritical Fluids,2010,54(3):281-281
    [42]Kiran, E. Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part I. Miscibility and foaming of poly(1-lactic acid) in carbon dioxide+acetone binary fluid mixtures. The Journal of Supercritical Fluids,2010,54(3):296-307
    [43]Handa, Y. P., Roovers, J., Wang, F. Effect of thermal annealing and supercritical fluids on the crystallization behavior of methyl-substituted poly(aryl ether ether ketone). Macromolecules,1994,27(19):5511-5516
    [44]Goel, S. K., Beckman, E. J. Generation of microcellular polymeric foams using supercritical carbon dioxide. I:Effect of pressure and temperature on nucleation. Polymer Engineering & Science,1994,34(14):1137-1147
    [45]Zhang, Z., Handa, Y. P. CO2-Assisted melting of semicrystalline polymers. Macromolecules,1997,30(26):8505-8507
    [46]Chow, T. S. Molecular Interpretation of the glass transition temperature of polymer-diluent systems. Macromolecules,1980,13(2):362-364
    [47]Shieh, Y. T., Hsiao, T. T., Chang, S. K. CO2 pressure effects on melting, crystallization, and morphology of poly(vinylidene fluoride). Polymer,2006,47(16):5929-5937
    [48]Kishimoto, Y, Ishii, R. Differential scanning calorimetry of isotactic polypropene at high CO2 pressures. Polymer,2000,41(9):3483-3485
    [49]Li, B., Zhu, X., Hu, G.-H., Liu, T., Cao, G.-P., Zhao, L., Yuan, W.-K. Supercritical carbon dioxide-induced melting temperature depression and crystallization of syndiotactic polypropylene. Polymer Engineering & Science,2008,48(8):1608-1614
    [50]Liao, X., Wang, J., Li, G., He, J. Effect of supercritical carbon dioxide on the crystallization and melting behavior of linear bisphenol A polycarbonate. Journal of Polymer Science Part B:Polymer Physics,2004,42(2):280-285
    [51]Handa, Y. P., Zhang, Z., Wong, B. Effect of compressed CO2 on phase transitions and polymorphism in syndiotactic polystyrene. Macromolecules,1997,30(26):8499-8504
    [52]Takada, M., Tanigaki, M., Ohshima, M. Effects of CO2 on crystallization kinetics of polypropylene. Polymer Engineering & Science,2001,41(11):1938-1946
    [53]Takada, M., Ohshima, M. Effect of CO2 on crystallization kinetics of poly(ethylene terephthalate). Polymer Engineering & Science,2003,43(2):479-489
    [54]Takada, M., Hasegawa, S., Ohshima, M. Crystallization kinetics of poly(L-lactide) in contact with pressurized CO2. Polymer Engineering & Science,2004,44(1):186-196
    [55]Zhang, Z., Nawaby, A. V., Michael, D. CO2-Delayed crystallization of isotactic polypropylene:A kinetic study. Journal of Polymer Science Part B:Polymer Physics,2003, 41(13):1518-1525
    [56]Ma, W., Yu, J., He, J. Supercritical fluid assisted crystal transition of γ-form crystal in syndiotactic polystyrene. Macromolecular Rapid Communications,2005,26(2):112-115
    [57]Teramoto, G., Oda, T., Saito, H., Sano, H., Fujita, Y. Morphology control of polypropylene by crystallization under carbon dioxide. Journal of Polymer Science Part B: Polymer Physics,2004,42(14):2738-2746
    [58]Liao, X., He, J., Yu, J. Process analysis of phase transformation of a to β-form crystal of syndiotactic polystyrene investigated in supercritical CO2. Polymer,2005,46(15):5789-5796
    [59]Ma, W., Yu, J., He, J. Stability of crystal forms of syndiotactic polystyrene correlated with their formation in different media having different solubility parameters. Polymer,2005, 46(24):11104-11111
    [60]姜修磊.聚丙烯微孔发泡过程中泡孔形态控制.华东理工大学博士学位论文.2009
    [61]Yuan, M., Turng, L.-S. Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites. Polymer,2005,46(18):7273-7292
    [62]Luciani, L., Seppala, J., Lofgren, B. Poly-1-butene:Its preparation, properties and challenges. Progress in Polymer Science,1988,13(1):37-62
    [63]Boor, J., Mitchell, J. C. Apparent nucleation of a crystal-crystal transition in poly-1-butene. Journal of Polymer Science,1962,62(174):S70-S73
    [64]Boor, J., Mitchell, J. C. Kinetics of crystallization and a crystal-crystal transition in poly-1-butene. Journal of Polymer Science Part A:General Papers,1963, 1(1):59-84
    [65]Danusso, F., Gianotti, G. The three polymorphs of isotactic polybutene-1:Dilatometric and thermodynamic fusion properties. Die Makromolekulare Chemie,1963,61(1):139-156
    [66]Belfiore, L. A., Schilling, F. C., Tonelli, A. E., Lovinger, A. J., Bovey, F. A. Magic angle spinning carbon-13 NMR spectroscopy of three crystalline forms of isotactic poly(1-butene). Macromolecules,1984,17(12):2561-2565
    [67]Nase, M., Androsch, R., Hans, B. L., Baumann, J., Grellmann, W. Effect of polymorphism of isotactic polybutene-1 on peel behavior of polyethylene/polybutene-1 peel systems. Journal of Applied Polymer Science,2008,107(5):3111-3118
    [68]Winkel, A. K., Miles, M. J. Surface crystallography of polybutene-1 by atomic force microscopy. Polymer,2000,41(6):2313-2317
    [69]Clampitt, B. H., Hughes, R. H. Differential thermal analysis of polybutene-1. Journal of Polymer Science Part C:Polymer Symposia,1964,6(1):43-51
    [70]Danusso, F., Gianotti, G Equilibrium milting temperature:Some experimental data with isotactic polypropylene, polybutene-1, and polypentene-1. Die Makromolekulare Chemie, 1964,80(1):1-12
    [71]Haase, J., Hosemann, R., Kohler, S. Annealing and melting behaviour of poly(l-butene), modification I. Polymer,1978,19(11):1358-1360
    [72]Howard, W., Starkweather, J., Glover, A. J. The heat of fusion of polybutene-1. Journal of Polymer Science Part B:Polymer Physics,1986,24(7):1509-1514
    [73]Maring, D., Wilhelm, M., Spiess, H. W., Meurer, B., Weill, G Dynamics in the crystalline polymorphic forms Ⅰ and Ⅱ and form Ⅲ of isotactic poly-1-butene. Journal of Polymer Science Part B:Polymer Physics,2000,38(20):2611-2624
    [74]Petraccone, V., Pirozzi, B., Frasci, A., Corradini, P. Polymorphism of isotactic poly-a-butene:Conformational analysis of the chain and crystalline structure of form 2. European Polymer Journal,1976,12(5):323-327
    [75]De Rosa, C., Venditto, V., Guerra, G., Pirozzi, B., Corradini, P. Polymorphism and chain conformations in the crystalline forms of syndiotactic poly(l-butene). Macromolecules,1991, 24(20):5645-5650
    [76]Rubin, I. D. Relative stabilities of polymorphs of polybutene-1 obtained from the melt. Journal of Polymer Science Part B:Polymer Letters,1964,2(7):747-749
    [77]Corradini, P., Napolitano, R., Petraccone, V., Pirozzi, B. Conformational and packing energy for the three crystalline forms of isotactic poly-a-butene. European Polymer Journal, 1984,20(10):931-935
    [78]Kaszonyiova, M., Rybnikar, F., Geil, P. H. Crystallization and transformation of polybutene-1. Journal of Macromolecular Science, Part B:Physics,2004, B43(5):1095-1114
    [79]Kaszonyiova, M., Rybnikar, R, Geil, P. H. Structure and morphology of isotactic poly(butene-l) phase Ⅲ. Journal of Macromolecular Science, Part B:Physics,2007, 46(1):195-205
    [80]Danusso, F., Gianotti, G., Polizzotti, G. Isotactic polybutene-1:Modification 3 and its transformations. Die Makromolekulare Chemie,1964,80(1):13-21
    [81]Aronne, A., Napolitano, R., Pirozzi, B. Thermodynamic stabilities of the three crystalline forms of isotactic poly-1-butene as a function of temperature. European Polymer Journal, 1986,22(9):703-706
    [82]Cojazzi, G, Malta, V., Celotti, G, Zannetti, R. Crystal structure of form III of isotactic poly-1-butene. Die Makromolekulare Chemie,1976,177(3):915-926
    [83]Kopp, S., Wittmann, J. C, Lotz, B. Epitaxial crystallization and crystalline polymorphism of poly(l-butene):Forms III and Ⅱ. Polymer,1994,35(5):908-915
    [84]Nakafuku, C., Miyaki, T. Effect of pressure on the melting and crystallization behaviour of isotactic polybutene-1. Polymer,1983,24(2):141-148
    [85]Holland, V. F., Miller, R. L. Isotactic polybutene-1 single crystals:Morphology. Journal of Applied Physics,1964,35(11):3241-3248
    [86]Gordon, M., Hillier, I. H. The bulk crystallization kinetics of polypropylene and polybutene. Polymer,1965,6(4):213-219
    [87]Burns, J. R., Turnbull, D. Nucleation of crystallization in molten isotactic polybutene-1. Journal of Polymer Science Part A-2:Polymer Physics,1968,6(4):775-782
    [88]Woodward, A. E., Morrow, D. R. Annealing of polybutene-1 single crystals. Journal of Polymer Science Part A-2:Polymer Physics,1968,6(12):1987-1997
    [89]Markovic, V., Silverman, J. The melting and crystallization behavior of irradiated poly(1-butene). Radiation Physics and Chemistry (1977),1982,20(2):149-154
    [90]Icenogle, R. D., Klingensmith, G. B. Characterization of the stereostructure of three poly(1-butenes):Discrimination between intramolecular and intermolecular distributions of defects in stereoregularity. Macromolecules,1987,20(11):2788-2797
    [91]Silvestre, C., Cimmino, S., Di Lorenzo, M. L. Crystallization of poly(1-butene)/hydrogenated oligocyclopentadiene blends. Journal of Applied Polymer Science,1999,71(10):1677-1690
    [92]Geacintov, C., Schotl, R. S., Miles, R. B. Form III to form II phase transition of polybutene-1. Journal of Polymer Science Part C:Polymer Symposia,1964,6(1):197-207
    [93]Danusso, F., Gianotti, G. Isotactic polybutene-1:Formation and transformation of modification 2. Die Makromolekulare Chemie,1965,88(1):149-158
    [94]Haas, T. W., Maxwell, B. Effects of shear stress on the crystallization of linear polyethylene and polybutene-1. Polymer Engineering & Science,1969,9(4):225-241
    [95]Sastry, K. S., Patel, R. D. Growth morphology of isotactic polybutene-1. European Polymer Journal,1973,9(2):177-178
    [96]Weynant, E., Haudin, J. M., G'Sell, C. In situ observation of the spherulite deformation in polybutene-1 (Modification Ⅰ). Journal of Materials Science,1980,15(11):2677-2692
    [97]Petermann, J., Gohil, R. M., Schultz, J. M., Hendricks, R. W., Lin, J. S. Small-angle X-ray scattering from polybutenee1 films crystallized from a highly extended melt. Journal of Materials Science,1981,16(1):265-268
    [98]Kishore, K., Vasanthakumari, R. Crystallization behaviour of polyethylene and i-polybutene-1 blends. Polymer,1986,27(3):337-343
    [99]Samon, J. M., Schultz, J. M., Hsiao, B. S., Wu, J., Khot, S. Structure development during melt spinning and subsequent annealing of polybutene-1 fibers. Journal of Polymer Science Part B:Polymer Physics,2000,38(14):1872-1882
    [100]Fu, Q., Heck, B., Strobl, G, Thomann, Y. A temperature-and molar mass-dependent change in the crystallization mechanism of poly(1-butene):Transition from chain-folded to chain-extended crystallization? Macromolecules,2001,34(8):2502-2511
    [101]Fu, Q.. Strobl. G. Role and importance of radius of gyration of chains in the melt in the crystalization of poly(1-butene). Chinese Journal of Polymer Science,2002,20(2):143-154
    [102]Acierno, S., Grizzuti, N., Winter, H. H. Effects of molecular weight on the isothermal crystallization of poly(1-butene). Macromolecules,2002,35(13):5043-5048
    [103]Wereta, J. A., Gogos, C. G. Crystallization studies on deformed polybutene-1 melts. Polymer Engineering & Science,1971,11(1):19-27
    [104]Kishore, K., Vasanthakumari, R., Ramesh, T. G. Crystallization and melting behavior of isotactic polybutene-1 at high pressures. Journal of Polymer Science Part A:Polymer Chemistry,1986,24(8):2011-2019
    [105]Shieh, Y. T., Lee, M. S., Chen, S. A. Crystallization behavior, crystal transformation, and morphology of polypropylene/polybutene-1 blends. Polymer,2001,42(9):4439-4448
    [106]Kalay, G., Kalay, C. R. Interlocking shish-kebab morphology in polybutene-1. Journal of Polymer Science Part B:Polymer Physics,2002,40(17):1828-1834
    [107]Kalay, G, Kalay, C. R. Compounding and injection molding of polybutene-1/polypropylene blends. Journal of Applied Polymer Science,2003, 88(3):806-813
    [108]Lee, K. H., Snively, C. M., Givens, S., Chase, D. B., Rabolt, J. F. Time-dependent transformation of an electrospun isotactic poly(1-butene) fibrous membrane. Macromolecules, 2007,40(7):2590-2595
    [109]Geacintov, C., Miles, R. B., Schuubmans, H. J. L. Multiple phase transitions of polybutene-1. Journal of Polymer Science Part C:Polymer Symposia,1966,14(1):283-290
    [110]Miyoshi, T., Hayashi, S., Imashiro, F., Kaito, A. Chain dynamics, conformations, and phase transformations for form III polymorph of isotactic poly(l-butene) investigated by high-resolution solid-state13C NMR spectroscopy and molecular mechanics calculations. Macromolecules,2002,35(7):2624-2632
    [111]Jiang, Z., Sun, Y., Tang, Y, Lai, Y, Funari, S. r. S., Gehrke, R., Men, Y Polymorphic transformation of isotactic poly(l-butene) in form III upon heating:In situ synchrotron small-and wide-angle X-ray scattering studies. The Journal of Physical Chemistry B,2010, 114(18):6001-6005
    [112]De Rosa, C., Auriemma, F., Corradini, P., Tarallo, O., Dellolacono, S., Ciaccia, E., Resconi, L. Crystal structure of the trigonal form of isotactic polypropylene as an example of density-driven polymer structure. Journal of the American Chemical Society,2006, 128(1):80-81
    [113]Marigo, A., Marega, C, Cecchin, G., Collina, G., Ferrara, G. Phase transition Ⅱ → I in isotactic poly-1-butene:Wide-and small-angle X-ray scattering measurements. European Polymer Journal,2000,36(1):131-136
    [114]Hong, K.-B., Spruiell, J. E. The effect of certain processing variables on the form II to form I phase transformation in polybutene-1. Journal of Applied Polymer Science,1985, 30(8):3163-3188
    [115]Schaffhauser, R. J. On the nature of the form Ⅱ to from Ⅰ transformation in isotactic polybutene-1. Journal of Polymer Science Part B:Polymer Letters,1967,5(9):839-841
    [116]Alfonso, G C., Azzurri, F., Castellano, M. Analysis of calorimetric curves detected during thepolymorphic transformation of isotactic polybutene-1. Journal of Thermal Analysis and Calorimetry,2001,66(1):197-207
    [117]Chau, K. W., Yang, Y. C., Geil, P. H. Tetragonal→ twinned hexagonal crystal phase transformation in polybutene-1. Journal of Materials Science,1986,21(9):3002-3014
    [118]Fujiwara, Y. Ⅱ-Ⅰ phase transformation of melt-crystallized oriented lamellae of polybutene-1 by shear deformation. Polymer Bulletin,1985,13(3):253-258
    [119]Tosaka, M., Kamijo, T., Tsuji, M., Kohjiya, S., Ogawa, T., Isoda, S., Kobayashi, T. High-resolution transmission electron microscopy of crystal transformation in solution-grown lamellae of isotactic polybutene-1. Macromolecules,2000,33(26):9666-9672
    [120]Lu, K. B., Yang, D. Stabilization of metastable phase Ⅱ of isotactic polybutene-1 by coated carbon. Polymer Bulletin,2007,58(4):731-736
    [121]Kopp, S., Wittmann, J. C., Lotz, B. Phase Ⅱ to phase Ⅰ crystal transformation in polybutene-1 single crystals:A reinvestigation. Journal of Materials Science,1994, 29(23):6159-6166
    [122]Azzurri, F., Flores, A., Alfonso, G. C., Calleja, F. J. B. Polymorphism of isotactic poly(1-butene) as revealed by microindentation hardness.1. Kinetics of the transformation. Macromolecules,2002,35(24):9069-9073
    [123]Azzurri, F., Flores, A., Alfonso, G. C., Sics, I., Hsiao, B. S., Balta Calleja, F. J. Polymorphism of isotactic polybutene-1 as revealed by microindentation hardness. Part Ⅱ: Correlations to microstructure. Polymer,2003,44(5):1641-1645
    [124]Geacintov, C., Miles, R. B., Schuurmans, H. J. L. On the form Ⅲ transformation of polybutene-1. Journal of Polymer Science Part A-1:Polymer Chemistry,1966,4(2):431-433
    [125]Nakamura, K., Aoike, T., Usaka, K., Kanamoto, T. Phase transformation in poly(1-butene) upon drawing. Macromolecules,1999,32(15):4975-4982
    [126]Kaszonyiova, M., Rybnikar, K., Geil, P. H. Polymorphism of isotactic poly(butene-1). Journal of Macromolecular Science, Part B:Physics,2005, B44(3):377-396
    [127]Men, Y, Rieger, J., Homeyer, J. Synchrotron ultrasmall-angle X-ray scattering studies on tensile deformation of poly(1-butene). Macromolecules,2004,37(25):9481-9488
    [128]Luongo, J. P., Salovey, R. Infrared spectra of the polybutene-1 polymorphs. Journal of Polymer Science Part B:Polymer Letters,1965,3(6):513-515
    [129]Goldbach, G, Peitscher, G. Infrared investigations of the polymorphic modifications of polybutene-1. Journal of Polymer Science Part B:Polymer Letters,1968,6(11):783-788
    [130]Luongo, J. P., Salovey, R. Infrared characterization of polymorphism in polybutene-1. Journal of Polymer Science Part A-2:Polymer Physics,1966,4(6):997-1008
    [131]Fried, J. R., Hu, N. The molecular basis of CO2 interaction with polymers containing fluorinated groups:Computational chemistry of model compounds and molecular simulation of poly[bis(2,2,2-trifluoroethoxy)phosphazene]. Polymer,2003,44(15):4363-4372
    [132]Kazarian, S. G. Polymers and supercritical fluids:Opportunities for vibrational spectroscopy. Macromolecular Symposia,2002,184(1):215-228
    [133]Kazarian, S. G., Chan, K. L. A. FTIR Imaging of polymeric materials under high-pressure carbon dioxide. Macromolecules,2003,37(2):579-584
    [134]Walker, T. A., Colina, C. M., Gubbins, K. E., Spontak, R. J. Thermodynamics of poly(dimethylsiloxane)/poly(ethylmethylsiloxane) (PDMS/PEMS) blends in the presence of high-pressure CO2. Macromolecules,2004,37(7):2588-2595
    [135]Nalawade, S. P., Picchioni, F., Marsman, J. H., Janssen, L. P. B. M. The FT-IR studies of the interactions of CO2 and polymers having different chain groups. The Journal of Supercritical Fluids,2006,36(3):236-244
    [136]Tai, H., Wang, W., Howdle, S. M. High molecular weight graft stabilisers for dispersion polymerisation of vinylidene fluoride in supercritical carbon dioxide:The effect of architecture. Polymer,2005,46(24):10626-10636
    [137]Gupper, A., Chan, K. L. A., Kazarian, S. G. FT-IR imaging of solvent-induced crystallization in polymers. Macromolecules,2004,37(17):6498-6503
    [138]Gupper, A., Kazarian, S. G. Study of solvent diffusion and solvent-induced crystallization in syndiotactic polystyrene using FT-IR spectroscopy and imaging. Macromolecules,2005,38(6):2327-2332
    [139]Briscoe, B. J., Kelly, C. T. The plasticization of a polyurethane by carbon dioxide at high pneumatic stresses. Polymer,1995,36(16):3099-3102
    [140]Kazarian, S. G., Vincent, M. F., Bright, F. V., Liotta, C. L., Eckert, C. A. Specific intermolecular interaction of carbon dioxide with polymers. Journal of the American Chemical Society,1996,118(7):1729-1736
    [141]Vitoux, P., Tassaing, T., Cansell, F., Marre, S., Aymonier, C. In situ IR spectroscopy and Ab initio calculations to study polymer swelling by supercritical CO2. The Journal of Physical Chemistry B,2009,113(4):897-905
    [142]Kazarian, S. G., Brantley, N. H., Eckert, C. A. Applications of vibrational spectroscopy to characterize poly(ethylene terephthalate) processed with supercritical CO2. Vibrational Spectroscopy,1999,19(2):277-283
    [143]Fleming, O. S., Chan, K. L. A., Kazarian, S. G. FT-IR imaging and Raman microscopic study of poly(ethylene terephthalate) film processed with supercritical CO2. Vibrational Spectroscopy,2004,35(1-2):3-7
    [144]Vincent, M. F., Kazarian, S. G, Eckert, C. A. "Tunable" diffusion of D2O in CO2-swollen poly(methyl methacrylate) films. AIChE Journal,1997,43(7):1838-1848
    [145]Flichy, N. M. B., Kazarian, S. G, Lawrence, C. J., Briscoe, B. J. An ATR-IR study of poly (dimethylsiloxane) under high-pressure carbon dioxide:Simultaneous measurement of sorption and swelling. The Journal of Physical Chemistry B,2002,106(4):754-759
    [146]Pasquali, I., Andanson, J.-M., Kazarian, S. G., Bettini, R. Measurement of CO2 sorption and PEG 1500 swelling by ATR-IR spectroscopy. The Journal of Supercritical Fluids,2008, 45(3):384-390
    [147]Pasquali, I., Comi, L., Pucciarelli, F., Bettini, R. Swelling, melting point reduction and solubility of PEG 1500 in supercritical CO2. International Journal of Pharmaceutics,2008, 356(l-2):76-81
    [148]Guadagno, T., Kazarian, S. G. High-pressure CO2-expanded solvents:Simultaneous measurement of CO2 sorption and swelling of liquid polymers with in-situ near-IR spectroscopy. The Journal of Physical Chemistry B,2004,108(37):13995-13999
    [149]Duarte, A. R. C., Anderson, L. E., Duarte, C. M. M., Kazarian, S. G. A comparison between gravimetric and in situ spectroscopic methods to measure the sorption of CO2 in a biocompatible polymer. The Journal of Supercritical Fluids,2005,36(2):160-165
    [150]Brantley, N. H., Kazarian, S. G., Eckert, C. A. In situ FTIR measurement of carbon dioxide sorption into poly(ethylene terephthalate) at elevated pressures. Journal of Applied Polymer Science,2000,77(4):764-775
    [151]Nikitin, L. N., Said-Galiyev, E. E., Vinokur, R. A., Khokhlov, A. R., Gallyamov, M. O., Schaumburg, K. Poly(methyl methacrylate) and poly(butyl methacrylate) swelling in supercritical carbon dioxide. Macromolecules,2001,35(3):934-940
    [152]Royer, J. R., DeSimone, J. M., Khan, S. A. Carbon dioxide-induced swelling of poly(dimethylsiloxane). Macromolecules,1999,32(26):8965-8973
    [153]Li, B., Li, L., Zhao, L., Yuan, W.-K. In situ FT-IR spectroscopic study on the conformational changes of isotactic polypropylene in the presence of supercritical CO2. European Polymer Journal,2008,44(8):2619-2624
    [154]West, B. L., Kazarian, S. G, Vincent, M. F., Brantley, N. H., Eckert, C. A. Supercritical fluid dyeing of PMMA films with azo-dyes. Journal of Applied Polymer Science,1998, 69(5):911-919
    [155]Vincent, M. F., Kazarian, S. G, West, B. L., Berkner, J. A., Bright, F. V, Liotta, C. L., Eckert, C. A. Cosolvent effects of modified supercritical carbon dioxide on cross-linked poly(dimethylsiloxane). The Journal of Physical Chemistry B,1998,102(12):2176-2186
    [156]Brantley, N. H., Bush, D., Kazarian, S. G, Eckert, C. A. Spectroscopic measurement of solute and cosolvent partitioning between supercritical CO2 and polymers. The Journal of Physical Chemistry B,1999,103(45):10007-10016
    [157]Lee, K.-H., Givens, S. R., Snively, C. M., Chase, B., Rabolt, J. F. Crystallization behavior of electrospun PB/PMP blend fibrous membranes. Macromolecules,2008, 41(9):3144-3148
    [158]Holden, H. W. The low-melting crystalline modifications of isotactic polybutene-1. Journal of Polymer Science Part C:Polymer Symposia,1964,6(l):209-211
    [159]Rubin, I. D. Effect of some additives on the crystalline transformations of polybutene-1. Journal of Polymer Science Part A:General Papers,1965,3(11):3803-3813
    [160]Arnon, S. Crystallization of crystalline/crystalline blends:Polypropylene/polybutene-1. Journal of Applied Polymer Science,1982,27(3):1053-1065
    [161]Cortazar, M., Sarasola, C., Guzman, G M. X-ray analysis of the influence of various nucleating agents on the crystallinity of poly-a-butene. European Polymer Journal,1982, 18(5):439-442
    [162]Bonfatti, A. M., Canetti, M., Sadocco, P., Seves, A., Martuscelli, E. Crystallization and thermal behaviour of isotactic poly(1-butene) mixed with hydrogenated oligo(cyclopentadiene). Polymer,1993,34(5):990-995
    [163]Wanjale, S. D., Jog, J. P. Crystallization and phase transformation kinetics of poly(1-butene)/MWCNTnanocomposites. Polymer,2006,47(18):6414-6421
    [164]Wanjale, S. D., Jog, J. P. Viscoelastic and dielectric behavior of poly(1-Butene)/multiwalled carbon nanotube nanocomposites. Journal of Macromolecular Science, Part B:Physics,2006,45(6):1053-1064
    [165]Miyoshi, T., Hayashi, S., Imashiro, F., Kaito, A. Side-chain conformation and dynamics for the form II polymorph of isotactic poly(1-butene) investigated by high-resolution solid-state 13C NMR spectroscopy. Macromolecules,2002,35(15):6060-6063
    [166]Miyoshi, T., Mamun, A., Reichert, D. Fast dynamics and conformations of polymer in a conformational disordered crystal characterized by 1H-13C WISE NMR. Macromolecules, 2010,43(8):3986-3989
    [167]Causin, V., Marega, C., Marigo, A., Ferrara, G., Idiyatullina, G., Fantinel, F. Morphology, structure and properties of a poly(1-butene)/montmorillonite nanocomposite. Polymer,2006, 47(13):4773-4780
    [168]Mandelkern, L. Crystallization of polymers (volume 2). Cambridge:Cambridge University Press,2004
    [169]Sorrentino, L., Iannace, S., Maio, E. D., Acierno, D. Isothermal crystallization kinetics of chain-extended PET. Journal of Polymer Science Part B:Polymer Physics,2005, 43(15):1966-1972
    [170]Cheng, S. Z. D. Phase transitions in polymers:The role of metastable states. Amsterdam:Elsevier Science,2008
    [171]Di Lorenzo, M. L., Righetti, M. C. The three-phase structure of isotactic poly(1-butene). Polymer,2008,49(5):1323-1331
    [172]Di Lorenzo, M. L., Righetti, M. C, Wunderlich, B. Influence of crystal polymorphism on the three-phase structure and on the thermal properties of isotactic poly(1-butene). Macromolecules,2009,42(23):9312-9320
    [173]Androsch, R., Di Lorenzo, M. L., Schick, C., Wunderlich, B. Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer,2010,51 (21):4639-4662
    [174]Weynant, E., Haudin, J. M., G'Sell, C. Plastic deformation and solid-phase transformation in polybutene-1. Journal of Materials Science,1982,17(4):1017-1035
    [175]励航泉,张晨,张帆.高分子物理.北京:中国轻工业出版社,2009
    [176]何曼君.高分子物理.上海:复旦大学出版社,1990
    [177]Rubinstein, M. Polymer physics. Oxford:Oxford University Press,2003
    [178]Wunderlich, B. Macromolecular physics. New York:Academic Press,1974-80
    [179]Yamashita, M., Ueno, S. Direct melt crystal growth of isotactic polybutene-1 trigonal phase. Crystal Research and Technology,2007,42(12):1222-1227
    [180]Yamashita, M., Kato, M. Lamellar crystal thickness transition of melt-crystallized isotactic polybutene-1 observed by small-angle X-ray scattering. Journal of Applied Crystallography,2007,40(sl):s650-s655
    [181]Yamashita, M., Kato, M. Surface free energies of isotactic polybutene-1 tetragonal and trigonal crystals:The role of conformational entropy of side chains. Journal of Applied Crystallography,2007,40:S558-S563
    [182]Yamashita, M., Hoshino, A., Kato, M. Isotactic poly(butene-1) trigonal crystal growth in the melt. Journal of Polymer Science Part B:Polymer Physics,2007,45(6):684-697
    [183]De Rosa, C., Auriemma, F., Resconi, L. Metalloorganic polymerization catalysis as a tool to probe crystallization properties of polymers:The case of isotactic poly(1-butene). Angewandte Chemie International Edition,2009,48(52):9871-9874
    [184]De Rosa, C., Auriemma, F., Ruiz de Ballesteros, O., Esposito, F., Laguzza, D., Di Girolamo, R., Resconi, L. Crystallization properties and polymorphic behavior of isotactic poly(1-butene) from metallocene catalysts:The crystallization of form I from the melt. Macromolecules,2009,42(21):8286-8297
    [185]Koga, Y., Saito, H. Porous structure of crystalline polymers by exclusion effect of carbon dioxide. Polymer,2006,47(21):7564-7571
    [186]Fukasawa, Y., Chen, J., Saito, H. A novel nanoporous structure on the surface of bubbles in polycarbonate foams. Journal of Polymer Science Part B:Polymer Physics,2008, 46(8):843-846
    [187]刘振海,畠山立子,陈学思.聚合物量热测定.北京:化学工业出版社,2002
    [188]Wunderlich, B. Thermal analysis of polymeric materials. Berlin:Springer,2005
    [189]Xu, C., Qiu, Z. Nonisothermal melt crystallization and subsequent melting behavior of biodegradable poly(hydroxybutyrate)/multiwalled carbon nanotubes nanocomposites. Journal of Polymer Science Part B:Polymer Physics,2009,47(22):2238-2246
    [190]Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data. Nature, 1964,201(4914):68-69
    [191]Choi, J., Kwak, S.-Y. Architectural effects of poly(ε-caprolactone)s on the crystallization kinetics. Macromolecules,2004,37(10):3745-3754
    [192]Huang, J.-W., Wen, Y.-L., Kang, C.-C, Tseng, W.-J., Yeh, M.-Y. Nonisothermal crystallization of high density polyethylene and nanoscale calcium carbonate composites. Polymer Engineering& Science,2008,48(7):1268-1278
    [193]Chen, X., Wang, L., Liu, Y., Shi, J., Shi, H. Nonisothermal crystallization kinetics of high-density polyethylene/barium sulfate nanocomposites. Polymer Engineering & Science, 2009,49(12):2342-2349
    [194]Lonkar, S. P., Morlat-Therias, S., Caperaa, N., Leroux, F., Gardette, J. L., Singh, R. P. Preparation and nonisothermal crystallization behavior of polypropylene/layered double hydroxide nanocomposites. Polymer,2009,50(6):1505-1515
    [195]Xue, M.-L., Sheng, J., Yu, Y.-L., Chuah, H. H. Nonisothermal crystallization kinetics and spherulite morphology of poly(trimethylene terephthalate). European Polymer Journal, 2004,40(4):811-818
    [196]Cui, X., Qing, S., Yan, D. Isothermal and nonisothermal crystallization kinetics of novel odd-odd polyamide 911. European Polymer Journal.2005,41(12):3060-3068
    [197]Kalkar, A. K., Deshpande, V. D., Kulkarni, M. J. Nonisothermal crystallization kinetics of poly (phenylene sulphide) in composites with a liquid crystalline polymer. Journal of Polymer Science Part B:Polymer Physics,2010,48(10):1070-1100
    [198]Strobl, G. The physics of polymers:Concepts for understanding their structures and behavior. BerlinrSpringer,2007
    [199]Oda, T., Saito, H. Exclusion effect of carbon dioxide on the crystallization of polypropylene. Journal of Polymer Science Part B:Polymer Physics,2004,42(9):1565-1572
    [200]Wang, J., Cheng, X., Yuan, M, He, J. An investigation on the microcellular structure of polystyrene/LCP blends prepared by using supercritical carbon dioxide. Polymer,2001, 42(19):8265-8275
    [201]Jacobs, M. A., Kemmere, M. F., Keurentjes, J. T. F. Foam processing of poly(ethylene-co-vinyl acetate) rubber using supercritical carbon dioxide. Polymer,2004, 45(22):7539-7547
    [202]Ema, Y., Ikeya, M, Okamoto, M. Foam processing and cellular structure of polylactide-based nanocomposites. Polymer,2006,47(15):5350-5359
    [203]Reignier, J., Tatibouet, J., Gendron, R. Batch foaming of poly(e-caprolactone) using carbon dioxide:Impact of crystallization on cell nucleation as probed by ultrasonic measurements. Polymer,2006,47(14):5012-5024
    [204]Hsu, T. C., Geil, P. H. Deformation and stress-induced transformation of polybutene-1. Journal of Macromolecular Science, Part B:Physics,1989,28(1):69-95
    [205]Zhang, B., Yang, D., Yan, S. Direct formation of form I poly(l-butene) single crystals from melt crystallization in ultrathin films. Journal of Polymer Science Part B:Polymer Physics,2002,40(23):2641-2645
    [206]Bove, L., Nobile, M. R. Shear-induced crystallization of isotactic poly(l-butene). Macromolecular Symposia,2002,185(1):135-147
    [207]Siripurapu, S., Gay, Y. J., Royer, J. R., DeSimone, J. M, Spontak, R. J., Khan, S. A. Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process. Polymer,2002,43(20):5511-5520
    [208]Braun, J., Wippel, H., Eder, G., Janeschitz-Kriegl, H. Industrial solidification processes in polybutene-1. Part Ⅱ-Influence of shear flow. Polymer Engineering & Science,2003, 43(1):188-203