钙神经蛋白抑制剂对糖尿病肾脏炎症的调节作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     糖尿病肾病(Diabetic nephropathy,DN)是糖尿病微血管的严重并发症之一,目前已逐渐成为导致终末期肾病(ESRD)的主要原因。在欧美等发达国家DN是ESRD的首位原因(30%~40%),在中国为第二位,且有逐渐增多趋势。DN的发病机制至今并不十分清楚,近年来炎症学说倍受关注,并认为DN是一种代谢紊乱诱导的炎症性疾病,其中巨噬细胞浸润是DN炎症的特征性表现之一,也是DN发生、发展的中心环节。而DN时蛋白尿的形成与肾组织内炎症及肾小球滤过屏障通透性改变密切相关。足细胞位于滤过屏障的外层,其损伤参与了蛋白尿形成等DN早期病理进程。DN的显著特征是基质蛋白的聚积最终导致肾小球硬化和间质纤维化,以往很多研究集中在肾小球病变上,但肾小管病变及肾小管-间质纤维化在DN中的重要作用逐渐被大家所认识。肾小管-间质病变是DN进展的主要病理基础之一,是影响DN预后的十分重要的因素。肾小管上皮细胞肌成纤维细胞转分化(tubular epithelial myofibroblast transdifferentiation, TEMT)可能是DN中肾小管间质纤维化的关键环节。但是处于静息或非活化状态的巨噬细胞并无损伤作用,只有被激活的巨噬细胞才能有效发挥其炎症效应。Toll样受体家族(TLRs)正是参与免疫炎症反应的一个关键因素,且认为是介导免疫和炎症反应的主体。他克莫司(tacromulis)即FK506是一种钙神经蛋白(Calcineurin,CaN)抑制剂,目前已被用于多种肾脏疾病(如肾移植术后、狼疮性肾炎、难治性肾病综合征)的治疗,具有肾脏保护作用。有报道指出FK506发挥抑制免疫、抗炎活性可能与抑制CaN、骨桥蛋白(Ostepontin,OPN)、NF-κB等多种炎性细胞因子的表达有关。
     目的:
     (1)本研究中,通过建立链脲佐菌素(streptozotocin,STZ)诱导的糖尿病大鼠模型,使用FK506干预,探讨其对糖尿病大鼠肾脏保护作用及可能分子机制;(2)探讨FK506是否通过足细胞的保护作用减轻DN大鼠尿白蛋白排泄,并探讨其可能机制;(3)探讨FK506对DM大鼠肾小管-间质损伤的保护作用,并探讨其机制;(4)探讨FK506对DM大鼠肾脏保护作用的机制与肾脏内巨噬细胞浸润、增殖及活化的关系,以及探讨其可能机制。
     方法:
     40只大鼠随机分为对照组(C)、模型组(DM)、DM+FK5060.5mg/kg d给药组(FK5060.5)及DM+FK5061.0mg/kg d给药组(FK5061.0),每组10只。采用STZ腹腔内注射制造糖尿病大鼠模型。FK506给药组按0.5、1.0mg/kg d灌胃,对照组和模型组每日给予等量溶媒,共4周。4周后大鼠血糖、肝功能、肾功能与血脂由全自动生化分析仪测定,24小时尿白蛋白测定采用酶联免疫方法(EnzymeImmunoassay,EIA)。观察大鼠肾重/体重、尿白蛋白排泄率(AER)与肌酐清除率(Ccr)变化,在光镜、电镜下观察肾脏病理组织学改变。应用免疫荧光检测肾组织Nephrin和Podocin表达情况。并应用免疫组化单染及双染技术检测各组大鼠肾组织骨桥蛋白(OPN),转化生长因子β1(TGFβ1),E-钙黏蛋白(E-cadherin),波形蛋白(Vimentin),巨噬细胞浸润(单核/巨噬细胞表面特异性标志抗原ED-1+细胞),增殖细胞核抗原(Proliferating cell nuclear antigen, PCNA巨噬细胞增殖指标),TLR2,TLR4,核转录因子-κB(NF-κB-p-p65),诱生性一氧化氮合酶(Inducible nitricoxide synthase, iNOS巨噬细胞活化指标)表达情况。应用Western印迹检测CaN、1α(IV)型胶原、α-平滑肌肌动蛋白(α-SMA)、Nephrin、Podocin、NF-κB-p65及NF-κB-p-p65蛋白表达。
     结果:
     1.各组大鼠生化指标变化与C组相比,DM组大鼠表现为血糖升高、体重下降、相对肾重(肾重/体重)增加(P<0.01),FK5060.5与1.0mg/kg给药4wk没有防止大鼠血糖升高、体重下降。FK5060.5mg/kg给药组相对肾重较糖尿病组有所下降,但未达统计学意义,FK5061.0mg/kg给药组相对肾重明显低于模型组(P<0.05)。DM组大鼠AER明显高于对照组(P<0.01),FK5060.5与1.0mg/kg给药组大鼠AER水平明显低于模型组(P<0.05,0.01)。FK5060.5与1.0mg/kg给药组大鼠Ccr水平与DM组相比,差异无统计学意义。DM组大鼠血TC、TG水平明显高于对照组(P<0.05),FK5060.5与1.0mg/kg给药组血TC、TG水平与模型组相比无明显差异。另外,与C组相比,DM组、各给药组血谷丙转氨酶、谷草转氨酶无明显变化。
     2.肾组织病理形态学变化:DM组4周肾小球平均容量(VG)与损伤指数(Indices for tubulointerstitial injury, TII)明显高于C组(P<0.05,0.01),提示本模型大鼠已出现肾小球肥大与肾小管-间质损害;FK5060.5mg/kg给药组大鼠VG明显低于DM组(P<0.05), TII较模型组有所下降,但差异未达统计学意义,FK5061.0mg/kg给药组VG与TII均明显低于模型组(P<0.05,0.01)。透射电镜观察DM组肾小球基底膜增厚、结构模糊不清,系膜基质增多,足细胞损伤,而与DM组比较,FK5060.5、1.0组肾组织超微结构改变有不同程度改善。
     3. FK506对糖尿病大鼠肾脏足细胞损伤的保护作用Western blot法显示DM组肾组织和FK5060.5,1.0组肾组织CaN蛋白表达分别是C组的2.4倍、1.5倍和0.7倍,FK5060.5与1.0组较DM组分别下降38.0%与73.2%;DM组Nephrin和Podocin较C组表达明显下降;FK5060.5,1.0组Nephrin和Podocin量较DM组明显增加,与剂量成正相关。免疫荧光显示Nephrin和Podocin在C组大鼠肾小球呈线状均匀分布,DM组大鼠肾小球表达明显减少、且呈颗粒状不均匀分布;FK5060.5,1.0组Nephrin和Podocin表达不同程度增加,呈线状及颗粒状分布。
     4. FK506对糖尿病大鼠肾小管-间质损伤的保护作用C组大鼠肾小球与肾小管-间质有微弱TGFβ1蛋白表达,模型组肾小球与肾小管-间质TGFβ1蛋白表达明显高于C组(P<0.01),K5060.5与1.0mg/kg给药组肾小球与肾小管-间质TGFβ1蛋白表达明显低于DM组(P<0.05,0.01)。免疫组化显示DM组肾小管-间质E-cadherin表达阳性面积明显低于C组(P<0.01),FK5060.5、1.0组表达阳性面积明显高于DM组(P<0.01),DM组肾小管α-SMA与Vimentin表达明显高于对照组(P<0.01),FK5060.5、1.0组表达明显低于DM组(P<0.01)。Western blot法显示DM组肾组织和FK5060.5,1.0组肾组织α-SMA蛋白表达较C组分别增加3.5倍、2.1倍和1.1倍,FK5060.5,1.0组较DM组分别下降40.7%与69.1%。而DM组、FK5060.5和1.0组肾组织1α(IV)型胶原蛋白表达较C组分别增加2.4倍、1.6倍和1.2倍,FK5060.5,1.0给药组较DM组分别下降34.5%与50.0%。
     5. FK506对糖尿病大鼠肾脏巨噬细胞增殖激活的影响免疫组化显示DM组大鼠肾组织ED-1+、PCNA+、TLR2+、TLR4+及iNOS+巨噬细胞数明显高于C组(P<0.01),FK5060.5,1.0给药组ED-1+的巨噬细胞数与DM组比较无明显变化,PCNA+、TLR2+、TLR4+及iNOS+的巨噬细胞数明显低于DM组(P<0.01)。免疫组化法显示DM组大鼠肾组织NF-κB p-p65蛋白表达明显高于对照组(P<0.01),而与DM相比,FK5060.5、1.0组肾组织NF-κB p-p65表达明显减少(P<0.01)。Westernblot法显示DM组肾组织NF-κB-p65表达较对照组增加5.33倍,FK5060.5与1.0组肾组织NF-κB-p65表达较DM组分别下降26.32%与47.37%。DM组肾组织NF-κBp-p65表达较对照组增加7.57倍,FK5060.5、1.0组肾组织NF-κB p-p65表达较DM组分别下降56.67%和70.00%。
     结论:
     FK506能减少糖尿病大鼠尿蛋白排泄,减轻肾小球肥大及肾小管-间质损伤,改善肾小球基底膜、系膜及足细胞病变,其机制可能与下调肾组织中NF-κB p-p65、OPN、CaN、α-SMA、Vimentin、TGFβ1和1α(IV)型胶原的表达,上调E-cadherin、Nephrin和Podocin表达,同时通过下调肾脏巨噬细胞TLR2与TLR4表达,从而抑制TLR-NF-κB信号转导,调节巨噬细胞的增殖与激活,从而对早期糖尿病大鼠肾脏具有保护作用。
Background
     Diabetic nephropathy is a serious microvascular complication of diabetes mellitus andthe major cause of chronic renal failure. DN is the first cause of ESRD (30%~40%) inEurope and the United States and other developed countries, second in China, and thereis a potential. The pathogenesis of DN is very complicated and has not been fullyelucidated at present. The theory of inflammation is paid more attention in recent yearsand inflammatory mechanism mainly mediated by macrophages is considered the keyfactor of sustainable development. DN in renal tissue inflammation formation is closelyrelated to the glomerular filtration barrier permeability changes and proteinuria. Theouter layer of podocytes in the filtration barrier, the injury is involved in the formationof protein in the urine DN early pathological process. The typical feature of DN is theaccumulation of matrix protein,which ultimately lead to glomerular sclerosis andinterstitial fibrosis. In the past few years, glomerular disease was focused on. But now,renal tubular lesions and renal tubulointerstitium fibrosis which playing a important roleof DN is gradually known by people. The pathological change of tubulointerstitium isthe main basis of pathology progress in DN. At the same time, it is one of the mostimportant influential factors in the prognosis of DN. Renal tubular epithelialmyofibroblast transdifferentiation (TEMT) maybe the key link in the tubulointerstitiumfibrosis of DN. Non-activated macrophages have no injury effect, only activatingmacrophages can be cells which have active biological function. Toll-like receptors isone of the key factor involved in the immune inflammation reaction, and thought to bethe principal part which mediated immune and inflammatory reaction. Tacrolimus (FK506) is a new type of immunosuppressant, which is mainly used for organ transplant,rheumatism immunological diseases and refractory nephrosis. There are reported thatFK506play suppress the immune, anti-inflammatory activity may be related to theinhibition of calcineurin (CaN), osteopontin (OPN), NF-kappaB and a variety ofinflammatory cytokine expression.
     Objective
     (1) The purpose of the study was to investigate inhibiting effect of the inhibitor FK506for calcineurin on renal hypertrophy and its mechanism in early diabetic rats.(2) Thestudy aimed to investigate the protective effete of FK506on the podoeytes in diabeticrat model,and evaluates its machanism.(3) The study aimed to investigate theprotective effect of FK506on renal tubule-interstitiurn in diabetic rat mode,andevaluate its machanism.(4) The study aimed to investigate the protective effect ofFK506on macrophage accumulation,proliferation and activition in the kidney of earlydiabetic rats.
     Methods
     Forty adult male Sprague-Dawley rats were separated into four groups at random.Control group (n=10), model group (n=10), model group treated with tacrolimus0.5mg·kg~(-1)d~(-1)(n=10), model group treated with tacrolimus~(-1).0mg·kg~(-1)d~(-1)(n=10). Diabeteswas induced with streptozotocin (65mg·kg~(-1)) in rats, and tacrolimus (0.5or~(-1).0mg·kg~(-1)d~(-1)) was orally administered once a day for4weeks. After4weeks, thefollowing determinations were done in samples: plasma glucose (BG)、liver function、kidney function and plasma lipid were determined according to standard methods.24hours urinary albumin excretion rate (AER) was determined by Enzyme Immunoassay(EIA). Relative kidney weight (RKW) and Creatinine clearance rate (Ccr) were measured. Kidney pathologic injury was observed by light microscopy and an electronmicroscope.Immunofluorescence to detect the renal tissue of Nephrin and Podocinexpression situation. The expression of Ostepontin(OPN)、NF-κB-p65、transforminggrowth factor β1(TGFβ1)、E-cadherin and alpha-smooth muscle actin (α-SMA)、Vimentin and ED-1positive cells,NF-κB-p-p65positive cells, were detected byimmunohistochemistry. TLR2and ED-1double positive cells, PCNA and ED-1doublepositive cells, TLR4and ED-1double positive cells, iNOS and ED-1double positivepositive macrophages were measured with double immunohistochemistryimmunostaining in the kidney. The expression of calcineurin (CaN),1α type Ⅳcollagen, alpha-smooth muscle actin (alpha-SMA), Nephrin, Podocin, NF-κB p65andNF-κB p-p65were detected by Western blot.
     Results
     1. Clinical and metabolic parameters: There was a significant increase in fasting BGand plasma lipid (P<0.01),but body weight (BW) was significantly decrease (P<0.01)in model group and FK506group compared with control group.The BG、plasma lipidand liver function of FK506group were not differnt with model group. Increased RKWwas significantly reduced by FK506treatment with1.0mg/kg (P<0.05), elevated AERwas markedly attenuated by FK506treatment with0.5and1.0mg/kg (P<0.05,0.01).Ccr was not changed by FK506treatment with0.5or1.0mg/kg.2. Renal pathologicmorphology: Comparaed with control group, indices for tubulointerstitial injury (TII)and glomerular volume (VG) were significantly increased in model group (P<0.05,0.01). Elevated glomerular volume was significantly attenuated by FK506treatmentwith0.5and1.0mg/kg (P<0.05), and increased indices for tubulointerstitial injury wereonly ameliorated by FK506treatment with1.0mg/kg (P<0.01). Under the electronmicroscope, group DM showed a significantly widened glomerular basement membrane, disordered, wide and fused podocytic-process. The above lesions in groups FK506treatment with0.5or1.0mg/kg were less compared with group DM(P<0.05).
     3. The protective effect of the FK506on the podocytes in kidney of diabetic rats:Western blot analysis noted that the expression of CaN protein was increased2.4fold inthe kidney in DM group, FK506treatment with0.5and1.0mg/kg could reduceexpression of CaN protein by38.0%and73.2%. There was a finely dotted linearepithelial staining of Nephrin and Podocin in control group glomeruli. In contrast, thestaining of glomeruli from untreated diabetic rats was attenuated, more dispersed andclustered, this diabetic-induced loss of glomerular Nephrin and Podocin expression waslargly prevented in FK506-treated diabetic rats. Western blot analysis showed that theexpression of Nephrin and Podocin protein was reduced in the kidney of diabetic rats,and FK506treatment significantly increased the expression of Nephrin and Podocinprotein (P<0.01).4. The protective effect of the FK506on therenaltubule-interstitium in kidney of diabetic rats: TGFβ1immunostaining wasfound in grestest aboundance in the glomerular and tubulointerstitial of model groupcomparaed with control group(P<0.01),TGFβ1expression in FK506treatment with0.5and1.0mg/kg were significantly lower than that in model group(P<0.05,0.01).Compared with control group, E-cadherin in renal tubular epithelial cells wasmarkedly decreased (P<0.01), conversely, α-SMA and Vimentin significantly increasedin diabetic rats (P<0.01).FK506treatment with0.5and1.0mg/kg could reduce theincreased expression of α-SMA and Vimentin (P<0.01), at the same time, increased theexpression of E-cadherin (P<0.01). Western blot analysis noted that the expression ofα-SMA protein was increased3.5fold in the kidney in model group, FK506treatmentwith0.5and1.0mg/kg could reduced increased expression of α-SMA protein by40.7%and69.1%.The expression of1α type Ⅳcollagen in kidney were significantly increasedin model group and reduced by FK506treatment (P<0.05,0.01).
     5. The effect of the FK506on macrophage accumulation, proliferation andactivition in the kidney of diabetic rats: There were marked accumulation of ED-1+cells in diabetic kidney, which were not inhibited by treatment with FK506treatment(P<0.01). ED-1and TLR2double positive cells,ED-1and TLR4double positive cellsED-1+PCNA+cells, ED-1+iNOS+cells were significantly increased in kidneys frommodel group(P<0.01), while they were significantly inhibited by FK506treatment(P<0.01). Immunohistochemistry showed that elevated NF-κB p-p65expression indiabetic rates was significantly attenuated by FK506treatment with0.5and1.0mg/kg d(P<0.01). Western blot analysis demonstrated that the expression of NF-κB p65andNF-κB p-p65in the kidney of diabetic rats were increased by5.35and7.57foldsrespectively as compared to control. FK506treatment with0.5and1.0mg/kg d couldreduce the increased expression of NF-κB p65by26.32%and47.37%, and couldreduce the increased expression of NF-κB p-p65by56.67%and70.00%.
     Conclusion
     FK506could ameliorate renal structure and function injury in early experimentaldiabetic rats, which mechanism may be partly correlated with suppression of NF-κBp-p65、OPN、CaN、α-SMA、Vimentin、TGFβ1and1α(IV) collagen in renal tissue.FK506can up-regulate the expression of E-cadherin, Nephrin and Podocin. IncreasedTLR2, TLR4, PCNA and iNOS expression on macrophage in the kidney of earlydiabetic rats may be correlated with inflammatory response caused by macrophageactivation. FK506may directly or indirectly downregulate TLR2, TLR4, PCNA andiNOS expression on macrophage and inhibit inflammatory response related toTLR-NF-κB signal transduction in the kidney.
引文
[1] Guariguata L. By the numbers: new estimates from the IDF Diabetes Atlas Updatefor2012[J].Diabetes Res Clin Pract.2012;98(3):524-5.
    [2] Friedman EA. Continuously evolving management concepts for diabetic CKD andESRD[J]. Semin Dial.2010;23(2):134-9.
    [3]曾彩虹.糖尿病肾病肾活检的临床意义及指征[J].肾脏病与透析肾移植杂志,2011;20(04):346-7
    [4]Tesch GH: Macrophages and diabetic nephropathy[J]. Semin Nephrol2010;30:290-301
    [5] Wang Y, Harris DC. Macrophages in renal disease[J]. J Am Soc Nephrol,2011,22(1):21-7.
    [6]尹广. FK506在肾移植的临床应用[J].肾脏病与透析肾移植杂志,2000;9(3):243-7
    [7]闵亚丽,赵冬慧,于黔.他克莫司对肾小管上皮细胞转分化早期CTGF、VEGF表达的影响[J].重庆医学,2012;41(3):3401-5
    [8] Rauch MC, San Martín A, Ojeda D, Quezada C, Salas M, Cárcamo JG, Ya ez AJ,Slebe JC, Claude A.Tacrolimus causes a blockage of protein secretion which reinforcesits immunosuppressive activity and also explains some of its toxic side-effects[J].Transpl Immunol,2009,22(1-2):72-81.
    [9]杨俊,罗勇,邱小忠,武雷,余磊,陆云涛,朴英杰,秦建强. FK506促进异体神经匀浆激活的巨噬细胞凋亡的实验研究[J].第一军医大学学报,2005;25(1):66-70
    [10] Gooch JL, Tang Y, Ricono JM, et al. Insulin-like growth factor-1(IGF-1) inducesrenal hypertrophy via a calcineurin-dependent mechanism[J]. J Biol Chem,2001;276:42492–500.
    [11] Gooch JL, Barnes JL, Garcia S, Abboud HE. Calcineurin is activated in diabetesand is required for glomerular hypertrophy and ECM accumulation [J]. Am J PhysiolRenal Physiol.2003;284(1):F144-54.
    [12]周琚,张汝学,贾正平.不同糖尿病动物模型的特点比较[J].国际内分泌代谢杂志,2010;30(4):273-6.
    [13]沈亚非,徐焱成.链脲佐菌素诱导实验性糖尿病大鼠模型建立的研究[J].实用诊断和治疗杂志,2005;19(2):79-80.
    [14] Tuttle KR. Linking metabolism and immunology: diabetic nephropathy is aninflammatory disease[J]. J Am Soc Nephrol.2005;16(6):1537-8.
    [15]Utimura R, Fujihara CK, Mattar AL, Malheiros DM, Noronha IL, Zatz R.Mycophenolate mofetil prevents the development of glomerular injury in experimentdiabetes[J]. Kidney Int,2003,63(1):209-16.
    [16]Wu YG, Lin H, Qi XM, Wu GZ, Qian H, Zhao M, Shen JJ, Lin ST. Prevention ofearly renal injury by mycophenolate mofetil and its mechanism in experimentaldiabetes[J]. Int Immunopharmacol,2006,6(3):445-53.
    [17]Yozai K, Shikata K, Sasaki M, Tone A, Ohga S, Usui H, Okada S, Wada J, NagaseR, Ogawa D, Shikata Y, Makino H. Methotrexate prevents renal injury in experimentaldiabetic rats via anti-inflammatory actions[J]. J Am Soc Nephrol,2005,16(11):3326-38.
    [18]Kikuchi Y, Imakiire T, Yamada M, Saigusa T, Hyodo T, Hyodo N, Suzuki S, MiuraS. Mizoribine reduces renal injury and macrophage infiltration in non-insulin-dependentdiabetic rats[J]. Nephrol Dial Transplant,2005,20(8):1573-81.
    [19]Tone A, Shikata K, Sasaki M, Ohga S, Yozai K, Nishishita S, Usui H, Nagase R,Ogawa D, Okada S, Shikata Y, Wada J, Makino H. Erythromycin ameliorates renalinjury via anti-inflammatory effects in experimental diabetic rats [J]. Diabetologia,2005,8(11):2402-11.
    [20]Han SY, So GA, Jee YH, Han KH, Kang YS, Kim HK, Kang SW, Han DS, Han JY,Cha DR. Effect of retinoic acid in experimental diabetic nephropathy[J]. Immunol CellBiol,2004,82(6):568-76.
    [21]Su J, Zhang P, Zhang JJ, Qi XM, Wu YG, Shen JJ.Effects of total glucosides ofpaeony on oxidative stress in the kidney from diabetic rats[J]. Phytomedicine,2010,17(3-4):254-60.
    [22] Musson RE, Cobbaert CM, Smit NP. Molecular diagnostics of calcineurin-relatedpathologies[J]. Clin Chem.2012;58(3):511-22.
    [23] Aperia A, Holtb ck U, Syrén ML, Svensson LB, Fryckstedt J, Greengard P.Activation/deactivation of renal Na/KATPase:a final common pathway for regulation ofnatriuresis[J].FASEB J,1994;8(6):436-9.
    [24]白波,李荣山,沈芳芳,吕艳,邵珊.他克莫司对人肾小球系膜细胞增殖的影响[J].中国药物与临床.2010;10(05):512-14
    [25] Musson RE, Smit NP. Regulatory mechanisms of calcineurin phosphataseactivity[J].Curr Med Chem.2011;18(2):301-15.
    [26] Lan HY.Diverse roles of TGF-β/Smads in renal fibrosis and inflammation[J]. Int JBiol Sci.2011;7(7):1056-67.
    [27] Lan HY.Transforming growth factor-β/Smad signalling in diabetic nephropathy[J].Clin Exp Pharmacol Physiol.2012;39(8):731-8.
    [28]贾冶,王晶,顾华,吴曼,郭桥艳,徐锋,刘庆鑫,许钟镐,苗里宁. FK506治疗大鼠早期膜性肾病的实验研究[J].中国老年学杂志.2009;29(16):2061-4.
    [29]张雪涛,邹大进.细胞外基质增殖在糖尿病肾病的作用[J].中华肾脏病杂志,1997;13(15):315-17.
    [30] Tomino Y, Suzuki S, Azushima C, Shou I, Iijima T, Yagame M, Wang LN, ChenHC, Lai KN, Tan SY, Kim MJ. Asian multicenter trials on urinary type IV collagen inpatients with diabetic nephropathy[J]. J Clin Lab Anal.2008;15(4):188-92.
    [1] Dalla Vestra M, Masiero A, Roiter AM, Saller A, Crepaldi G, Fioretto P. Is podocyteinjury relevant in diabetic nephropathy? Studies in patients with type2diabetes[J].Diabetes.2003;52(4):1031-5.
    [2] Wolf G, Chen S, Ziyadeh FN.From the periphery of the glomerular capillary walltoward the center of disease: podocyte injury comes of age in diabetic nephropathy[J].Diabetes.2005;54(6):1626-34.
    [3]Aramburu J, Heitman J, Crabtree GR. Calcineurin: a central controller of signallingin eukaryotes[J]. EMBO Rep.2004;5(4):343-8.
    [4] Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, ChangJM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P. The actin cytoskeleton ofkidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A[J]. NatMed,2008,14(9):931-8.
    [5] Relle M, Cash H, Brochhausen C, Strand D, Menke J, Galle PR, Schwarting A.Newperspectives on the renal slit diaphragm protein podocin.Mod Pathol[J].2011;24(8):1101-10
    [6] Saleem MA, Ni L, Witherden I, Tryggvason K, Ruotsalainen V, Mundel P,Mathieson PW. Co-localization of nephrin, podocin, and the actin cytoskeleton:evidence for a role in podocyte foot process formation[J]. Am J Pathol,2002,161(4):1459-66.
    [7]Johnstone DB, Holzman LB. Clinical impact of research on the podocyte slitdiaphragm[J]. Nat Prac Nephrol,2006,2(5):271-82.
    [8] Langham RG, Kelly DJ, Cox AJ, Thomson NM, Holth fer H, Zaoui P, Pinel N,Cordonnier DJ, Gilbert RE. Proteinuria and the expression of the podocyte slitdiaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin convertingenzyme inhibition[J]. Diabetologia.2002;45(11):1572-6.
    [9]董婧,吴永贵,任克军,齐向明,梁超,张炜,袁亮,方芳,沈际佳.霉酚酸酯对糖尿病大鼠肾组织Nephrin与Podocin表达的影响及机制[J].中国药理学通报,2008;24(2):254-8
    [10]冯秋霞,程丽静,芦露,罗兰,白艳,李萍,季军,高政南.2型糖尿病患者尿足细胞的排泄及其相关因素[J].中国实用医药,2013;8(07):10-12
    [11] White KE,Bilous RW. Structural alterations to the podocyte are related toProteinuria in type2diabetic Patienis[J].Nephrol Dial Transplant,2004;19(6):1437-40
    [12]刘志红,李世军,陈朝红,曾彩虹,张波,周虹,黎磊石.糖尿病肾病患者足细胞病变的临床病理特征[J].肾脏病与透析肾移植杂志.2003;12(02):144-8
    [13] Kwoh C, Shannon MB, Miner JH, Shaw A.Pathogenesis of nonimmuneglomerulopathies[J].Annu Rev Pathol.2006;1:349-74.
    [14]邢昌赢,孙彬,王笑云,赵秀芬,陈荣华.人肾小球足细胞表达Nephrin的体外研究[J],肾脏病与透析肾移植杂志,2005,14(2):122-5
    [15] G del M, Ostendorf BN, Baumer J, Weber K, Huber TB. A novel domainregulating degradation of the glomerular slit diaphragm protein podocin in cell culturesystems[J]. PLoS One.2013;8(2):e57078.
    [16] V lker LA, Schurek EM, Rinschen MM, Tax J, Schutte BA, Lamkemeyer T,Ungrue D, Schermer B, Benzing T, H hne M. Characterization of a short isoform of thekidney protein podocin in human kidney[J]. BMC Nephrol.2013;14:102.
    [17] Koop K, Eikmans M, Baelde HJ, Kawachi H, De Heer E, Paul LC, Bruijn JA.Expression of podocyte associated molecules in acquired human kidney diseases[J].JAm Soc Nephrol,2003;14(8):2063-71
    [18] Aramburu J, Heitman J, Crabtree GR. Calcineurin: a central controller of signallingin eukaryotes[J]. EMBO Rep,2004,5(4):343-8.
    [19] Rumi-Masante J, Rusinga FI, Lester TE, Dunlap TB, Williams TD, Dunker AK,Weis DD, Creamer TP.Structural basis for activation of calcineurin by calmodulin[J].JMol Biol.2012;415(2):307-17.
    [20] Gooch JL, Barnes JL, Garcia S, Abboud HE. Calcineurin is activated in diabetesand is required for glomerular hypertrophy and ECM accumulation[J]. Am J PhysiolRenal Physiol,2003,284(1): F144-54.
    [21]梁超,袁亮,吴永贵,董婧,任克军,张炜,方芳,郝丽,张伯科. FK506对糖尿病大鼠早期肾脏肥大的抑制作用及机制[J].中华肾脏病杂志,2007,23(4):230-4
    [22] Gooch JL, Tang Y, Ricono JM, Abboud HE. Insulin-like growth factor-I inducesrenal cell hypertrophy via a calcineurin-dependent mechanism[J].J Biol Chem.2001;276(45):42492-500.
    [23] Alba G, Santa-María C, Reyes-Quiroz ME, El Bekay R, Geniz I, Martín-Nieto J,Pintado E, Sobrino F.Calcineurin expression and activity is regulated by the intracellularredox status and under hypertension in human neutrophils[J].J Endocrinol.2012;214(3):399-408.
    [24] Hernández GL, Volpert OV, I iguez MA, Lorenzo E, Martínez-Martínez S, Grau R,Fresno M, Redondo JM. Selective inhibition of vascular endothelial growthfactor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated Tcells and cyclooxygenase2[J].J Exp Med.2001;193(5):607-20.
    [25] Lea JP, Jin SG, Roberts BR, Shuler MS, Marrero MB, Tumlin JA. Angiotensin IIstimulates calcineurin activity in proximal tubule epithelia through AT-1receptor-mediated tyrosine phosphorylation of the PLC-gamma1isoform[J].J Am SocNephrol.2002;13(7):1750-6.
    [26]刘志红,吴青,汤曦,张明超,朱晓东,左科,郑春霞,曾彩虹,黎磊石.膜性肾病患者足细胞钙神经蛋白表达的检测及其临床意义[J].肾脏病与透析肾移植杂志,2010,19(1):3-11
    [27]汤曦,吴青,郑春霞,张明超,曾彩虹,张炯,朱晓东,刘志红.局灶节段性肾小球硬化患者足细胞钙神经蛋白的表达[J].肾脏病与透析肾移植杂志,2010,19(4):301-7
    [1]刘烨,张琳,洪天配.2011年糖尿病学领域的研究进展和热点回顾[J].中国医学前沿杂志(电子版),2011;3(6):27-31
    [2] Friedman EA. Continuously evolving management concepts for diabetic CKD andESRD[J]. Semin Dial.2010;23(2):134-9.
    [3] He J, Xu Y, Koya D, Kanasaki K. Role of the endothelial-to-mesenchymal transition in renalfibrosis of chronic kidney disease[J].Clin Exp Nephrol.2013Feb21.[Epub ahead of print]
    [4] Schena FP, Gesualdo L. Pathogenetic mechanisms of diabetic nephropathy[J].J AmSoc Nephrol.2005;16Suppl1:S30-3.
    [5] Yu HT. Progression of chronic renal failure[J]. Arch Intern Med.2003;163(12):1417-29.
    [6] Qi XM, Wu YG, Liang C, Zhang P, Dong J, Ren KJ, Zhang W, Fang F, ShenJJ.FK506ameliorates renal injury in early experimental diabetic rats induced bystreptozotocin[J]. Int Immunopharmacol.2011;11(10):1613-9.
    [7] Li J, Bertram JF. Review: Endothelial-myofibroblast transition, a new player indiabetic renal fibrosis[J].Nephrology (Carlton).2010;15(5):507-12.
    [8] Meran S, Steadman R. Fibroblasts and myofibroblasts in renal fibrosis[J].Int J ExpPathol.2011;92(3):158-67.
    [9] Liu H. New insights into epithelial-mesenchymal transition in kidney fibrosis [J]. JAm Soc Nephrol,2010,21(2):212-22.
    [10] Carew RM, Wang B, Kantharidis P. The role of EMT in renal fibrosis[J]. CellTissue Res.2012;347(1):103-16.
    [11] Masszi A, Fan L, Rosivall L, McCulloch CA, Rotstein OD, Mucsi I, KapusA.Integrity of cell-cell contacts is a critical regulator of TGF-beta1-inducedepithelial-to-myofibrobtast transition:role for beta-catenin[J].Am J Pathol,2004;165(6):1955-67.
    [12] Jinde K, Nikolic-Paterson DJ, Huang XR,et al. Tubular phenotypic change inprogressive tubulointerstitial fibrosis in human glomerulonephritis[J]. Am J Kidney Dis,2001,38(4):761-9.
    [13] Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, Lee HB. Role of reactiveoxygen species in TGF-beta1-induced mitogen-activated protein kinase activation andepithelial-mesenchymal transition in renal tubular epithelial cells[J].J Am Soc Nephrol.2012;16(3):667-75
    [14] Thomas A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases [J].The Journal of Clinical Investigation,2007,117(3):524-529.
    [15] Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Müller GA, NeilsonEG. Role of basic fibroblast growth factor-2in epithelial-mesenchymaltransformation[J].Kidney Int,2009;61(5):1714-28
    [16]姜飞鹏.肾间质纤维化与Vimentin和α-SMA的表达[J].中国中医药咨讯,2011,3(8):319-9
    [17] Yang J, Liu Y. Blockage of tulmlar epithelial to myofibroblast transition byhepatocyte growth factor prevents renal interstitial fibrosis [J]. J Am Soc Nephrol,2008,13(1):96-107.
    [18] Utsunomiya Y, Kawamura T, Abe A, Imai H, Hirano K, Maruyama N, Hosoya T,Sakai O. Significance of mesangial expression of alpha-smooth muscle actin in theprogression of IgA nephropathy[J].Am J Kidney Dis,1999;34(5):902-10
    [19]陆海英,张悦,刘煜敏,周娟,陆敏,刘克剑,李靖,林敏. α-平滑肌肌动蛋白和E-钙依赖性黏附素在肾间质纤维化大鼠肾组织中的表达[J].中国病理生理杂志,2009;25(04):795-8
    [20] Watanabe H, Sanada H, Shigetomi S, Katoh T, Watanabe T. Urinary excretion oftype IV collagen as a specific indicator of the progression of diabetic nephropathy[J].Nephron,2009;86(1):27-35
    [21] Meng XM, Chung AC, Lan HY.Role of the TGF-β/BMP-7/Smad pathways in renaldiseases[J].Clin Sci (Lond).2013;124(4):243-54.
    [22] Han DC, Hoffman BB, Hong SW, Guo J, Ziyadeh FN. Therapy with antisenseTGF-beta1oligodeoxynucleotides reduces kidney weight and matrix mRNAs indiabetic mice[J].Am J Physiol Renal Physiol.2008;278(4):F628-34.
    [23] Inomata S, Itoh M, Sato T. Difference of serum levels of type IV collagen7Sbetween early or overt nephropathy and nondiabetic renal disease in diabetic patientswith micro-or macroalbuminuria.[J]. Nephron,1996;73(3):601-5.
    [24]谢红芳,彭亮.2型糖尿病并发肾病患者血清Ⅳ-C和TGF-β1测定及临床意义[J].放射免疫学杂志,2006;19(5):370-1.
    [25] Li C, Yang CW, Park CW, Ahn HJ, Kim WY, Yoon KH, Suh SH, Lim SW, Cha JH,Kim YS, Kim J, Chang YS, Bang BK. Long-term treatment with ramipril attenuatesrenal osteopontin expression in diabetic rats[J]. Kidney Int.2003;63(2):454-63.
    [26] Nicholas SB, Liu J, Kim J, Ren Y, Collins AR, Nguyen L, Hsueh WA. Critical rolefor osteopontin in diabetic nephropathy[J]. Kidney Int.2010;77(7):588-600.
    [27] Hiroshi Y,Masahiko I,Akihiko H,et a1.Progression of diabetic nephropathyenhances the plasma osteopontin level in type2diabetic patients[J].Endocr J,2004,51(5):499-504.
    [28]Philip S,Kundu G C.Osteopontin induces nuclear factor kappa B-mediatedpromatrix metalloproteinase-2activation through I kappa B alpha/IKK signalingpathways, and curcumin (diferulolylmethane) down-regulates these pathways[J].J BiolChem,2003;278(16):14487-97.
    [1] Lim AK, Tesch GH.Inflammation in diabetic nephropathy [J].Mediators Inflamm.2012;2012:146154.
    [2] Gordon S, Martinez FO.Alternative activation of macrophages: mechanism andfunctions[J]. Immunity.2010;32(5):593-604.
    [3]Mantovani A, Sica A, Locati M. Macrophage polarization comes of age[J]. Immunity,2005,23(4):344-6.
    [4]Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, Zawadzki C,Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G. PPARgamma activationprimes human monocytes into alternative M2macrophages with anti-inflammatoryproperties[J]. Cell Metab,2007,6(2):137-43.
    [5] Zheng D, Wang Y, Cao Q, Lee VW, Zheng G, Sun Y, Tan TK, Wang Y, Alexander SI,Harris DC.Transfused macrophages ameliorate pancreatic and renal injury in murinediabetes mellitus[J]. Nephron Exp Nephrol,2011,118(4): e87-99.
    [6] Forbes JM,Coughlan MT,Cooper ME.Oxidative stress as a major culprit in kidneydisease in diabetes[J].Diabetes,2008,57(6):1446-54.
    [7]Mundel P,Shankland SJ.Podocyte biology and response to injury[J].Am SocNephrol,2002,13(12):3005-15.
    [8]Wu J, Mei C, Vlassara H, Striker GE, Zheng F.Oxidative stress-induced JNKactivation contributes to proinflammatory phenotype of aging diabetic mesangialcells[J].Am J Physiol Renal Physiol,2009,297(6):F1622-31.
    [9]Devaraj S, Tobias P, Kasinath BS, Ramsamooj R, Afify A, Jialal I.Knockout oftoll-like receptor-2attenuates both the proinflammatory state of diabetes and incipientdiabetic nephropathy[J].Arterioscler Thromb Vasc Biol.2011;31(8):1796-804.
    [10]陈丹,吴义超.巨噬细胞与肾脏疾病[J].肾脏病与透析肾移植杂志,2004;13(3):256-60.
    [11]Sasaki S, Nishihira J, Ishibashi T, Yamasaki Y, Obikane K, Echigoya M, Sado Y,Ninomiya Y, Kobayashi K.Transgene of MIF induces podocyte injury and progressivemesangial sclerosis in the mouse kidney[J].Kidney Int,2004,65(2):469-81
    [12] Sasaki S, Nishihira J, Ishibashi T, Yamasaki Y, Obikane K, Echigoya M, Sado Y,Ninomiya Y, Kobayashi K. Early glomerular macrophage recruitment instreptozotocin-induced diabetic rats[J]. Diabetes,2000,49(3):466-75
    [13]林辉,吴永贵,赵珉,钱浩,周典,郝丽,张伯科. PKCβ抑制剂LY333531对大鼠糖尿病模型肾脏巨噬细胞浸润的影响[J].现代免疫学,2004,24(6):503-6
    [14]Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages inmouse type2diabetic nephropathy: Correlation with diabetic state and progressionrenal injury[J]. Kidney Int,2004,65(1):116-28.
    [15]Nguyen D, Ping F, Mu W, Hill P, Atkins RC, Chadban SJ. Macrophageaccumulation in human progressive diabetic nephropathy[J].Nephrology (Carlton),2006,11(3):226-31.
    [16] Miyachi K, Fritzler MJ, Tan EM. Autoantibody to a nuclear antigen in proliferatingcells[J]. Immunol J,1978,121(6):2228-34.
    [17]Wolf G.Cell cycle regulation in diabetic nephropathy[J]. Kidney Int Suppl.2000;77:S59-66.
    [18]赵雅妮,李惊子,王海燕.巨噬细胞在肾脏损伤中的作用[J];中国病理生理杂志;2004,20(11):2147-50
    [19]Lan HY, Nikolic-Paterson DJ, Mu W, Atkins RC. Local macrophage proliferation inmultinucleated giant cell and granuloma formation in experimental Goodpasture'ssyndrome[J].Am J Pathol.1995;147(5):1214-20.
    [20]陈伟英,杨念生,尹培达,郑智华,梁英杰,关伟明,周飞宇,蓝辉耀.巨噬细胞局部浸润和增殖在狼疮性肾炎中的应用[J].中华风湿病学杂志,1998,2(2):88-91
    [21]Mora C, Navarro JF. Inflammation and diabetic nephropathy[J]. Current DiabetesReports,2006,6(6):463-6
    [22]Tuttle KR. Linking metabolism and immunology: diabetic nephropathy is aninflammatory disease[J]. J Am Soc Nephrol,2005,16(6):1537-8.
    [23]Galkina E, Ley K. Leukocyte recruitment and vascular injury in diabeticnephropathy[J]. J Am Soc Nephrol,2006,17(2):368-77.
    [24]Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, Zawadzki C,Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G. PPARgamma activationprimes human monocytes into alternative M2macrophages with anti-inflammatoryproperties[J]. Cell Metab,2007,6(2):137-43.
    [25]Kawanishi N, Yano H, Yokogawa Y. Exercise training inhibits inflammation inadipose tissue via both suppression of macrophage infiltration and acceleration ofphenotypic switching from M1to M2macrophages in high-fat-diet-induced obesemice[J].Exerc Immunol Rev,2010,16:105-18.
    [26]周宪宾,姚成芳.巨噬细胞M1/M2极化分型的研究进展[J].中国免疫学杂志,2012;28(10):957-60.
    [27]Muthukuru M,Jotwani R,Cutler CW.Oral mucosal endotoxin tolerance induction inchronic periodontitis [J].Infect Immunol,2005,73(2):687-94.
    [28]Karin M,Beneriah Y.Phosphorylation meets ubiquitination:the control of NF-κBactivity[J].Annu Rev Immunol,2000,18:621-63.
    [29]Navarro JF,Mora C.Diabetes,inflammation,proinflammatory cytokines,and diabeticnephropathy[J].Scientific World Journal.2006,9,6:908-17.
    [30]Ohga S,Shikata K,Yozai K,et al.Thiazolidinedione ameliorates renal injury inexperimental diabetic rats through anti-inflammatory effects mediated by inhibition ofNF-kappaB activation[J].Am J Physiol Renal Physiol2007,292(4):1141-50.
    [31]Devaraj S, Tobias P, Jialal I. Knockout of toll-like receptor-4attenuates thepro-inflammatory state of diabetes[J].Cytokine.2011;55(3):441-5.
    [32]朱琳楠,侯玉柱,赵勇.精氨酸酶Ⅰ及诱生性一氧化氮合酶在巨噬细胞中的分子表达调控[J].中国免疫学杂志,2010,26(8):748-53.
    [33] Vodovotz Y, Kim PK, Bagci EZ, Ermentrout GB, Chow CC, Bahar I, Billiar TR.Inflammatory modulation of hepatocyte apoptosis by nitric oxide:in vivo,in vitro,and insilico studies [J].Curr Mol Med,2004;4(7):753-62.
    [1] Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorialintervention on mortality in type2diabetes[J]. N Engl J Med.2008;358(6):580–591
    [2] Gaede P, Vedel P, Larsen N, Jensen GV, Parving H H, Pedersen O. Multifactorialintervention and cardiovascular disease in patients with type2diabetes[J]. N Engl JMed.2003;348(5):383–393
    [3]Gaede P, Vedel P, Parving HH, Pedersen O. Intensified multifactorial intervention inpatients with type2diabetes mellitus and microalbuminuria: the Steno type2randomised study[J]. Lancet.1999;353(9153):617–622
    [4] Rivero A, Mora C, Muros M, Garcia J, Herrera H,Navarro-Gonzalez JF. Pathogenicperspectives for the role of inflammation in diabetic nephropathy[J]. Clin Sci,2009;116(6):479–492
    [5] Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M,Garcia-Perez J.Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy[J].Nat Rev Nephrol,2011;7(6):327–340
    [6] Makino H, Yamasaki Y, Haramoto T, Shikata K, Hironaka K, Ota Z, Kanwar YS.Ultrastructural changes of extracellular matrices in diabetic nephropathy revealed byhigh resolution scanning and immunoelectron microscopy[J]. Lab Invest.1993;68(1):45-55.
    [7] Donath MY, Shoelson SE. Type2diabetes as an inflammatory disease[J]. Nat RevImmunol,2011;11(2):98–107
    [8] Makino H, Kashihara N, Sugiyama H, Kanao K, Sekikawa T, Okamoto K,Maeshima Y, Ota Z,Naga R. Phenotypic modulation of the mesangium reflected bycontractile proteins in diabetes[J]. Diabetes,1996;45(4):488–495
    [9] Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypesdetermine progression or resolution of renal inflammation and fibrosis[J]. Kidney Int,2011;80(9):915–925
    [10] Sugimoto H, Shikata K, Hirata K, Akiyama K, Matsuda M, Kushiro M, Shikata Y,Miyatake N, Miyasaka M, Makino H. Increased expression of intercellular adhesionmolecule-1(ICAM-1) in diabetic rat glomeruli: glomerular hyperfiltration is a potentialmechanism of ICAM-1upregulation[J]. Diabetes,1997;46(12):2075-81
    [11] Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, Sugimoto T, YasudaH, Kashiwagi A, Ways DK, King GL, Kikkawa R.Amelioration of accelerated diabeticmesangial expansion by treatment with a PKCβ inhibitor in diabetic db/db mice, arodent model for type2diabetes[J]. FASEB J,2000;14(3):439-47.
    [12] Ramasamy R, Yan SF,Schmidt AM. Receptor for AGE (RAGE): signalingmechanisms in the pathogenesis of diabetes and its complications[J]. Ann N Y Acad Sci,2011;1243:88–102
    [13] Sourris KC, Forbes JM. Interactions between advanced glycation end-products(AGE) and their receptors in the development and progression of diabetic nephropathy:are these receptors valid therapeutic targets[J]. Curr Drug Targets,2009;10(1):42-50.
    [14] Chung AC, Zhang H, Kong YZ, Tan JJ, Huang XR, Kopp JB,Lan HY. Advancedglycation end-products induce tubular CTGF via TGF-β-independent Smad3signaling[J]. J Am Soc Nephrol,2010;21(2):249-60.
    [15] Alderson NL, Chachich ME, Youssef NN, Beattie RJ, Nachtigal M, Thorpe SR,Baynes W. The AGE inhibitor pyridoxamine inhibits lipemia and development of renaland vascular disease in Zucker obese rats[J]. Kidney Int,2003;63(6):2123-33.
    [16] Figarola JL, Loera S, Weng Y, Shanmugam N, Natarajan R,Rahbar S. LR-90prevents dyslipidaemia and diabetic nephropathy in the Zucker diabetic fatty rat[J].Diabetologia,2008;51(5):882-91
    [17] Kim YS, Kim J, Kim CS, Sohn EJ, Lee YM, Jeong IH, Kim H, Jang DS,Kim JS.KIOM-79, an inhibitor of AGEs-protein cross-linking, prevents progression ofnephropathy in Zucker diabetic fatty rats[J]. Evid Based Complement Alternat Med.2011;2011:761859
    [18] Satoh M, Fujimoto S, Haruna Y, Arakawa S, Horike H, Komai N, Sasaki T,Tsujioka K, Makino H, Kashihara N. NAD(P)H oxidase and uncoupled nitric oxidesynthase are major sources of glomerular superoxide in rats with experimental diabeticnephropathy[J]. Am J Physiol Renal Physiol.2005;288(6):F1144-52
    [19] Asaba K, Tojo A, Onozato ML, Goto A, Quinn MT, Fujita T, Wilcox CS. Effects ofNADPH oxidase inhibitor in diabetic nephropathy[J]. Kidney Int,2005;67(5):1890-8
    [20] Chawla T, Sharma D, Singh A. Role of the rennin angiotensin system in diabeticnephropathy[J]. World J Diabetes,2010;1(5):141-5.
    [21] Thomas MC, Tikellis C, Burns WM, Bialkowski K, Cao Z, Coughlan MT,Jandeleit-Dahm K, Cooper ME, Forbes JM. Interactions between renin angiotensinsystem and advanced glycation in the kidney[J]. J Am Soc Nephrol.2005;16(10):2976-84
    [22] Luis-Rodríguez D, Martínez-Castelao A, Górriz JL, De-álvaro F,Navarro-González JF. Pathophysiological role and therapeutic implications ofinflammation in diabetic nephropathy[J]. World J Diabetes,2012;3(1):7-18.
    [23] Saraheimo M, Teppo AM, Forsblom C, Fagerudd J, Groop PH. Diabeticnephropathy is associated with low-grade inflammation in Type1diabetic patients[J].Diabetologia,2003;46(10):1402-7
    [24] Ziyadeh FN, Hoffman BB, Han DC, Iglesias-De La Cruz MC, Hong SW, Isono M,Chen S, McGowan TA, Sharma K. Long-term prevention of renal insufficiency, excessmatrix gene expression, and glomerular mesangial matrix expansion by treatment withmonoclonal antitransforming growth factor-β antibody in db/db diabetic mice[J]. ProcNatl Acad Sci U S A.2000;97(14):8015-20
    [25] Sanchez AP, Sharma K. Transcription factors in the pathogenesis of diabeticnephropathy[J]. Expert Rev Mol Med.2009;11: e13
    [26] Mezzano S, Aros C, Droguett A, Burgos ME, Ardiles L, Flores C, Schneider H,Ruiz-Ortega M, Egido J. NF-κB activation and overexpression of regulated genes inhuman diabetic nephropathy[J]. Nephrol Dial Transplant,2004;19(10):2505-12.
    [27] Nam JS, Cho MH, Lee GT, Park JS, Ahn CW, Cha BS, Lim SK, Kim KR, Ha HJ,Lee HC. The activation of NF-κB and AP-1in peripheral blood mononuclear cellsisolated from patients with diabetic nephropathy[J]. Diabetes Res Clin Pract,2008;81(1):25-32
    [28] Hofmann MA, Schiekofer S, Isermann B, Kanitz M, Henkels M, Joswig M,Treusch A, Morcos M, Weiss T, Borcea V, Abdel Khalek AK, Amiral J, Tritschler H,Ritz E, Wahl P, Ziegler R, Bierhaus A, Nawroth PP. Peripheral blood mononuclear cellsisolated from patients with diabetic nephropathy show increased activation of theoxidative-stress sensitive transcription factor NF-κB[J]. Diabetologia,1999;42(2):222–232
    [29] Yang B, Hodgkinson A, Oates PJ, Millward BA, Demaine AG. High glucoseinduction of DNA-binding activity of the transcription factor NF-κB in patients withdiabetic nephropathy[J]. Biochim Biophys Acta,2008;1782(5):295-302
    [30] Goldberg HJ, Whiteside CI, Hart GW, Fantus IG. Posttranslational, reversibleO-glycosylation is stimulated by high glucose and mediates plasminogen activatorinhibitor-1gene expression and Sp1transcriptional activity in glomerular mesangialcells[J]. Endocrinology,200;147(1):222-31.
    [31] Ha H, Yu MR, Choi YJ, Kitamura M, Lee HB. Role of high glucose-inducednuclear factor-κB activation in monocyte chemoattractant protein-1expression bymesangial cells[J]. J Am Soc Nephrol.2002;13(4):894-902.
    [32] Park CW, Kim JH, Lee JH, Kim YS, Ahn HJ, Shin YS, Kim SY, Choi EJ, ChangYS, Bang BK. High glucose-induced intercellular adhesion molecule-1(ICAM-1)expression through an osmotic effect in rat mesangial cells is PKC-NF-κB-dependent[J]. Diabetologia,2000;43(12):1544-53.
    [33] Kumar A, Hawkins KS, Hannan MA, Ganz MB. Activation of PKC-βI inglomerular mesangial cells is associated with specific NF-κB subunit translocation[J].Am J Physiol Renal Physiol.2001;281(4):F613-9.
    [34] Lee FT, Cao Z, Long DM, Panagiotopoulos S, Jerums G, Cooper ME, Forbes JM.Interactions between angiotensin II and NF-κB-dependent pathways in modulatingmacrophage infiltration in experimental diabetic nephropathy[J]. J Am Soc Nephrol.2004;15(8):2139-51.
    [35] Liang YJ, Jian JH, Liu YC, Juang SJ, Shyu KG, Lai LP, Wang BW, Leu JG.Advanced glycation end products-induced apoptosis attenuated by PPARδ activationand epigallocatechin gallate through NF-κB pathway in human embryonic kidney cellsand human mesangial cells[J]. Diabetes Metab Res Rev.2010;26(5):406-16.
    [36] Pillarisetti S, Saxena U. Role of oxidative stress and inflammation in the origin ofType2diabetes: a paradigm shift[J]. Expert Opin Ther Targets,2004;8(5):401-8
    [37] Ohga S, Shikata K, Yozai K, Okada S, Ogawa D, Usui H, Wada J, Shikata Y,Makino H. Thiazolidinedione ameliorates renal injury in experimental diabetic ratsthrough anti-inflammatory effects mediated by inhibition of NF-κB activation[J]. Am JPhysiol Renal Physiol.2007;292(4):F1141-50
    [38] Zhang Z, Yuan W, Sun L, Szeto FL, Wong KE, Li X, Kong J, Li YC.1,25-Dihydroxyvitamin D3targeting of NF-κB suppresses high glucose-induced MCP-1expression in mesangial cells[J]. Kidney Int.2007;72(2):193-201
    [39] Lee WC, Chen HC, Wang CY, Lin PY, Ou TT, Chen CC, Wen MC, Wang J, Lee HJ.Cilostazol ameliorates nephropathy in type1diabetic rats involving improvement inoxidative stress and regulation of TGF-β and NF-κB[J]. Biosci Biotechnol Biochem.2010;74(7):1355-61.
    [40] Soetikno V, Sari FR, Veeraveedu PT, Thandavarayan RA, Harima M, Sukumaran V,Lakshmanan AP, Suzuki K, Kawachi H, Watanabe K. Curcumin amelioratesmacrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokinesin streptozotocin induced-diabetic nephropathy[J]. Nutr Metab.2011;8(1):35
    [41] Hasegawa G, Nakano K, Sawada M, Uno K, Shibayama Y, Ienaga K, Kondo M.Possible role of tumor necrosis factor and interleukin-1in the development of diabeticnephropathy[J]. Kidney Int.1991;40(6):1007-12.
    [42] Tarlow JK, Blakemore AI, Lennard A, Solari R, Hughes HN, Steinkasserer A, DuffGW. Polymorphism in human IL-1receptor antagonist gene intron2is caused byvariable numbers of an86-bp tandem repeat[J]. Hum Genet.1993;91(4):403-4.
    [43] Blakemore AI, Cox A, Gonzalez AM, Maskil JK, Hughes ME, Wilson RM, WardJD, Duff GW. Interleukin-1receptor antagonist allele (IL1RN*2) associated withnephropathy in diabetes mellitus[J]. Hum Genet.1996;97(3):369-74.
    [44] Suzuki D, Miyazaki M, Naka R, Koji T, Yagame M, Jinde K, Endoh M, Nomoto Y,Sakai H. In situ hybridization of interleukin6in diabetic nephropathy[J]. Diabetes,1995;44(10):1233-8.
    [45] Shelbaya S, Amer H, Seddik S, Allah AA, Sabry IM, Mohamed T, El Mosely M.Study of the role of interleukin-6and highly sensitive C-reactive protein in diabeticnephropathy in type1diabetic patients[J]. Eur Rev Med Pharmacol Sci,2012;16(2):176-82.
    [46] Shikano M, Sobajima H, Yoshikawa H, Toba T, Kushimoto H, Katsumata H,Tomita M, Kawashima S. Usefulness of a highly sensitive urinary and serum IL-6assayin patients with diabetic nephropathy[J]. Nephron,2000;85(1):81-5.
    [47] Sekizuka K, Tomino Y, Sei C, Kurusu A, Tashiro K, Yamaguchi Y, Kodera S,Hishiki T, Shirato I, Koide H. Detection of serum IL-6in patients with diabeticnephropathy[J]. Nephron,1994;68(2):284-5.
    [48] Svensson MK, Eriksson JW. Change in the amount of body fat and IL-6levels isrelated to altered insulin sensitivity in type1diabetes patients with or without diabeticnephropathy[J]. Horm Metab Res,2011;43(3):209-15.
    [49] Vaidya VS, Niewczas MA, Ficociello LH, Johnson AC, Collings FB, Warram JH,Krolewski AS, Bonventre JV. Regression of microalbuminuria in type1diabetes isassociated with lower levels of urinary tubular injury biomarkers, kidney injurymolecule-1, and N-acetyl-β-D-glucosaminidase[J]. Kidney Int.2011;79(4):464-70.
    [50] Kalantarinia K, Awad AS, Siragy HM. Urinary and renal interstitial concentrationsof TNF-α increase prior to the rise in albuminuria in diabetic rats[J]. Kidney Int.2003;64(4):1208-13.
    [51] Moriwaki Y, Inokuchi T, Yamamoto A, Ka T, Tsutsumi Z, Takahashi S, YamamotoT. Effect of TNF-α inhibition on urinary albumin excretion in experimental diabeticrats[J]. Acta Diabetol.2007;44(4):215-8.
    [52] Fernández-Real JM, Vendrell J, García I, Ricart W, Vallès M. Structural damage indiabetic nephropathy is associated with TNF-α system activity[J]. Acta Diabetol.2012;49(4):301-5.
    [53] Navarro JF, Mora-Fernández C. The role of TNF-α in diabetic nephropathy:pathogenic and therapeutic implications[J]. Cytokine Growth Factor Rev.2006;17(6):441-50.
    [54] Makino N, Maeda T, Sugano M, Satoh S, Watanabe R, Abe N. High serum TNF-αlevel in Type2diabetic patients with microangiopathy is associated with eNOSdown-regulation and apoptosis in endothelial cells[J]. J Diabetes Complications,2005;19(6):347-55.
    [55] Fujita T, Ogihara N, Kamura Y, Satomura A, Fuke Y, Shimizu C, Wada Y,Matsumoto K. Interleukin-18contributes more closely to the progression of diabeticnephropathy than other diabetic complications[J]. Acta Diabetol,2012;49(2):111-7.
    [56] Mahmoud RA, el-Ezz SA, Hegazy AS. Increased serum levels of interleukin-18inpatients with diabetic nephropathy[J]. Ital J Biochem,2004;53(2):73-81.
    [57] Moriwaki Y, Yamamoto T, Shibutani Y, Aoki E, Tsutsumi Z, Takahashi S, OkamuraH, Koga M, Fukuchi M, Hada T. Elevated levels of interleukin-18and tumor necrosisfactor-α in serum of patients with type2diabetes mellitus: relationship with diabeticnephropathy[J]. Metabolism,2003;52(5):605-8.
    [58] Nakamura A, Shikata K, Hiramatsu M, Nakatou T, Kitamura T, Wada J, Itoshima T,Makino H. Serum interleukin-18levels are associated with nephropathy andatherosclerosis in Japanese patients with type2diabetes[J]. Diabetes Care,2005;28(12):2890-5.
    [59] Skopiński P, Rogala E, Duda-Król B, Lipińska A, Sommer E, Chorostowska-Wynimko J, Szaflik J, Partyka I, Skopińska-Rózewska E. Increased interleukin-18content and angiogenic activity of sera from diabetic (Type2) patients with backgroundretinopathy[J]. J Diabetes Complications,2005;19(6):335-8.
    [60] Szeto CC, Chow KM, Poon PY, Kwan BC, Li PK. Association of interleukin-18promoter polymorphism and atherosclerotic diseases in Chinese patients with diabeticnephropathy[J]. Nephrology,2009;14(6):606-12.
    [61] Uzu T, Yokoyama H, Itoh H, Koya D, Nakagawa A, Nishizawa M, Maegawa H,Yokomaku Y, Araki S, Abiko A, Haneda M. Elevated serum levels of interleukin-18inpatients with overt diabetic nephropathy: effects of miglitol[J]. Clin Exp Nephrol,2011;15(1):58-63.
    [62] Wu CC, Sytwu HK, Lu KC, Lin YF. Role of T cells in type2diabeticnephropathy[J]. Exp Diabetes Res.2011;2011,514738
    [63] Odobasic D, Kitching AR, Tipping PG, Holdsworth SR. CD80and CD86costimulatory molecules regulate crescentic glomerulonephritis by different mechanisms[J].Kidney Int.2005;68(2):584-94.
    [64] Wu CC, Chen JS, Lu KC, Chen CC, Lin SH, Chu P, Sytwu HK, Lin YF. Aberrantcytokines/chemokines production correlate with proteinuria in patients with overtdiabetic nephropathy[J]. Clin Chim Acta,2010;411(9-10):700-704.
    [65] van Exel E, Gussekloo J, de Craen AJ, Fr lich M, Bootsma-Van Der Wiel A,Westendorp RG; Leiden85Plus Study. Low production capacity of interleukin-10associates with the metabolic syndrome and type2diabetes: the Leiden85-PlusStudy[J]. Diabetes,2002;51(4):1088-92.
    [66] My liwska J, Zorena K, Semetkowska-Jurkiewicz E, Rachoń D, Suchanek H,My liwski A. High levels of circulating interleukin-10in diabetic nephropathypatients[J]. Eur Cytokine Netw.2005;16(2):117-22.
    [67] Bradshaw EM, Raddassi K, Elyaman W, Orban T, Gottlieb PA, Kent SC, HaflerDA.Monocytes from patients with type1diabetes spontaneously secreteproinflammatory cytokines inducing Th17cells[J]. J Immunol.2009;183(7):4432-9.
    [68] Honkanen J, Nieminen JK, Gao R, Luopajarvi K, Salo HM, Ilonen J, Knip M,Otonkoski T, Vaarala O. IL-17immunity in human type1diabetes[J]. J Immunol.2010;185(3):1959-67.
    [69] Jagannathan-Bogdan M, McDonnell ME, Shin H, Rehman Q, Hasturk H, ApovianCM, Nikolajczyk BS. Elevated proinflammatory cytokine production by a skewed T cellcompartment requires monocytes and promotes inflammation in type2diabetes[J]. JImmunol.2011;186(2):1162-72.
    [70] Berthier CC, Zhang H, Schin M, Henger A, Nelson RG, Yee B, Boucherot A,Neusser MA, Cohen CD, Carter-Su C, Argetsinger LS, Rastaldi MP, Brosius FC,Kretzler M. Enhanced expression of Janus kinase-signal transducer and activator oftranscription pathway members in human diabetic nephropathy[J]. Diabetes,2009;58(2):469-77
    [71] Marrero MB, Banes-Berceli AK, Stern DM, Eaton DC. Role of the JAK/STATsignaling pathway in diabetic nephropathy[J]. Am J Physiol Renal Physiol,2006;290(4):F762-8.
    [72] Wang X, Shaw S, Amiri F, Eaton DC, Marrero MB. Inhibition of the Jak/STATsignaling pathway prevents the high glucose-induced increase in TGF-β and fibronectinsynthesis in mesangial cells[J]. Diabetes,2002;51(12):3505-9.
    [73] Shi YH, Zhao S, Wang C, Li Y, Duan HJ. Fluvastatin inhibits activation of JAK andSTAT proteins in diabetic rat glomeruli and mesangial cells under high glucoseconditions[J]. Acta Pharmacol Sin,2007;28(12):1938-46.
    [74] Banes-Berceli AK, Shaw S, Ma G, Brands M, Eaton DC, Stern DM, Fulton D,Caldwell RW, Marrero MB. Effect of simvastatin on high glucose-and angiotensinII-induced activation of the JAK/STAT pathway in mesangial cells[J]. Am J PhysiolRenal Physiol,2006;291(1):F116-21.
    [75] Park J, Ryu DR, Li JJ, Jung DS, Kwak SJ, Lee SH, Yoo TH, Han SH, Lee JE, KimDK, Moon SJ, Kim K, Han DS, Kang SW.MCP-1/CCR2system is involved in highglucose-induced fibronectin and type IV collagen expression in cultured mesangialcells[J]. Am J Physiol Renal Physiol,2008;295(3):F749-57
    [76] Kanamori H, Matsubara T, Mima A, Sumi E, Nagai K, Takahashi T, Abe H, IeharaN, Fukatsu A, Okamoto H, Kita T, Doi T, Arai H.Inhibition of MCP-1/CCR2pathwayameliorates the development of diabetic nephropathy[J]. Biochem Biophys ResCommun,2007;360(4):772-7.
    [77] Nam BY, Paeng J, Kim SH, Lee SH, Kim do H, Kang HY, Li JJ, Kwak SJ, Park JT,Yoo TH, Han SH, Kim DK, Kang SW. The MCP-1/CCR2axis in podocytes is involvedin apoptosis induced by diabetic conditions[J]. Apoptosis,2012;17(1):1-13.
    [78] Sayyed SG, Ryu M, Kulkarni OP, Schmid H, Lichtnekert J, Grüner S, Green L,Mattei P, Hartmann G, Anders HJ.An orally active chemokine receptor CCR2antagonistprevents glomerulosclerosis and renal failure in type2diabetes[J]. Kidney Int.2011;80(1):68-78.
    [79] Kang YS, Lee MH, Song HK, Ko GJ, Kwon OS, Lim TK, Kim SH, Han SY, HanKH, Lee JE, Han JY, Kim HK, Cha DR. CCR2antagonism improves insulin resistance,lipid metabolism, and diabetic nephropathy in type2diabetic mice[J]. Kidney Int.2010;78(9):883-94.
    [80] Ninichuk V, Khandoga AG, Segerer S, Loetscher P, Schlapbach A, Revesz L, FeifelR, Khandoga A, Krombach F, Nelson PJ, Schl ndorff D, Anders HJ. The role ofinterstitial macrophages in nephropathy of type2diabetic db/db mice[J]. Am J Pathol.2007;170(4):1267-76.
    [81] Ninichuk V, Clauss S, Kulkarni O, Schmid H, Segerer S, Radomska E, Eulberg D,Buchner K, Selve N, Klussmann S, Anders HJ. Late onset of Ccl2blockade with theSpiegelmer mNOX-E36-3′PEG prevents glomerulosclerosis and improves glomerularfiltration rate in db/db mice[J]. Am J Pathol.2008;172(3):628-37.
    [82] Tam FW, Riser BL, Meeran K, Rambow J, Pusey CD, Frankel AH. Urinarymonocyte chemoattractant protein-1(MCP-1) and connective tissue growth factor(CCN2) as prognostic markers for progression of diabetic nephropathy[J]. Cytokine.2009Jul;47(1):37-42.
    [83] Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target forprogressive renal injury in diabetic nephropathy[J]. Am J Physiol Renal Physiol.2008;294(4):F697-701.
    [84] Tashiro K, Koyanagi I, Saitoh A, Shimizu A, Shike T, Ishiguro C, Koizumi M,Funabiki K, Horikoshi S, Shirato I, Tomino Y. Urinary levels of monocytechemoattractant protein-1(MCP-1) and interleukin-8(IL-8), and renal injuries inpatients with type2diabetic nephropathy[J]. J Clin Lab Anal.2002;16(1):1-4.
    [85] Saitoh A, Sekizuka K, Hayashi T, Kaneko S, Suzuki Y, Tomino Y. Detection ofurinary MCP-1in patients with diabetic nephropathy[J]. Nephron,1998;80(1):99
    [86] Amann B, Tinzmann R, Angelkort B. ACE inhibitors improve diabetic nephropathythrough suppression of renal MCP-1[J]. Diabetes Care.2003;26(8):2421-5.
    [87] Kato S, Luyckx VA, Ots M, Lee KW, Ziai F, Troy JL, Brenner BM, MacKenzie HS.Renin-angiotensin blockade lowers MCP-1expression in diabetic rats[J]. Kidney Int.1999;56(3):1037-48.
    [88] Tone A, Shikata K, Nakagawa K, Hashimoto M, Makino H.Renoprotective effectsof clarithromycin via reduction of urinary MCP-1levels in type2diabetic patients[J].Clin Exp Nephrol.2011;15(1):79-85.
    [89] Sayyed SG, H gele H, Kulkarni OP, Endlich K, Segerer S, Eulberg D, Klussmann S,Anders HJ.Podocytes produce homeostatic chemokine stromal cell-derivedfactor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss andalbuminuria in a mouse model of type2diabetes[J]. Diabetologia,2009;52(11):2445-54.
    [90] Darisipudi MN, Kulkarni OP, Sayyed SG, Ryu M, Migliorini A, Sagrinati C,Parente E, Vater A, Eulberg D, Klussmann S, Romagnani P, Anders HJ. Dual blockadeof the homeostatic chemokine CXCL12and the proinflammatory chemokine CCL2hasadditive protective effects on diabetic kidney disease[J]. Am J Pathol.2011;179(1):116-24.
    [91] Kikuchi Y, Ikee R, Hemmi N, Hyodo N, Saigusa T, Namikoshi T, Yamada M,Suzuki S, Miura S.Fractalkine and its receptor, CX3CR1, upregulation instreptozotocin-induced diabetic kidneys[J]. Nephron Exp Nephrol,2004;97(1):e17-25.
    [92] Kikuchi Y, Imakiire T, Hyodo T, Kushiyama T, Higashi K, Hyodo N, Suzuki S,Miura S. Advanced glycation end-product induces fractalkine gene upregulation innormal rat glomeruli[J]. Nephrol Dial Transplant.2005;20(12):2690-6.
    [93] Matsui H, Suzuki M, Tsukuda R, Iida K, Miyasaka M, Ikeda H.Expression ofICAM-1on glomeruli is associated with progression of diabetic nephropathy in agenetically obese diabetic rat, Wistar fatty[J]. Diabetes Res Clin Pract.1996;32(1-2):1-9.
    [94] Clausen P, Jacobsen P, Rossing K, Jensen JS, Parving HH, Feldt-Rasmussen B.Plasma concentrations of VCAM-1and ICAM-1are elevated in patients with Type1diabetes mellitus with microalbuminuria and overt nephropathy[J]. Diabet Med.2000;17(9):644-9.
    [95] Ye SD, Zheng M, Zhao LL, Qian Y, Yao XM, Ren A, Li SM, Jing CY. Intensiveinsulin therapy decreases urinary MCP-1and ICAM-1excretions in incipient diabeticnephropathy[J]. Eur J Clin Invest.2009;39(11):980-5.
    [96] Okada S, Shikata K, Matsuda M, Ogawa D, Usui H, Kido Y, Nagase R, Wada J,Shikata Y, Makino H. Intercellular adhesion molecule-1-deficient mice are resistantagainst renal injury after induction of diabetes[J]. Diabetes,2003;52(10):2586-93
    [97] Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Tesch GH. Intercellularadhesion molecule-1deficiency is protective against nephropathy in type2diabeticdb/db mice[J]. J Am Soc Nephrol,2005;16(6):1711-22.
    [98] Seron D, Cameron JS, Haskard DO. Expression of VCAM-1in the normal anddiseased kidney[J]. Nephrol Dial Transplant,1991;6(12):917-22.
    [99] Narumi S, Onozato ML, Tojo A, Sakamoto S, Tamatani T. Tissue-specific inductionof E-selectin in glomeruli is augmented following diabetes mellitus[J]. Nephron,2001;89(2):161-71.
    [100] Jude EB, Douglas JT, Anderson SG, Young MJ, Boulton AJ. Circulating cellularadhesion molecules ICAM-1, VCAM-1, P-and E-selectin in the prediction ofcardiovascular disease in diabetes mellitus[J]. Eur J Intern Med.2002;13(3):185-189.
    [101] Albertini JP, Valensi P, Lormeau B, Aurousseau MH, Ferrière F, Attali JR,Gattegno L. Elevated concentrations of soluble E-selectin and vascular cell adhesionmolecule-1in NIDDM. Effect of intensive insulin treatment[J]. Diabetes Care,1998;21(6):1008-13.
    [102] Nakamura K, Yamagishi S, Adachi H, Matsui T, Kurita-Nakamura Y, Takeuchi M,Inoue H, Imaizumi T.Serum levels of soluble form of receptor for advanced glycationend products (sRAGE) are positively associated with circulating AGEs and soluble formof VCAM-1in patients with type2diabetes[J]. Microvasc Res.2008;76(1):52-56
    [103] Jialal I, Kaur H.The role of Toll-like receptors in diabetes-induced inflammation:implications for vascular complications[J]. Curr Diab Rep.2012;12(2):172-179
    [104] Li F, Yang N, Zhang L, Tan H, Huang B, Liang Y, Chen M, Yu X. Increasedexpression of toll-like receptor2in rat diabetic nephropathy[J]. Am J Nephrol.2010;32(2):179-86.
    [105] Devaraj S, Tobias P, Kasinath BS, Ramsamooj R, Afify A, Jialal I. Knockout ofToll-like receptor-2attenuates both the proinflammatory state of diabetes and incipientdiabetic nephropathy[J]. Arterioscler Thromb Vasc Biol.2011;31(8):1796-804.
    [106] Lin M, Yiu WH, Wu HJ, Chan LY, Leung JC, Au WS, Chan KW, Lai KN, TangSC. Toll-like receptor4promotes tubular inflammation in diabetic nephropathy[J]. J AmSoc Nephrol.2012;23(1):86-102.
    [107] Yilmaz MI, Saglam M, Qureshi AR, Carrero JJ, Caglar K, Eyileten T, Sonmez A,Cakir E, Oguz Y, Vural A, Yenicesu M, Stenvinkel P, Lindholm B, Axelsson J.Endothelial dysfunction in type-2diabetics with early diabetic nephropathy isassociated with low circulating adiponectin[J]. Nephrol Dial Transplant.2008;23(5):1621-7.
    [108] Ran J, Xiong X, Liu W, Guo S, Li Q, Zhang R, Lao G. Increased plasmaadiponectin closely associates with vascular endothelial dysfunction in type2diabeticpatients with diabetic nephropathy[J]. Diabetes Res Clin Pract.2010;88(2):177-83.
    [109] Guo LL, Pan Y, Jin HM. Adiponectin is positively associated with insulinresistance in subjects with type2diabetic nephropathy and effects of angiotensin II type1receptor blocker losartan[J]. Nephrol Dial Transplant.2009;24(6):1876-83.
    [110] Kato K, Osawa H, Ochi M, Kusunoki Y, Ebisui O, Ohno K, Ohashi J, Shimizu I,Fujii Y, Tanimoto M, Makino H. Serum total and high molecular weight adiponectinlevels are correlated with the severity of diabetic retinopathy and nephropathy[J]. ClinEndocrinol (Oxf).2008;68(3):442-9.
    [111] Saraheimo M, Forsblom C, Fagerudd J, Teppo AM, Pettersson-Fernholm K,Frystyk J, Flyvbjerg A, Groop PH; FinnDiane study group. Serum adiponectin isincreased in type1diabetic patients with nephropathy[J]. Diabetes Care,2005;28(6):1410-4
    [112] Jorsal A, Tarnow L, Frystyk J, Lajer M, Flyvbjerg A, Parving HH, Vionnet N,Rossing P.Serum adiponectin predicts all-cause mortality and end stage renal disease inpatients with type I diabetes and diabetic nephropathy[J]. Kidney Int.2008;74(5):649-654
    [113] Javor ED, Moran SA, Young JR, Cochran EK, DePaoli AM, Oral EA, TurmanMA, Blackett PR, Savage DB, O'Rahilly S, Balow JE, Gorden P. Proteinuric nephropathyin acquired and congenital generalized lipodystrophy:baseline characteristics and courseduring recombinant leptin therapy[J]. J Clin Endocrinol Metab.2004;89(7):3199-207.
    [114] Suganami T, Mukoyama M, Mori K, Yokoi H, Koshikawa M, Sawai K, Hidaka S,Ebihara K, Tanaka T, Sugawara A, Kawachi H, Vinson C, Ogawa Y, Nakao K.Prevention and reversal of renal injury by leptin in a new mouse model of diabeticnephropathy[J]. FASEB J.2005;19(1):127-129
    [115] Wolf G, Ziyadeh FN. Leptin and renal fibrosis[J]. Contrib. Nephrol.2006;151:175-183
    [116] Chung FM, Tsai JC, Chang DM, Shin SJ, Lee YJ. Peripheral total and differentialleukocyte count in diabetic nephropathy: the relationship of plasma leptin toleukocytosis[J]. Diabetes Care,2005;28(7):1710-17.
    [117] Chan WB, Ma RC, Chan NN, Ng MC, Lee ZS, Lai CW, Tong PC, So WY, ChanJC. Increased leptin concentrations and lack of gender difference in Type2diabeticpatients with nephropathy[J]. Diabetes Res Clin Pract.2004;64(2):93-8.
    [118] Fruehwald-Schultes B, Kern W, Beyer J, Forst T, Pfützner A, Peters A. Elevatedserum leptin concentrations in type2diabetic patients with microalbuminuria andmacroalbuminuria[J]. Metabolism.1999;48(10):1290-3.
    [119] Rudberg S, Persson B. Serum leptin levels in young females with insulin-dependentdiabetes and the relationship to hyperandrogenicity and microalbuminuria[J]. Horm Res.1998;50(6):297-302
    [120] Sari R, Balci MK, Apaydin C.The relationship between plasma leptin levels andchronic complication in patients with type2diabetes mellitus[J]. Metab Syndr RelatDisord.2010;8(6):499-503.
    [121] Sarnak MJ, Poindexter A, Wang SR, Beck GJ, Kusek JW, Marcovina SM, GreeneT, Levey AS.Serum C-reactive protein and leptin as predictors of kidney diseaseprogression in the Modification of Diet in Renal Disease Study[J]. Kidney Int.2002;62(6):2208-2215
    [122] Verrotti A, Basciani F, De Simone M, Morgese G, Chiarelli F. Serum leptin changesduring weight loss in obese diabetic subjects with and without microalbuminuria[J].Diabetes Nutr Metab.2001;14(5):283-287
    [123] Wilson C, Nelson R, Nicolson M, Pratley R. Plasma leptin concentrations: nodifference between diabetic Pima Indians with and without nephropathy[J]. Diabetologia,1998;41(7):861-862
    [124] Levi M, Wang X, Choudhury D. Nuclear hormone receptors as therapeutictargets[J]. Contrib. Nephrol.2011;170:209-216
    [125] Overbergh L, Decallonne B, Valckx D, Verstuyf A, Depovere J, Laureys J,Rutgeerts O, Saint-Arnaud R, Bouillon R, Mathieu C. Identification and immuneregulation of25-hydroxyvitamin D-1-α-hydroxylase in murine macrophages[J]. Clin.Exp. Immunol.2000;120(1):139-146
    [126] Deb DK, Chen Y, Zhang Z, Zhang Y, Szeto FL, Wong KE, Kong J, LiYC.1,25-Dihydroxyvitamin D3suppresses high glucose-induced angiotensinogenexpression in kidney cells by blocking the NF-κB pathway[J]. Am J Physiol RenalPhysiol.2009;296(5):F1212-8.
    [127] Zhang Z, Sun L, Wang Y, Ning G, Minto AW, Kong J, Quigg RJ, Li YC.Renoprotective role of the vitamin D receptor in diabetic nephropathy[J]. Kidney Int.2008;73(2):163-171
    [128] Ohara I, Tanimoto M, Gohda T, Yamazaki T, Hagiwara S, Murakoshi M, Aoki T,Toyoda H, Ishikawa Y, Funabiki K, Horikoshi S, Tomino Y. Effect of combinationtherapy with angiotensin receptor blocker and1,25-dihydroxyvitamin D3in type2diabetic nephropathy in KK-Ay/Ta mice[J]. Nephron Exp Nephrol.2011;117(4):e124-32
    [129] Deb DK, Sun T, Wong KE, Zhang Z, Ning G, Zhang Y, Kong J, Shi H, Chang A,Li YC. Combined vitamin D analog and AT1receptor antagonist synergistically blockthe development of kidney disease in a model of type2diabetes[J]. Kidney Int.2010;77(11):1000-1009.
    [130] Zhang Z, Zhang Y, Ning G, Deb DK, Kong J, Li YC.Combination therapy withAT1blocker and vitamin D analog markedly ameliorates diabetic nephropathy:blockade of compensatory renin increase[J]. Proc Natl Acad Sci U S A.2008;105(41):15896-901.
    [131] Sanchez-Ni o MD, Bozic M, Córdoba-Lanús E, Valcheva P, Gracia O, Ibarz M,Fernandez E, Navarro-Gonzalez JF, Ortiz A, Valdivielso JM. Beyond proteinuria: VDRactivation reduces renal inflammation in experimental diabetic nephropathy[J]. Am JPhysiol Renal Physiol.2012;302(6):F647-57.
    [132] Plum LA, Zella JB. Vitamin D compounds and diabetic nephropathy[J]. ArchBiochem Biophys.2012;523(1):87-94
    [133] Jiang T, Wang XX, Scherzer P, Wilson P, Tallman J, Takahashi H, Li J, IwahashiM, Sutherland E, Arend L, Levi M. Farnesoid X receptor modulates renal lipidmetabolism, fibrosis, and diabetic nephropathy[J]. Diabetes,2007;56(10):2485-2493
    [134] Wang XX, Jiang T, Shen Y, Caldas Y, Miyazaki-Anzai S, Santamaria H, UrbanekC, Solis N, Scherzer P, Lewis L, Gonzalez FJ, Adorini L, Pruzanski M, Kopp JB,Verlander JW, Levi M.Diabetic nephropathy is accelerated by farnesoid X receptordeficiency and inhibited by farnesoid X receptor activation in a type1diabetes model[J].Diabetes,2010;59(11):2916-2927
    [135] Park CW, Kim HW, Ko SH, Chung HW, Lim SW, Yang CW, Chang YS,Sugawara A, Guan Y, Breyer MD. Accelerated diabetic nephropathy in mice lacking theperoxisome proliferator-activated receptor α[J]. Diabetes,2006;55(4):885-893
    [136] Park CW, Zhang Y, Zhang X, Wu J, Chen L, Cha DR, Su D, Hwang MT, Fan X,Davis L, Striker G, Zheng F, Breyer M, Guan Y. PPARα agonist fenofibrate improvesdiabetic nephropathy in db/db mice[J]. Kidney Int.2006;69(9):1511-1517
    [137] Tomizawa A, Hattori Y, Inoue T, Hattori S, Kasai K. Fenofibrate suppressesmicrovascular inflammation and apoptosis through adenosine monophosphate-activatedprotein kinase activation[J]. Metab Clin Exp.2011;60(4):513-522
    [138] Li L, Emmett N, Mann D, Zhao X. Fenofibrate attenuates tubulointerstitialfibrosis and inflammation through suppression of nuclear factor-κB and transforminggrowth factor-β1/Smad3in diabetic nephropathy[J]. Exp Biol Med (Maywood).2010;235(3):383-91.
    [139] Chen L, Zhang J, Zhang Y, Wang Y, Wang B. Improvement of inflammatoryresponses associated with NF-κB pathway in kidneys from diabetic rats[J]. Inflamm Res.2008;57(5):199-204.
    [140] Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A,Davis T, Glasziou P, Drury P, Kes niemi YA, Sullivan D, Hunt D, Colman P, d'EmdenM, Whiting M, Ehnholm C, Laakso M; FIELD study investigators. Effects of long-termfenofibrate therapy on cardiovascular events in9795people with type2diabetesmellitus (the FIELD study): randomised controlled trial[J]. Lancet,2005;366(9500):1849-1861.
    [141] Balakumar P, Kadian S, Mahadevan N. Are PPARα agonists a rational therapeuticstrategy for preventing abnormalities of the diabetic kidney[J]? Pharmacol Res.2012;65(4):430-436
    [142] Asano T, Wakisaka M, Yoshinari M, Iino K, Sonoki K, Iwase M, Fujishima M.Peroxisome proliferator-activated receptor γ1(PPARγ1) expresses in rat mesangial cellsand PPARγ agonists modulate its differentiation[J]. Biochim Biophys Acta,2000;1497(1):148-154
    [143] Nicholas SB, Kawano Y, Wakino S, Collins AR, Hsueh WA. Expression and functionof peroxisome proliferator-activated receptor-γ in mesangial cells[J]. Hypertension,2001;37(2Pt2):722-7.
    [144] Yang T, Michele DE, Park J, Smart AM, Lin Z, Brosius FC3rd, Schnermann JB,Briggs JP. Expression of peroxisomal proliferator-activated receptors and retinoid Xreceptors in the kidney[J]. Am J Physiol.1999;277(6Pt2):F966-73.
    [145] Bao Y, Jia RH, Yuan J, Li J.Rosiglitazone ameliorates diabetic nephropathy byinhibiting reactive oxygen species and its downstream-signaling pathways[J].Pharmacology,2007;80(1):57-64
    [146] Zheng M, Ye S, Zhai Z, Chen Y, Li X, Yang G, Fan A, Wang Y. Rosiglitazoneprotects diabetic rats against kidney disease through the suppression of renal moncytechemoattractant protein-1expression[J]. J Diabetes Complications.2009;23(2):124-9.
    [147] Qian Y, Li S, Ye S, Chen Y, Zhai Z, Chen K, Yang G.Renoprotective effect ofrosiglitazone through the suppression of renal intercellular adhesion molecule-1expression in streptozotocin-induced diabetic rats[J]. J Endocrinol Invest.2008Dec;31(12):1069-74.
    [148] Kawai T, Masaki T, Doi S, Arakawa T, Yokoyama Y, Doi T, Kohno N, Yorioka N.PPAR-γ agonist attenuates renal interstitial fibrosis and inflammation through reductionof TGF-β[J]. Lab Invest.2009;89(1):47-58
    [149] Wang W, Liu F, Chen N. Peroxisome proliferator-activated receptor-γ (PPAR-γ)agonists attenuate the profibrotic response induced by TGF-β1in renal interstitialfibroblasts[J]. Mediators Inflamm.2007;2007:62641
    [150] Ko GJ, Kang YS, Han SY, Lee MH, Song HK, Han KH, Kim HK, Han JY, ChaDR.Pioglitazone attenuates diabetic nephropathy through an anti-inflammatorymechanism in type2diabetic rats[J]. Nephrol Dial Transplant.2008;23(9):2750-60.
    [151] Okada T, Wada J, Hida K, Eguchi J, Hashimoto I, Baba M, Yasuhara A, Shikata K,Makino H. Thiazolidinediones ameliorate diabetic nephropathy via cell cycle-dependentmechanisms[J]. Diabetes,2006;55(6):1666-1677
    [152] Ye S, Zheng M, Hu Y, Wu F, Zhao L, Chen Y. Hydrochloride pioglitazonedecreases urinary monocyte chemoattractant protein-1excretion in type2diabetics[J].Diabetes Res Clin Pract.2010;88(3):247-51.
    [153] Vijay SK, Mishra M, Kumar H, Tripathi K. Effect of pioglitazone androsiglitazone on mediators of endothelial dysfunction, markers of angiogenesis andinflammatory cytokines in type-2diabetes[J]. Acta Diabetol.2009;46(1):27-33
    [154] Cavender MA, Lincoff AM. Therapeutic potential of aleglitazar, a new dualPPAR-α/γ agonist: implications for cardiovascular disease in patients with diabetesmellitus[J]. Am J Cardiovasc Drugs.2010;10(4):209-16.
    [155] Arora MK, Reddy K, Balakumar P.The low dose combination of fenofibrate androsiglitazone halts the progression of diabetes-induced experimental nephropathy[J].Eur J Pharmacol.2010Jun25;636(1-3):137-44.
    [156] Matsushita Y, Ogawa D, Wada J, Yamamoto N, Shikata K, Sato C, Tachibana H,Toyota N, Makino H.Activation of peroxisome proliferator-activated receptor δ inhibitsstreptozotocin-induced diabetic nephropathy through anti-inflammatory mechanisms inmice[J]. Diabetes,2011;60(3):960-968