可变几何排气管增压系统的计算与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定压增压系统和脉冲增压系统是涡轮增压系统的两种先期基本型式。定压增压系统在高速工况时,泵气损失较小,涡轮效率较高,性能较优;但是在低速工况时,不能充分利用排气脉冲能量。脉冲增压系统既能避免扫气干扰,又能较好地利用排气脉冲能量,低速工况和瞬态工况性能较优;但是在高速工况时,泵气损失较大。可变几何排气管增压系统通过排气管中的可控阀门来实现增压方式的转换,当发动机处于低速工况或加速加载工况时,关闭可控阀门,增压方式转换为脉冲增压;当发动机处于高速工况时,打开可控阀门,增压方式转换为准定压增压。可变几何排气管增压系统同时具有定压增压系统和脉冲增压系统的优点,可以较好的改善发动机高低转速工况的协调性,是一种具有潜在应用价值的增压系统,为此本文对该增压系统开展了计算与试验研究。
     首先以船用Z8170型柴油机原机仿真计算模型为基础,对船用五缸机、六缸机、七缸机、八缸机、九缸机,分别进行了单阀和双阀可变几何排气管增压系统的方案计算研究。通过各种方案计算结果的对比分析,找到了各机型较优的设计方案,并提出了通用的单阀和双阀可变几何排气管增压系统设计方法。
     排气管系三通接头计算模型对可变几何排气管增压系统的排气管系设计具有至关重要的影响。为了提高三通接头计算模型总压损失系数的计算精度,对增压系统排气管系常用的两个斜三角“T”型三通接头进行了较高马赫数的冷态吹风试验研究。根据两个三通接头的试验结果,以及已有的三通接头总压损失系数理论计算公式,得到了总压损失系数的修正计算公式。修正计算公式考虑了马赫数的影响,提高了三通接头计算模型总压损失系数的计算精度。
     为了研究单阀可变几何排气增压系统的综合性能,在利用得到的修正计算公式对排气管系三通接头模型进行修正的基础上,分别对车用六缸机和船用八缸机各自的一种单阀可变几何排气管增压系统进行了详细的计算分析。针对车用六缸机的单阀可变几何排气管增压系统,确定了其外特性阀门开关切换点。结果表明,在额定工况点阀门打开以后,油耗比原机降低3%。针对额定转速分别为1200r/min和1000r/min的船用八缸机单阀可变几何排气管增压系统,确定了它们的推进特性阀门开关切换点。和四脉冲增压系统、PC增压系统、MPC增压系统相比较,新设计的船用八缸机单阀可变几何排气管增压系统性能较优。在推进特性的瞬态工况,可变几何排气管增压系统的阀门关闭以后,能明显改善瞬态性能;其中进气压力上升到90%稳定压力所需要的时间比阀门打开时减少27%,比MIXPC增压系统减少32%。
     为了进一步验证计算分析的相关结果,对车用六缸机和船用八缸机的单阀可变几何排气管增压系统分别进行了模拟试验研究,得到了这两种机型以燃油经济性为最优原则的阀门开关切换规律。对于车用六缸机的单阀可变几何排气管增压系统,在额定工况点,当阀门处于打开状态时,油耗降低4.7g/kW.h。在突加油门的瞬态工况,当阀门处于关闭状态时,瞬态性能较好,其中增压器转速稳定所需的时间减少30%,进气压力上升到90%稳定压力所需要的时间减少16%,烟度峰值减小15.3%。对于船用八缸机的单阀可变几何排气管增压系统,它能较好地改善发动机的低负荷性能:在推进特性的25%负荷,当阀门处于关闭状态时,油耗比原机降低7.5%,涡轮前平均排温比原机降低32%。试验结果证明了计算分析结果的合理性,也表明可变几何排气管增压系统性能优于其他常规增压系统。
Constant-pressure turbocharging system and pulse turbocharging system are the two basic styles of turbocharging system. The turbine efficiency of the constant-pressure turbocharging system is higher and the negative pumping work of it is less than that of the pulse turbocharging system during the high speed operation. The constant-pressure turbocharging system works better during the high speed operation, while it works worse during the low speed operation because the pulse energy can’t be used sufficiently. The pulse turbocharging system has a relatively small exhaust manifold volume, which can avoid scavenging interference and get the pulse energy better utilized. It works better during the low speed and the transient response operation. But the negative pumping work of the pulse turbocharging system is bigger than that of the constant-pressure turbocharging system during the high speed operation. Variable geometry exhaust manifold (VGEM) turbocharging system can realize the switch between two charging modes by the switch valve. The VGEM turbocharging system works as a pulse turbocharging system when the switch valve is closed at the low speed or the transient response operation, and it works as a semi-constant pressure turbocharging system when the switch valve is opened at the high speed operation. The VGEM turbocharging system has the advantages of the constant pressure and the pulse turbocharging system, it can improve the coordination of the high speed operation and the low speed operation, and it has the potential application value. So, computational and experimental study on the VGEM turbocharging system has been performed in this paper.
     In this paper, firstly, the program simulation of the VGEM turbocharging systems for five-cylinder, six-cylinder, seven-cylinder, eight-cylinder, nine-cylinder marine diesel engines has been done respectively. The fundamental simulation model is built on the Z8170 marine diesel engine. The excellent design programs of the five engines have been found by comparing the program simulation results. The general design method of the VGEM turbocharging system has been put forward.
     The exhaust manifold junction model is very important for the design of the exhaust manifold in the VGEM turbocharging system. The cold wind tunnel experiments with higher Mach number for two oblique triangle“T”junctions have been carried out in order to improve the simulation accuracy of the total pressure loss coefficient. The corrected formula of the total pressure loss coefficient has been put forward by using of the experimental results and the existing theoretical formula. The corrected formula related with the Mach number. The simulation accuracy of the total pressure loss coefficient can be improved by the corrected formula.
     In order to study on the overall performance of the VGEM turbocharging system with one switch valve installed on the exhaust manifold, detailed simulation of the VGEM turbocharging system for the six-cylinder vehicle diesel engine and the eight-cylinder marine diesel engine has been done respectively after the junction model is corrected. For the VGEM turbocharging system of the six-cylinder vehicle diesel engine, the switch point at full load characteristic has been defined, and the simulation results indicate that the BSFC can be reduced by 3% on the rated operation condition. For the VGEM turbocharging systems of the 1200 r/min and the 1000 r/min eight-cylinder marine diesel engine, the switch points of the propeller law have been defined. The performance of the new designed VGEM turbocharging system is excellent compared with four pulse, PC,and MPC turbocharging systems. The transient simulation results of the propeller law indicate that the transient performance can be improved obviously when the switch valve of the VGEM turbocharging system is closed; the time for the intake pressure increased to the 90% stable pressure can be reduced by 27% compared with the state that the switch valve is opened, and it can be reduced by 32% compared with the MIXPC turbocharging system.
     Simulated experiments for the VGEM turbocharging systems of the six-cylinder vehicle diesel engine and the eight-cylinder marine diesel engine have been performed respectively in order to certify the simulation results. Based on the principle of optimum fuel economy, the switch rules of the switch valve are found by comparing the steady experimental results. For the VGEM turbocharging system of the six-cylinder vehicle diesel engine, the BSFC can be reduced by 4.7g/kW.h on the rated operation condition when the switch valve under the opened-state. The transient experimental results indicate that the time for the turbocharger speed became stable can be reduced by 30%, the time for the intake pressure increased to the 90% stable pressure can be reduced by 16%, and the peak value of the smoke opacity can be reduced by 15.3% when the switch valve under the closed-state. For the VGEM turbocharging system of the eight-cylinder marine diesel engine, the lower load performance can be improved. The BSFC can be reduced by 7.5% and the exhaust temperature before turbine can be reduced by 32% at 25% load when the switch valve under the closed-state. The experimental results have proved that the simulation results are reasonable, and the VGEM turbocharging system is excellent compared with other conventional turbocharging systems.
引文
[1]周龙保,内燃机学,机械工业出版社, 2000
    [2] Heywood J B, Internal combustion engine fundamentals, New York, McGraw-Hill Science Engineering, 1988
    [3]刘永长,内燃机原理,华中科技大学出版社, 2004
    [4]蒋德明,高等内燃机原理,西安交通大学出版设, 2002
    [5]顾宏中, MIXPC涡轮增压系统研究与优化设计,上海交通大学出版社, 2006
    [6]朱大鑫,涡轮增压与涡轮增压器,机械工业出版社,1992
    [7] Watson N, Janota M S, Turbocharging the internal combustion engine, London, the Macmillan Press LTD, 1982
    [8]顾宏中,涡轮增压柴油机性能研究,上海交通大学出版社, 1998
    [9]朱梅林,涡轮增压器原理,国防工业出版社, 1982
    [10]陆稼祥,柴油机涡轮增压技术,机械工业出版社, 1999
    [11]顾宏中,郭中朝, 16VPA6STC柴油机改用MIXPC涡轮增压系统研究,中国造船, 2008, 49(1), 90-96
    [12]王连春,姚春雷,张国征, MIXPC排气系统在8V150柴油机上的应用研究,内燃机, 2010(4), 50-51
    [13]杨世友,顾宏中,朱小慧,等, MIXPC涡轮增压系统的研究,内燃机学报, 2002, 21(1), 69-74
    [14] Yang SY, Deng KY, Cui Y, Simulation and experimental research on a mixed pulse converter turbocharging system, Proceedings of the Institution of Mechanical Engineers , Part D: Journal of Automobile Engineering , 2007, 221, 215–223
    [15] Yang SY, Wang LS, Gu HZ, MIXPC turbocharging system for diesel engines, SAE Paper , 2006-01-3390, 2006
    [16]顾宏中, M IXPC涡轮增压系统应用与发展,柴油机, 2003, 25(2), 1-5
    [17]朱小慧, M IXPC涡轮增压系统优化研究,中国造船, 2001, 42(3), 50-55
    [18]顾宏中,郭中朝,结构最简单的MIXPC增压系统,柴油机, 2006, 28(1), 1-6
    [19]顾宏中,新开发的M IXPC涡轮增压系统排气管系,柴油机, 2004, 26(4), 1-5
    [20] Okazaki Y, Matsdaira N, Hishukawa A, A case of variable geometry turbocharger development, IMechE Conference on Turbocharging and Turbochargers, Paper C111/86, 1986.
    [21] Metal R, Variable nozzle turbocharger for medium-speed diesel engine, SAE Paper 880119, 1988
    [22] Matsura Y, Nakaza N, Kobayashi Y, et al, Effect of various methods for improving vehicle startability and transient response of turbocharged diesel trucks, SAE Paper 920044, 1992
    [23] Kawamoto A, Takahashi Y, Koiken T, et al, Variable geometry system turbocharger for passenger car diesel engine, SAE Paper 2001-01-0273, 2001
    [24] Filipi Z, Wang Y, Assanis D, Effect of variable geometry turbine (VGT) on diesel engine and vehicle system transient response, SAE Paper 2001-01-1247, 2001
    [25] Kawaguchi J, Adachi K, Kono S, et al, Development of variable flow turbocharger (VFT), SAE Paper 1999-01-1242, 1999
    [26] Brace C J, Cox A, Hawley J G, et al, Transient investigation of two variable geometry turbochargers for passenger vehicle diesel engines, SAE Paper 1999-01-1241, 1999
    [27] Watson N, Marzouk M, Bazari Z, Turbocharger system options for vehicle engines, IMechE Conference on Turbocharging and Turbochargers, Paper C61/78, 1978
    [28] Arnold S, Groskreutz M, Shahed S M, et al, Advanced variable geometry turbocharger for diesel engine applications, SAE Paper 2002-01-0161, 2002
    [29]李娜,李国祥,陆家祥,车用柴油机舌形挡板变截面增压器的特性与匹配,农业机械学报, 2002, 33(4), 18-21
    [30]郭林福,马朝臣,施新,等,可变几何涡轮增压器与发动机稳态匹配模型的研究,内燃机学报, 2003, 21(2), 155-160
    [31]郭林福,马朝臣,施新,等, VGT对柴油机经济性和动力性影响的试验研究,内燃机学报, 2004, 22(2), 116-121
    [32]马朝臣,郭林福,施新,等,VGT对柴油机排放性能影响的试验研究,北京理工大学学报, 2004, 24(10), 849-853
    [33] Omran Rabih, Younes Rafic,Champoussin, et al, Neural networks for realtime nonlinear control of a variable geometry turbocharged diesel engine, International Journal of Robust and Nonlinear Control 2008,12,1209-1229
    [34] Jacobs Timothy J,Jagmin Chad,Williamson, et al, Performance and emission enhancements of a variable geometry turbocharger on a heavy duty diesel engine, International Journal of Heavy Vehicle Systems 2008,15,170-187
    [35] Rajamani R, Control of a variable-geometry turbocharged and waste gated diesel engine, Proc. IMechE Part D: Journal of Automobile Engineering, 2005, 219(11), 1361-1368
    [36]张哲,马朝臣,邓康耀, VGT可调机构配合间隙优化研究,内燃机学报, 2006, 24(6), 548-553
    [37] Andersson P, Eriksson L, Air-to-cylinder observer on a turbocharged SI engine with waste gate, SAE Paper 2001-01-0262, 2001
    [38] Ke Yashi, Pucher Helmut, Controlling the load and the boost pressure of a turbocharged SI engine by means of early intake-valve closing, SAE Paper 960588, 1996
    [39] Suqihara H, Nakaqawa H, Shoyama K, Development of the new K13c engine with common-rail fuel injection system, SAE Paper 1999-01-0833, 1999
    [40] Andersson P, Eriksson L, Cylinder air charge estimator in turbocharged SI engines, SAE Paper 2004-01-1366, 2004
    [41] Yang Jingbin, Campbell Thomas, Optimization of a wastegate turbocharged medium speed diesel engine, SAE Paper 930195, 1993
    [42]顾宏中,邬静川,柴油机增压及其性能优化,上海,上海交通大学出版社, 1989
    [43]顾宏中,柴油机工作过程,北京,国防工业出版社, 1987
    [44]顾宏中,大功率高增压柴油机性能改进研究,船舶工程, 1999(3), 29-31
    [45] Mario M, Some problems of sequential turbocharging of diesel engines for racing boats, SAE Paper 2000-01-0528, 2000
    [46] Philippe R, Bahadir I, Performance simulation of sequentially turbocharged marine diesel engines with applications to compressor surge, Journal of Engineering for Gas Turbines and Power, 2000,122(10), 562-569
    [47] Wang H C, Wang Y Y, Liu P R, et al, Experimental research on the marine V type high-speed diesel engine using sequential turbocharging system, BIT-TU Berlin Symposium on Turbocharging Technology, Beijing, 2006
    [48]梁桂森,沈勇,陈瑾,等,船用柴油机相继增压系统性能研究,柴油机, 1999, 21(6), 10-14
    [49]杨世友,顾宏中,郭中朝,大功率16缸柴油机采用相继涡轮增压系统的模拟计算与研究,中国造船, 2002, 43(1), 81-87
    [50]梁桂森,范建新,张南林,柴油机相继增压系统设计及性能模拟,柴油机, 1998, 20(4), 23-26
    [51]王伟才,王银燕,王贺春,相继增压柴油机进排气系统建模与增压器切换点计算分析,应用科技, 2005, 32(5), 46-48
    [52]王银燕,采用电子控制系统的涡轮增压柴油机的模拟研究,船舶工程, 1998(2), 17-20
    [53]石凡,王银燕,冯永明,船用高速柴油机多台增压器相继增压计算分析,船舶工程, 2007, 29(2), 1-5
    [54] Rolland J L,王德山,用于高速舰船的大功率柴油机,柴油机, 2001, 23(1), 8-15
    [55] Basie G, Martial, A challenge in the high-speed transportation market, International Conference on Ship and Shipping Research, Venice, Italy, 2000, 19-22
    [56]庄保怡,甘海燕,王峰,等,当代船用中高速柴油机的发展和对策,柴油机, 2002, 24(5), 8-11
    [57]金涛, MTU 16V396 TE74L型高速柴油机增压器的顺序控制功能,珠江水运, 1999(6), 42-44
    [58]胡宗杰,机车柴油机相继增压系统研究,大连铁道学院硕士论文, 2002
    [59] Pascal Chesse, Jean-Francois Hetet, Performance Simulation of Sequentially Turbocharged Marine Diesel Engines With Applications to Compressor Surge, Journal of Engineering for Gas Turbines and Power,2000,562-569
    [60] G. Theotokatos,N. P. Kyrtatos,Investigation of a Large High- Speed Diesel Engine Transient Behavior Including Compressor Surging and Emergency Shutdown, Journal of Engineering for Gas Turbines and Power, April 2003,Volume 125,Issue 2,pp580-589
    [61] G Theotokatos, Diesel Engine Transient Operation With turbocharger compressor surging, SAE paper2001-01-1241,2001
    [62] Kesgin U, Efficiency improvement and NOx emission reduction potentials of two-stage turbocharged Miller cycle for stationary natural gas engines, Intonation. Journal of. Energy Research, 2005, 29(3), 189-216
    [63] Fukuzawa Y, Kakuhama Y, Shimado H, et al, Development of high efficiency Miller cycle gas engine, Mitsubishi Heavy Industries Ltd, Technical Review, 2001, 38(3), 146-150
    [64]顾宏中,二次进气增压系统和顾氏系统的研究,内燃机学报, 1995, 13(1), 1-8
    [65]朱玉华,顾宏中,邬静川,顾氏系统与其他系统在改善舰船用高增压柴油机性能方面的计算比较,上海交通大学学报, 1997, 31(2), 46-50
    [66]邓康耀,涡轮增压可变谐振进气系统的试验研究,内燃机工程, 1999(2), 42-45
    [67]邓康耀,张砾,涡轮增压可变谐振进气系统的计算研究,汽车工程, 1999(5), 299-303
    [68] Ryder O, Sutter H, Jueger L, The design and testing of an electrically assisted turbocharger for heavy duty diesel engines, Proceeding the 8th International Conference on Turbochargers and Turbocharging, London, 2006, 47-53
    [69] Choi C, Kwon S, Cho S, Development of fuel consumption of passenger diesel engine with 2 stage turbocharger, SAE Paper 2006-01-0021, 2006
    [70] Saulnier S, Giuliani S, Computational study of diesel engine downsizing using two-stage turbocharging, SAE Paper 2004-01-0929, 2004
    [71] Vlaskos I, Codan E, Alexandrakis N, et al, Design and performance of a controllable turbocharging system on marine diesel engines. Proceedings of ICEF06, ASME Internal Combustion Engine Division 2006 Fall Technical Conference,5-8 November, 2006,California,USA.
    [72] Codan E,Vlaskos I ,Kyrtatos N, Alexandra N, The charging of a medium/high speed 5-cylinder diesel engine with controllable pulse turbocharging.10th Supercharging Conference,22-23 September 2005,Dresden,Germany.
    [73] Papalambrou G, Alexandrakis N , Kyrtatos N, Smokeless transient loading of medium/high speed engines using a controllable turbocharging system, Proc.CIMAC Cong., Vienna, Austria, May 2007, International Council on Combustion Engines, Paper 22.
    [74] Livanos G, Kanellopoulou E, Kyrtatos N, Marine Diesel engine rapid load acceptance without smoke emissions, 7th International Symposium on Marine Engineering (ISME Tokyo 2005), 24- 28 October 2005, Tokyo, Japan
    [75]邱伟光,一种涡轮增压柴油机可变模件式脉冲转换增压装置,中国发明专利说明书,申请号200410050996.3
    [76]邱伟光,一种涡轮增压柴油机可变排气管容积模件式脉冲转换增压装置,中国发明专利说明书,申请号200710007494.6
    [77]王玉华,赵洪彬,内燃机热力过程分析,山东科学,2000,13(4),51-54
    [78]顾宏中,涡轮增压柴油机热力过程模拟计算,上海,上海交通大学出版社, 1985
    [79]林杰伦,内燃机工作过程数值计算,国防工业出版社, 1986
    [80]刘永长,内燃机热力过程模拟,机械工业出版社, 2001
    [81] Bassett M D, Pearson R J, Fleming N P, et al, A Multi-Pipe Junction Model for One Dimensional Gas-Dynamic Simulations, SAE Paper 2003-01-0370,2003
    [82] Winterbone D E, Pearson R J, Design techniques for engine manifolds– Wave action methods for IC Engines, Professional Engineering Publications, London, 1999
    [83] Winterbone D E, Pearson R J, Theory of engine manifold design– Wave action methods for IC Engines, Professional Engineering Publications, London, 2000
    [84] Bassett M D, Fleming N P, Pearson R J, Calculation of steady flow pressure loss coefficientsfor pipe junctions, Proceedings of the Institution of Mechanical Engineers, Part C, 2001(215), 861-881
    [85] Bassett M D, Fleming N P, Pearson R J, Modeling Engines with Pulse Converted Exhaust Manifolds Using One-Dimensional Techniques, SAE Paper 2000-01-0290, 2000
    [86] Winterbone D E, Pearson R J, Bromnick PA, Sinha S K, Analysis of turbocharged intercooler 20-cylinder medium-speed diesel engine, 6th International Conference on Turbocharging and Air Management Systems. I Mech.E Paper No C554/020/98, I.Mech.E. HQ, London, 3-5 November, 1998
    [87] Pearson RJ, Pearson R J , Winterbone D E, Estimation of steady flow loss coefficients for pulse converter junctions in exhaust manifolds. The 6th International Conference on Turbocharging and Air Management Systems. I Mech E, Paper NoC554/022/98, I Mech E HQ, London, 3-5 November,1998
    [88] Pearson R J, Winterbone D E, The simulation of gas dynamics in engine manifolds using non-linear symmetric difference schemes, Proc.I.Mech.E, Vol. 211, Part C, 601-616
    [89] Bassett M D, Pearson R J, Winterbone D E, Steady-Flow Loss-Coefficient Estimation for Exhaust Manifold Pulse-Converter Type Junctions, SAE Paper1999-01-0213,1999
    [90] Winterbone D E, Pearson R J, Gas dynamics in engine manifolds’, IMechE, Professional Engineering Publications, 1998
    [91] M A Leschziner, K P Dimitriadis, Computation of three-dimensional turbulent flow in non orthogonal junctions by a branch coupling method, Compute Fluids , 1989,17 (2) 371–396
    [92] H Fu, M J Tindal, A P Watkins, M Yianneskis, Computation of three-dimensional turbulent flows in a pipe junction with reference to engine inlet manifolds, Proc Instn Mech. Eng 1992, 285–296
    [93] T W Kuo, S Chang, Three-dimensional steady flow computations in manifold-type junctions and a comparison with experiment, SAE Paper 932511, 1993
    [94] T W Kuo, B Khaligi, Numerical study on flow distribution in T junctions and comparison with experiment, Trans ASME, ICE Eng Model, 1995,8–31
    [95] Y Zhao, D E Winterbone, A study of multi-dimensional gas flow in engine manifolds, Proc Inst. Mech Eng, Part C 1994, D04892
    [96] C T Shaw, D J Lee, S H Richardson, S Pierson, Modelling the effect of plenum–runner interface geometry on the flow through an inlet system, SAE Paper 2000-01-0569, 2000
    [97] G Gan, S B Riffat, Numerical determination of energy losses at duct junctions, Applied Energy 2000, 331–340
    [98] U Kesgin, Study on the design of inlet and exhaust system of a stationary internal combustion engine, Energy Converse Manage, 2005, 2258–2287
    [99] J Paul, A Selamet, Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface, SAE Paper, 2007-01-0649, 2007
    [100]马帅营,陈传举,王雅丽,发动机排气歧管稳流试验研究,内燃机与动力装置, 2008, 105(5), 11-15
    [101]吴玮,严忠民,多分支管道若干流动特性研究,河海大学学报, 2004, 32(3), 272-274
    [102]毛根海,章军军,程伟平,卜型岔管水利模型试验及三维数值计算研究,水利发电学报, 2005, 24(2), 16-21
    [103]陈文兵,孙建宏,齐央,非对称三岔管水力特性数值计算及流态分析,水电能源科学,2008,26(5),71-74
    [104]杨校礼,高季章,刘之平,三岔管水流数值模拟研究,水利水电技术, 2005(1), 48-50
    [105] Perez-Garcia, Sanmiguel-Rojas, Hernandez-Grau, et al, Numerical and experimental investigations on internal compressible flow at T-type junctions, Experimental Thermal and Fluid Science ,2006(31),61–74
    [106] Perez-Garcia, Sanmiguel-Rojas, A Viedma, New coefficient to characterize energy losses in compressible flow at T-junctions, Applied Mathematical Modelling, 2010(34), 4289–4305
    [107] Perez-Garcia, Sanmiguel-Rojas, A Viedma, New experimental correlations to characterize compressible flow losses at 90-degree T-junctions, Experimental Thermal and Fluid Science 2009(33), 261–266
    [108]张小矛,黄荣华,杜一,发动机进排气系统稳流试验装置的设计与研制,小型内燃机与摩托车, 2003, 32(3), 1-3
    [109]李顶根,曹继光,黄荣华,等,基于CVI和PLC的发动机进排气系统稳流试验装置, 2003(1), 51-54
    [110]张小矛,发动机进排气系统稳流试验装置的研究,华中科技大学硕士学位论文, 2003
    [111]胡欲立,刘伯棠,徐海涛,等, MPC模块三分支联接湍流流场的数值模拟,华中理工大学学报, 1997, 25(6), 50-52
    [112]孙民,朱铁柱,孟华,等, MPC增压系统三分支流动计算模型研究,大连理工大学学报, 1996, 36(5), 625-628
    [113]周松,刘友,柴油机MPC排气系统三维湍流流动数值计算,哈尔滨工程大学学报, 2003, 24(1), 30-34
    [114]胡欲立,赵寅生,刘永长,用ALE法数值模拟MPC排气系统的三维流动, 1999, 147(4), 71-77
    [115]方志宇,穆海林,解茂昭,二维三维可压缩流体分支流场的数值模拟,内燃机学报, 1996, 14(3), 295-301
    [116]韩鹏吉,王勇强,王守君,等, 8170ZC柴油机排气系统改进,内燃机, 2006(2),19-23
    [117]吉学之,钟鲁,王法山, 8170柴油机降低排气烟度的试验与分析,柴油机, 2003, 25(5), 16-19
    [118]李宗立,高建东,张笃厚, Z6170型柴油机性能试验研究,柴油机, 2004, 26(4), 18-21
    [119]胡光富,李宗立,刘开敏,等, Z8170型系列柴油机开发,山东内燃机, 2002, 73(3), 1-3
    [120]张晋东,朱爱国,武峰,采用混流式涡轮的H145涡轮增压器及其在Z6170柴油机上的应用柴油机, 2003, 25(6), 19-23
    [121]卓斌,顾宏中,排气能量传递分析及结构优化,内燃机学报,1990,8(1),13-18
    [122]万本华,刘永长,熊亚东,MPC排气系统的热力学分析及其评价指标,内燃机工程,1994,15(3),50-55
    [123]卢浩义,高桐生,拟火用分析法及其在排气可用能分析中的应用,兵工学报,1992,48(4),12-16