ESCs来源的神经前体细胞移植Aβ损伤大鼠海马后的分化与整合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease,AD)是一种多发于老年人的以进行性认知功能障碍和记忆损害为主的中枢神经系统退行性疾病[1]。其病理学特征为脑内细胞外淀粉样蛋白(amyloid peptides, Aβ)斑块沉积、细胞内神经纤维缠结(Neural fibrillary tangles,NFTs)以及神经元丢失。AD的病因和发病机制十分复杂,占主导地位的Aβ学说[2]认为β-淀粉样蛋白前体(APP)裂解产生的Aβ是AD患者脑内老年斑(SP)的主要成分,它引发AD的病理改变,导致神经原纤维缠结(NFT)形成、神经细胞丢失、血管损伤和痴呆形成。目前AD的治疗仍以药物为主,包括作用于胆碱能系统的药物、抗氧化药物、抑制Aβ形成和聚集的药物、抗炎药物、5-HT受体拮抗药、钾通道阻滞剂、脑代谢激活剂及中药等[3]。由于这些药物的治疗作用主要集中在维持退化的胆碱能神经元功能及疾病的早期,对于神经元大量丢失的晚期AD患者没有治疗效果。寻找能够改善AD患者中、晚期症状和细胞丢失的治疗方法已迫在眉睫。神经干细胞(neural stem cells,NSCs)移植为AD的治疗带来了希望。
     神经干细胞具有自我增殖和神经分化的生物学特性,可以分化为成熟的神经细胞。通过移植外源性NSCs可望补充替代因疾病或损伤而丢失的神经元和胶质细胞[4]。这种神经替代策略已在帕金森病[5,6]、亨廷顿病[7]、卒中[8]、脊髓损伤[9]等领域取得了令人鼓舞的成绩,部分成果已成功运用于临床。文献报道,将人NSCs移植到24月龄大鼠的脑内,能有效改善老龄鼠的认知功能障碍[10]。Wang等将胚胎干细胞来源的神经球移植到AD小鼠的前额叶和顶叶皮层,移植的神经球能存活、迁移并分化为胆碱乙酰转移酶阳性神经元和少数5-羟色胺能神经元,并显著改善AD小鼠的工作记忆能力[11]。神经干细胞移植成功的关键在于植入的神经元能整合到受者神经环路中去,即与受者神经元之间形成有功能的突触联系[12]。虽然有大量的研究表明细胞替代治疗能改善动物模型的认知能力,但是对于移植细胞与受者神经环路功能性整合这一重要问题缺乏证据支持。为此,我们将胚胎干细胞(embryonic stem cells, ESCs)无血清诱导为神经前体细胞(Neural precursor cells,NPCs)后移植到Aβ1-40损伤大鼠海马齿回,观察移植细胞的迁移、分化、与受者神经系统的整合以及对AD大鼠学习记忆功能的改善情况,为AD的治疗提供实验依据。
     材料与方法
     1.本研究采用海马齿回定位注射老化态Aβ1-40的方法建立AD大鼠模型,并对该模型进行Morris水迷宫行为学测试和包括刚果红染色、Fluoro-Jade B染色、尼氏染色以及GFAP免疫组化等组织病理学鉴定。
     2.从E13.5胎鼠原代分离小鼠胚胎成纤维细胞,传代培养并经丝裂霉素C处理后作为饲养层细胞。小鼠胚胎干细胞体外扩增后经改良的无血清培养法诱导分化产生神经前体细胞,并对其行Nestin免疫荧光染色鉴定和分化潜能的鉴定。
     3.将无血清诱导的神经前体细胞定点移植到Aβ1-40损伤的大鼠海马齿回,观察移植细胞的存活、迁移、分化、整合以及细胞移植对AD大鼠学习记忆的改善情况。
     结果
     1.通过海马内注射老化态Aβ1-40多肽成功建立AD大鼠模型。该模型空间学习记忆能力明显受损。在注射区可检测到刚果红染色阳性斑块。颗粒细胞层背侧带及齿回神经元大量变性坏死、丢失,损伤区有长达4个月之久的胶质细胞反应。因此该模型能较好的模拟AD的行为学和病理学特征,损伤部位明确,制作简单,有利于进行AD的基础和细胞移植研究。
     2.以经丝裂霉素C预处理的小鼠胚胎成纤维细胞作为饲养层,结合1000IU/ml的LIF,能有效地维持ESCs的增殖能力和未分化状态。采用改良的无血清选择性诱导法,依次经历ESCs—EBs—NPCs等几个阶段,可获得大量高纯度的神经前体细胞。
     3. NPCs海马内移植能显著改善Aβ损伤大鼠的空间学习记忆能力。
     4. NPCs移植Aβ损伤大鼠海马齿回后向颗粒细胞层两侧发生迁移。移植细胞在体存活率较低,且随着移植时间的延长,细胞存活率逐渐降低。存活的NPCs以星型胶质细胞分化为主,少数分化为Tuj1阳性神经元。
     5.少数植入Aβ损伤大鼠海马齿回的NPCs能分化为谷氨酸能和γ-氨基丁酸能神经元,表达NMDA受体、AMPA受体和GABAA受体,并且在其胞膜上观察到PSD95的表达以及受者神经元来源的突触素阳性颗粒。部分分化神经元能与受者自身神经元形成突触并整合到受者神经环路中去,参与大鼠的学习记忆过程。
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that mainly impairs central nervous system and clinically characterized by progressive memory loss, cognitive decline in elderly population. It is the most common form of senile dementia. The main pathological changes are extracellular deposit ofβ-amyloid peptides, intracellular neurofibrillary tangles, synaptic loss, and brain atrophy. The etiology and mechanism of AD are not clear, but the amyloid cascade hypothesis is widely accepted. The hypothesis presumes that gene mutation or other factors upregulate beta-amyloid (Aβ) and disorder its metabolism, and Aβdeposits as fibril aggregates forming senile plaques (SP) and intracellular neurofibrillary tangles (NFTs), which results in the degeneration and necrosis of neurons. Current therapies, such as treatment with acetylcholinesterase inhibitors to enhance cholinergic function, give only partial and temporary alleviation of symptoms, and would not retrieve the neural loss in the cortex and hippocampus of patients at advanced stage. Neural transplantation is regarded as an inspiring strategy for the treatment of AD.
     Cell replacement is a promising approach for treating neurodegenerative disorders that may overcome some of the existing limitations of traditional pharmaceutical approaches. Such neuroreplacement strategies offer great therapeutic potential for the treatment of neurological diseases such as Parkinson’s disease, Huntington’s disease, spinal cord trauma, and stroke. In one study the human undifferentiated NSCs were injected into the brain of 6-month-old and 24-month-old rats respectively. Their results demonstrated that human neural stem cells improved cognitive function of aged brain. Wang and colleagues transplanted ES cells-derived neurospheres into mouse model frontal cortex of Meynert nucleus lesion. They found that transplanted neurospheres survived, migrated and differentiated into many choline acetyltransferase-positive neurons and a few serotonin-positive neurons. The working memory error decreased significantly in the mice grafted with neurospheres. Despite the broad experimental application of neuronal transplantation, few studies have addressed the functional integration of single neurons in the host CNS. Therefore, our purpose focus on the differentiation and integration of engrafted NPCs after transplanted into the hippocampus of Aβ1-40-injured rats.
     Materials and methods:
     1. Rats model was established by the intrahippocampal injection of aggregatedβ-amyloid (1-40), the learning and memory of AD model rats was measured by the Morris water maze test. The histopathological changes of AD model was observed by Congo Red staining, Nissl staining, Fluoro-Jade B(FJB) staining and GFAP immunohistochemistry.
     2. Mouse embryonic fibroblast (MEF) were separated from E13.5 pregnant mouse and passaged 3-5 generation, then used as feeder layers treated by mitomycin C for 150 minutes,. An EGFP-expressing derivative of the ES cell line MESPU35 were expanded on feeder layers combinated with leukemia inhibitory factor (LIF). NPCs were generated from ESCs by the modified serum-free methods, and detected by Nestin immunohistochemistry.
     3. NPCs generated from mouse ESCs in vitro were transplanted into the hippocampus of Aβ1-40-injured rats. And the survive, migration, differentiation and integration of engrafted NPCs were observed, and the improvement of memory dysfunction of Aβ1-40-injured rats was also observed.
     Results
     1. The AD model was established by intrahippocampal injection of aggregated beta-amyloid(1-40). Learning and memory of the AD rats were significantly declineded by Morris Water Maze test two weeks post-surgery. The Congo Red-positive plaques were detected around the injection sites of Aβ1-40. FJB and Nissl staining showed the obvious neural degeneration and loss around the injection site. Furthermore, the GFAP-positive astrocyte were over-activated compared with NS-injected control group for four month longer. This model can mimic the cognitive functions impairment and pathology characters of AD well and facilitate the following research on NPCs transplantation.
     2. Purified mouse embryonic fibroblasts (MEF) were isolated from E13.5 pregnant mouse to prepare feeder layer for ES culture. ES cells can be expanded in vitro without differentiation under the condition of feed layer combinated with leukemia inhibitory factor (LIF). After removal of feeder cells, hLIF and planted on the bacterial culture dishes, embryonic bodies were formed, and then differentiated into NPCs under the serum-free medium supplemented by N2 plus fibronectin, about 93% of which were Nestin-positive cells.
     3. After intrahippocampal transplantation of NPCs, the cognitive functions of AD rats were assessed by Morris water maze test. It shows learning and memory impairment of AD rats was improved significantly at 4w、8w、12w、16w post-transplantation.
     4. Engrafted NPCs migrated steadily farther under the guidance of local circumstance as time goes on. The survival rate of engrafted NPCs was 7.32±0.69% and decreased significantly gradually from 4w to 16w. At the same time, the living NPCs mostly differentiated into GFAP-positive astrocytes and some differentiated into Tuj1-positive neurons.
     5. A few engrafted NPCs expressed the neuronal glutamate transporter protein (EAAT3) and the rate-limiting enzyme for GABA synthesis (GAD67), suggesting efficient differentiation into glutamatergic neurons and GABAergic neurons. Some engrafted NPCs express ionotropic glutamate and GABA receptors using antibodies to the AMPA receptor (GluR1), the GABAA receptor (βchain), and the NMDA receptor (NR1). Confocal immunofluorescence analysis revealed PSD95-positive puncta were typically found in close proximity to the engrafted NPCs surface and numerous synaptophysin-positive, EGFP-negative patches were found in close apposition to the somatic and dendritic membranes of transplanted cells, suggesting that host-derived presynaptic terminals contact incorporated NPCs-derived neurons. Ultrastructural analysis demonstrated the synapse formation between the donor cell-derived neurons and the host neurons. Morris water maze test bombined immunohistology of Fos-expression indicate some engrafted NPCs-derived neurons incorporated into the host brain circuitry and participated the learning and memory process.
引文
1. Clark C, Karlawish J. Alzheimer disease: current concepts and emerging diagnostic and therapeutic strategies. Ann Intern Med, 2003, 138(5):400-410.
    2. Daniel SA, Tom JK, Stephane B, et al. Alzheimer’s disease and the basal forebrain cholinergic system: relation toβ-amyloid peptides, cognition and treatment strategies. Prog Neurobiol, 2002, 68(3):209-245.
    3. John QT. Emerging Alzheimer's disease therapies: focusing on the future. Neurobiol Aging, 2002, 23(3):985-990.
    4. Oliveira AA Jr, Hodges HM. Alzheimer's disease and neural transplantation as prospective cell therapy. Current Alzheimer Research, 2005,2(1):79-95
    5. Xu, H.W., Fan, X.T., Wu, X., Tang, J., Yang, H., 2005. Neural precursor cells differentiated from mouse embryonic stem cells relieve symptomatic motor behaviour in a rat model of Parkinson’s disease. Biochem. Bioph. Res. Co. 326, 115-122.
    6. Cho MS, Lee YE, Kim JY, et al. (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA, 105(9):3392-7.
    7. Pineda JR, Rubio N, Akerud P, et al. (2007) Neuroprotection by GDNF-secreting stem cells in a Huntington’s disease model:optical neuroimage tracking of brain-grafted cells. Gene Ther, 14:118-128
    8. Daadi MM, Maag AL, Steinberg GK, et al. (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS ONE, 3(2):e1644.
    9. Ankeny, D.P., McTigue, D.M., Jakeman. L.B., 2004. Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp. Neurol. 190, 17-31.
    10. Qu T, Brannen C L, Kim H M, et al. Human neural stem cells improve cognitive function of aged brain. Neuroreport, 2001, 12: 1127-1132.
    11. Wang Q, Matsumoto Y, Shindo T, et al. Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Invest.2006, 53(1-2): 61-69.
    12. Benninger F, Beck H, Wernig M et al. Functional integration of embryonic stemcell-derived neurons in hippocampal slice cultures. J Neurosci, 2003; 23: 7075-7083.
    13. Yaari R, Corey-Bloom J. Alzheimer's disease. Semin Neurol, 2007, 27(1):32-41.
    14. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature, 2006; 441: 1094-96.
    15. Kellv S, Bliss TM, Shah AK et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA, 2004; 101: 11839-44.
    16. Walsh DT, Montero RM, Bresciani LG, et al. Amyloid-beta peptide is toxic to neurons in vivo via indirect mechanisms. Neurobiology of Disease, 2002, 10(1):20-27.
    17. Wang S, Chen YT, Chen PH, et al. A kinetic study on the aggregation behavior ofβ-amyloid peptides in different initial solvent environments. Biochemical Engineering Journal, 2006, 29:129-138.
    18. Giovannelli L, Casamenti F, Scali C, et al. Differential effects of amyloid peptidesβ(1-40) andβ(25-35) injections into the rat nucleus basalis. Neuroscience, 1995, 66(4):781-792.
    19.包新民,舒斯云,主编.大鼠脑立体定位图谱[M].北京:人民卫生出版社,1991
    20. Schmued LC, Hopkins KJ. Fluoro-Jade B:a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Research, 2000, 874(2):123-130.
    21. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy.[J] Physiological Reviews, 2001,81(2):741-766.
    22.王颍颜,黄韧,王晖.老年性痴呆动物模型及其评价.中国临床药理学与治疗学,2004,9(3):249-252
    23. Butterfield DA, Poon HF. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Experimental Gerontology, 2005, 40(10):774-783.
    24. Lalonde R, Dumont M, Staufenbiel M, et al. Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Research, 2002, 956:36-44.
    25. Janus C, D'Amelio S, Amitay O, et al. Spatial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes. Neurobiology of aging, 2000, 21:541-549.
    26. Bovolent P, Isabel FE. Nervous system proteoglyczns as modulators of neurie out growth. Preg Neurobiol, 2000, 61(2):113-32
    27. Irizarry MC, Hymam BT. Alzheimer's disease therapeutics. Neuropathol Exp Neurol, 2001, 60(10):923-8
    28. Fiala M, Zhang L, Gan X, et al. Amyloid-beta induces chemokine secretion and monocyte migration across a human blood-brain barrier model. Mol Med, 1998, 4(7):480-489.
    29. Takata K, Kitamura Y, Tsuchiy D, et al. Microglial activation around amyloid-βdeposits in mouse and rat models. International Congress Series, 1260(2004) 265-269.
    30. Stepanichev MY, Zdobnova IM, Zarubenko II, et al. Amyloid (25-35)- induced memory impairments correlate with cell loss in rat hippocampus. Physiology & Behavior 2004, 80(5):647-655.
    31. Rosales-Corral S, Tan DX, Reiter RJ, et al. Kinetics of the neuroinflammation oxidative stress correlation in rat brain following the injection of fibrillar amyloid-βinto the hippocampus in vivo. Journal of Neuroimmunology, 2004, 150:20-28.
    32. Jhoo JH, Kim HC, Nabeshim T, et al.β-Amyloid(1-42)-induced learning and memory deficits in mice: involvement of oxidative burdens in the hippocampus and cerebral cortex. Behavioural Brain Research, 2004, 155:185-196.
    33. Giovannelli L, Scali C, Faussone-Pellegrini MS, et al. Long-term changes in the aggregation state and toxic effects ofβ-amyloid injected into the rat brain. Neuroscience, 1998, 87(2):349-357.
    34. Serpell LC. Alzheimer's amyloid fibrils: structure and assembly. Biochim. Biophys Acta, 2000, 1502:16-30.
    35. Cecchini M, Curcio R, Pappalardo M, et al. A molecular dynamics approach to the structural characterization of amyloid Aggregation. J Mol Biol, 2006, 357:1306-1321.
    36. Nilsson MR, Raleigh DP. Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin. Journal of Molecular Biology, 1999, 294(5):1375-1385.
    37. Ryu JK, McLarnon JG. Minocycline or iNOS inhibition block 3-nitrotyrosine increases and blood–brain barrier leakiness in amyloid beta-peptide-injected rat hippocampus. Experimental Neurology, 2006, 198(2):552-557.
    38. Li Ya, Qin HQ, Chen QS, et al. Neurochemical and behavioral effects of the intrahippocampal co-injection ofβ-amyloid protein1-40 and Ibotenic acid in rats. Life Sciences, 2005, 76(11):1189-1197.
    39. Monzón-Mayor M, Alvarez M, Arbelo-Galván J, et al. Long-term evolution of local, proximal and remote astrocyte responses after diverse nucleus basalis lesioning (an experimental Alzheimer model): GFAP immunocytochemical study. Brain Research, 2000, 865(2):245-258.
    1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292:154-156.
    2. Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cell. Proc Natl Acad Sci USA, 1998, 95(23): 13726-13731.
    3. Byrne JA, Pedersen DA, Clepper LL, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature, 2007, 450(7169):497-502.
    4. Nakagawa M, Yamanaka S. Mechanism for maintaining pluripotency in embryonic stem cells and inner cell mass. Tanpakushitsu Kakusan Koso, 2005, 50(6Suppl): 546-50
    5. Carpenter MK, Cui X, Hu ZY, et al. In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol, 1999, 158:265-278.
    6. Li JY, Christophersen NS, Hall V, et al. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci, 2008, 31(3):146-53.
    7. Okabe S, Forsberg-Nilsson K, Spiro AC, et al. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev, 1996, 59:89-102.
    8. Xu HW, Fan XT, Tang J, et al. A modified method for generation of neural precursor cells from mouse embryonic stem cells. Brain Research Protocols, 2005, 15:52-58.
    9. Thomson JA, Thomson, Itskovitz-Eldor JS, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 2829(5391):1145-1147.
    10. Ruth Kirschstein, Lana R. Skirboll scientific progress and future research directions. Stem Cells, 2001.
    11. Geijsen N, Horoschak M, Kim K, et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 2004, 427:148-154.
    12. Joannides AJ, Chandran S. Human embryonic stem cells: an experimental and therapeutic resource for neurological disease. J Neurol Sci, 2008, 265(1-2):84-8.
    13. Salero E, Hatten ME. Differentiation of ES cells into cerebellar neurons. Proc Natl Acad Sci USA, 2007, 104(8):2997-3002.
    14. Cho MS, Lee YE, Kim JY, et al. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA, 2008, 105(9):3392-7.
    15. Li XJ, Hu BY, Jones SA, et al. Directed Differentiation of Ventral Spinal Progenitors and Motor Neurons from Human Embryonic Stem Cells by Small Molecules. Stem Cells, 2008,[Epub ahead of print]
    16. Kang SM, Cho MS, Seo H, et al. Efficient induction of oligodendrocytes from human embryonic stem cells. Stem Cells, 2007, 25:419-424.
    17. Bibel M, Richter J, Lacroix E, et al. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat Protoc, 2007, 2(5):1034-43
    18. Brustle O, Spiro AC, Karram K. In vitro-generated neural precursors participate in mammalian brain development. PNAS, 1997, 94:14809-14814.
    19. Brustle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors: A source of myelinating transplants. Science, 1999, 285(5428): 754-756.
    20. Bjorklund LM, Sanchez PR, Chung S, et al. Embryonic stem cells develop into funtional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA, 2002, 99(4):2344-2349.
    21. Muotri AR, Nakashima K, Toni N, et al. Development of functional human embryonic stem cell-derived neurons in mouse brain. Proc Natl Acad Sci USA, 2005, 102(51):18644-8.
    22. Temple S. Embryonic stem cell self-renewal, analyzed. Cell, 2003, 115(3):247-8.
    23. Baharvand H, Azarnia M, Parivar K, et al. The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes. J Mol Cell Cardiol, 2005, 38(3):495-503.
    24. Czyz J, Wobus A. Embryonic stem cell differentiation: the role of extracellular factors. Differentiation, 2001, 68(4-5):167-74.
    25. Rodriguez-Gomez JA, Lu JQ, Velasco I, et al.Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells, 2007, 25:918-928.
    26. Reubinoff BE, Itsykson P, Turetsky T, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol, 2001, 19:1134-1140.
    27. Ringden O, Blanc LK, Hovatta O. Transplantation of embryonic stem cells: possibilities and challenges. Transplantation, 2003, 76:1011-1012.
    28. Hong S, Kang UJ, Isacson O, et al. Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. J Neurochem, 2008, 104(2):316-24.
    29. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations lessons from embryonic development. Cell, 2008, 132(4):661-80.
    30. Bain G, Kitchens D, Yao M, et al. Embryonic stem cells express neuronal properties in vitro. Development Biology, 1995, 168(2):342-357.
    31. Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 2000, 28(1):31-40.
    32. Desbaillets I, Ziegler U, Groscurth P, et al. Embryoid bodies: an in vitro model of mouse embryo-genesis. Exp Physiol, 2000, 85:645–651
    33. Schumacher A, Arnhold S, Addicks K, et al. Staurosporine is a potent activator of neuronal, glial, and "CNS stem cell-like" neurosphere differentiation in murine embryonic stem cells. Mol Cell Neurosci, 2003, 23:669-680.
    1. Yaari R, Corey-Bloom J. Alzheimer's disease. Semin Neurol, 2007, 27(1):32-41.
    2. John QT. Emerging Alzheimer's disease therapies: focusing on the future. Neurobiol Aging, 2002, 23(3):985-990.
    3. Oliveira AA Jr, Hodges HM. Alzheimer's disease and neural transplantation as prospective cell therapy. Current Alzheimer Research, 2005,2(1):79-95
    4. Wang Q, Matsumoto Y, Shindo T, et al. Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Invest.2006, 53(1-2): 61-69.
    5. Benninger F, Beck H, Wernig M et al. Functional integration of embryonic stem cell-derived neurons in hippocampal slice cultures. J Neurosci, 2003; 23: 7075-7083.
    6. Joannides AJ, Chandran S. Human embryonic stem cells: an experimental and therapeutic resource for neurological disease. J Neurol Sci, 2008, 265(1-2):84-8.
    7. Englund U, Bjorklund A, Wictorin K, et al. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci USA, 2002, 99:17089-17094.
    8. Bühnemann C, Scholz A, Bernreuther C, et al. Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain, 2006, 129(12):3238-48.
    9. Brüstle O, Spiro AC, Karram K, et al. In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci USA, 1997, 94:14809-14814.
    10. Brüstle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science, 1999, 285: 754-756.
    11. Hoglinger GU, Widmer HR, Spenger C, et al. Influence of time in culture and BDNF pretreatment on survival and function of grafted embryonic rat ventral mesencephalon in the 6-OHDA rat model of parkinson's disease. Exp Neurol, 2001, 167:148-157.
    12. Xu HW, Fan XT, Wu X,et al. Neural precursor cells differentiated from mouse embryonic stem cells relieve symptomatic motor behavior in a rat model of Parkinson's disease. Biochem and Biophy Res Com, 2004, 326(1):115-122.
    13. Doering LC, Snyder EY. Cholinergic expression by a neural stem cell line grafted to the adult medial septurn/diagonal band complex. J Neurosci Res, 2000, 61:597-604.
    14. Qu T, Brannen CL, Kim HM, et al. Human neural stem cells improve cognitive function of aged brain. Neuroreport, 2001, 12:1127-1132.
    15.吴树亮,金连弘,李竹英.阿尔茨海默病动物模型的建立及神经干细胞对阿尔默海病的治疗作用.中国临床康复,2004,8(19):3734-3736.
    16. Li JY, Christophersen NS, Hall V, et al. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci, 2008, 31(3):146-53.
    17. Byrne JA, Pedersen DA, Clepper LL, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature, 2007, 450(7169):497-502.
    18. Cervera RP, Stojkovic M. Commentary: somatic cell nuclear transfer-progress and promise. Stem Cells, 2008, 26(2):494-5.
    19. McDonald JW, Liu XZ, Qu Y, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spincord. Nature Medecine, 1999, 5:1410-1412.
    20. Aggleton JP, Vann SD, Oswald CJ, et al. Identifying cortical inputs to the rat hippocampus that subserve allocentric spatial processes: a simple problem with a complex answer. Hippocampus, 2000, 10(4):466.
    21. Petit V, Thiery JP. Focal adhension: structure and dynamics. Biol Cell, 2000, 92:477-494.
    22. Imitola J, Raddassik K, Park KI et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA, 2004; 101: 18117-18122.
    23. Gao J, Prough DS, McAdoo DJ et al. Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol, 2006; 201: 281-292.
    24. Tai YT, Svendsen CN, Stem cells as a potential treatment of neurological disorders. Curr Opin Pharmacol, 2004, 4:98-104.
    25. Baier PC, Schindehutte J, Thinyane K, et al. Behavioral changes in unilaterally
    6-hydroxy-dopamine lesioned rats after transplantation of differentiated mouse embryonic stem cells without morphological integration. Stem Cells, 2004, 22(3):396-404.
    26. Wernig M, Benninger F, Schmandt T, et al. Functional integration of embryonic stemcell-derived neurons in vivo. J Neurosci, 2004, 24(22):5258-68
    27. Guzowski JF, Timlin JA, Roysam B, et al. Mapping behaviorally relevant neural circuits with immediate-early gene expression. Curr Opin Neurobiol, 2005,(15): 599-606.
    28. Kee N, Teixeira CM, Wang AH, et al. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci, 2007, 10(3):273-5.
    29. Tischmeyer W, Kaczmarek L, Strauss M, et al. Accumulation of c-fos mRNA in rat hippocampus during acquisition of a brightness discrimination. Behav Neu Bial, 1990, 54:165-171.
    30. van Praag H, Schinder AF, Christie BR, et al. Functional neurogenesis in the adult hippocampus. Nature, 2002, 415(6875):1030-4.
    31. Englund U, Bjorklund A, Wictorin K et al. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci USA, 2002; 99: 17089-17094.
    32. Bühnemann C, Scholz A, Bernreuther C, et al. Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain, 2006, 129(12):3238-48
    33. Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci, 2006,7(5):395-406
    34. Lee JP, Jevakumar M, Gonzalez R, at al. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med, 2007,13(4):439-447
    35. Yasuhara T, Matsukawa N, Hara K, et al. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson's disease. J Neurosci, 2006,26(48):12497-511
    1. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992, 255:1707-1710.
    2. Richards LJ, Kilpatrick TJ, Bartlett PF. De novo generation of neural cells from the adult mouse brain. Proc Natl Acad SciUSA, 1992, 89:8591-8595.
    3. Hideyuki Okano, Masanori Sakaguchi, Koichi Ohki, et al. Regeneration of the central nervous system using endogenous repair mechanisms. Journal of Neurochemistry, 2007, 102(5):1459-1465.
    4. Zietlow R, Lane EL, Dunnett SB. Human stem cells for CNS repair. Cell Tissue Res, 2008, 331(1):301-22.
    5. McKay R. Stem cells in the central nervous system. Science, 1997, 276:66-71.
    6. Gage FH. Mammalian neural stem cells. Science, 2000, 287(5457): 1433-1438.
    7. Lendahl U, Zimmerman LB, McKay RDG. CNS stem cell express a new class of intermediate filament protein. Cell, 1990,60:585-595.
    8. Sakakibara S, Okano H. Mouse-Musshi-1: a neural RNA-binding protein highly enriched in the mammalian CNS stem cells. Dev Bio, 1996, 176:239-242.
    9. Zeng X, Rao MS.Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience, 2007, 145(4):1348-58.
    10. Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature, 2001, 414:92-97.
    11. Sanchez Ramos J, Song S, Cardozo Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells invitro. Exp Neurol, 2000, 164:247-256.
    12. Jiang Yh, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418:41-49.
    13. Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev, 2006, 2:155-162.
    14. Cipriani S, Bonini D, Marchina E, et al. Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain. Cell Biol Int, 2007, 31(8):845–850
    15. Dennis A Steindler. Neural stem cells, scaffolds, and chaperones. Nat Biotechnol, 2002, 20:1091-1093.
    16. Sean I Savitz, Rosenbaum DM, Dinsmove JH, et al. Cell transplantation for stroke. Ann Neural, 2002, 52:266-275.
    17. De Filippis L, Lamorte G, et al, Snyder EY. A novel, immortal, and multipotent human neural stem cell line generating functional neurons and oligodendrocytes. stem cells, 2007, 25(9):2312-21.
    18. Wilmut I, Beaujean N, de Sousa PA, et al. Somatic cell nuclear transfer. Nature, 2002, 419:583-586.
    19. Vescovi AL, Synder EY. Establishment and properties of neural stem cell clones: plasticity in vit ro and in vivo. Brain Pathol, 1999, 9(3):569-598.
    20. Galli R, Borello U, Gritti A, et a1. Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci, 2000, 3:986-99l.
    21. Amar AP, Zlokovic BV, Apuzzo MLJ. Endovascular restorative neurosurgery: A novel concept for molecular and cellular therapy of t he nervous system. Neurosurgery, 2003, 52(2):402-413.
    22. A1eksandrova MA, Saburina IN, Korochkin LI, et al. Behavior and differentiation of neural stem cells in vivo. Izv Akad Nauk Ser Biol, 2001, (6):656-665.
    23. Wang YH, Liu YJ, Lu HL, et al. In vitro culture and induced differentiation of adult rat neural stem cells from the corpus striatum. Di Yi Jun Yi Da Xue Xue Bao, 2004, 24(2):192-194, 197.
    24. Modo M, Rezaie P, Heuschling P, et al. Transplantation of neural stem cells in a rat model of stroke: assessment of short-term graft survival and acute host immunological response. Brain Res, 2002, 958(8):70-82.
    25.曾水林,韩洋,王磊,等.同种异体神经干细胞脑内移植免疫排斥反应的实验研究.细胞与分子免疫学杂志,2006,22:110-112.
    26. Snyder EY, Macklis JD. Multipotent neural progenitor or stem-like cells may be uniquely suited for therapy for some neurodegenerative conditions. Clin Neurosci, 1995-96, 3(5):310-316.
    27. Ehtesham M, Kabos P, Kabosova A, et al. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res, 2002, 62(20):5657-5663.
    28. Chen J, Li Y, Chopp M. Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology, 2000, 39(5):711;716.
    29. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA, 1999, 96(19):10711-10716.
    30. Li Y, Chen J, Wang L, et al. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neurosci Lett, 2001, 316(2):67-70.
    31. Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neural stem cells. Science, 2000, 288(5471):1660-1663
    32. Kondo T, Ruff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science, 2000, 289:1754-1757.
    33. Wang Y, Chen S, Yang D, et al. Stem cell transplantation: a promising therapy for Parkinson's disease. J Neuroimmune Pharmacol, 2007, 2(3):243-50
    34. Okano H, Sakaguchi M, Ohki K, et al. Regeneration of the central nervous system using endogenous repair mechanisms. J Neurochem, 2007, 102(5):1459-65.
    35. Mao L, Lau YS, Petroske E, et al. Profound astrogenesis in the striatum of adult mice following nigrostriatal dopaminergic lesion by repeated MPTP administration. Brain Res Dev Brain Res, 2001, 131:57-65.
    36. Fallon J, Reid S, Kinyemu R, et al. In vivo induction of massive proliferation directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Aced Sci USA, 2000, 97:14686-14691.
    37. Cao Q, Benton RL, Whittemore SR. Stem cell repair of central nervous system injury. J Neurosci Res, 2002, 68(5):501-510.
    38. Kageyama R, Ohtsuka T, Hatakeyama J, et al. Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res, 2005, 306:343-348.
    39. Groszer M, Erickson R, Scripture-Adams DD, et al. Negative regulation of neural stem: progenitor cell proliferation by the pten tumor suppressor gene in vivo. Science, 2001, 294(5549):2186-2189.
    40. Zhong W, Jiang MM, Schonemann MD, et al. Mouse numb is an essential generevo1ved in conical neurogenesis. Proc Natl Acad SciUSA, 2000, 97(12):6844-6849
    41. Sakurada K, Ohshima-Sakurada M, Palmer TD, et a l. Nurrl, an orphan nuclear receptor, is an transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development, 1999, 126(18):4017-4026.
    42. Amoureux MC, Cunningham BA, Edelman Gm, et al. N-CAM binding inhibits the proliferation of hippocampal progenitor cells promotes their differentiation to a neuronal phenotype. J Neurosci, 2000, 20(10):3631-3640
    43. Zietlow R, Lane EL, Dunnett SB, et al. Human stem cells for CNS repair. Cell Tissue Res, 2008, 331(1):301-22.
    44. Kim SU. Genetically engineered human neural stem cells for brain repair in neurological diseases. Brain Dev, 2007, 29:193-201.
    45. Astradsson A, Cooper O, Vinuela A, et al. Recent advances in cell-based therapy for Parkinson disease. Neurosurg Focus, 2008, 24(3-4):E6.
    46. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature, 2006; 441: 1094-96
    47. Takahashi J. Stem cell therapy for Parkinson's disease. Expert Rev Neurother, 2007, 7(6):667-75.
    48. Nishino H, Hida H, TakeiN, et al. Exp Neurol, 2000, 164: 209.
    49. Anderson L, Caldwell MA.Human neural progenitor cell transplants into the subthalamic nucleus lead to functional recovery in a rat model of Parkinson's disease. Neurobiol Dis, 2007, 27(2):133-40.
    50. Redmond DE Jr, Bjugstad KB, Teng YD, et al. Behavioral improvement in a primate Parkinson's model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci USA. 2007, 104(29):12175-80
    51. Studer L, Tabar V, McKay RD. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci, 1998, 1 (4): 290-295.
    52. Cho MS, Lee YE, Kim JY, et al. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA, 2008, 105(9):3392-7.
    53. Corti O, Sabate O, Horellou P, et al. Nature Biotech, 1999, 17:349.
    54.徐强,徐如祥,姜晓丹,等.外源性Egfp和th基因修饰骨髓基质细胞源神经干细胞帕金森病猴模型脑内移植后的跟踪观察.中华神经医学杂志, 2006, 5(5):438-441.
    55. Ebert AD, Beres AJ, Barber AE, et al. Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson's disease. Exp Neurol, 2008, 209(1):213-23.
    56. Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med, 2000, 344 (10):710-719.
    57. Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med, 2001, 344:710-719.
    58. Olanow CW, Goetz CG, Kordower JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol, 2003, 54:403-414.
    59. Lindvall O. Stem cells for cell therapy in Parkinson’s disease. Pharmacological Research, 2003, 47:279-287.
    60. Heese K, Low JW, Inoue N. Nerve growth factor, neural stem cells and Alzheimer’s disease. Neurosignals, 2006, 15:1-12.
    61. Doering LC, Snyder EY. Cholinergic expression by a neural stem cell line grafted to the adult medial septurn/diagonal band complex. J Neurosci Res, 2000, 61:597-604.
    62. Gray JA, Grigoryan G, Virley D, et al. Conditionally immortalized, multipotential and multifunctional neural stem cell lines as an approach to clinical transplantation. Cell Transplant, 2000, 9(2): 153-168.
    63. Qu T, Brannen C, Kim H, et al. Human neural stem cells improve cognitive function of aged brain. Neuroreport, 2001, 12(6):1127-1132.
    64.吴树亮,金连弘,李竹英.阿尔茨海默病动物模型的建立及神经干细胞对阿尔默海病的治疗作用.中国临床康复,2004,8(19):3734-3736.
    65. Levell MA, Geiger H, Van Zant GE, et al. Isolation of neural precursor cells from A1zheimer's disease and aged control postmortem brain. Neurobiol Aging, 2006, 27(7): 909-917.
    66. Sugaya K. Possible use of autologous stem cell therapies for Alzhelmer's disease. Curr Alzheimer Res, 2005, 2(3):367-376.
    67. Clelland CD, Barker RA, Watts C, et al. Cell therapy in Huntington disease. Neurosurg Focus. 2008, 24(3-4):E9.
    68. Ryu JK, Kim J, Cho SJ, et al. Proactive transplantation of human neural stem cellsprevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol Dis, 2004, 16(1):68-77
    69. Brasted PJ, Watts C, Robbins TW, et al. Associative plasticity in striatial transplants. Proc Natl Acad sci USA, 1999, 96:10524-1O529.
    70. Johann V, Schiefer J, Sass C, et al. Time of transplantation and cell preparation determine neural stem cell survival in a mouse model of Huntington's disease. Exp Brain Res, 2007, 177(4):458-70.
    71. Pineda JR, Rubio N, Akerud P, et al. Neuroprotection by GDNF-secreting stem cells in a Huntington’s disease model:optical neuroimage tracking of brain-grafted cells. Gene Ther, 2007, 14:118-128
    72. Hersch SM, Ferrante RJ. Translating therapies for Hurtington's disease from genetic animal models to clinical trials. NeuroRx, 2004, 1:298-306.
    73. Keene CD, Sonnen JA, Swanson PD, et al. Neural transplantation in Huntington disease: long-term grafts in two patients. Neurology, 2007, 68(24):2093-8
    74. Bachoud-Levi AC, Gaura V, Brugieres P, et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol, 2006, 5:303-309.
    75. Wu P, Tarasenko YI, Gu Y, et al . Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci, 2002, 5(12): 1271-1278.
    76. Kerr DA, LladòJ, Shamblott MJ, et al. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci, 2003, 23:5131-5140.
    77. Xu L, Yan J, Chen D, et al. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation, 2006, 82(7):865-75.
    78. Gao J, Coggeshall RE, Tarasenko YI, et al. Human neural stem cell-derived cholinergic neurons innervate muscle in moto-neuron deficient adult rats. Neuroscience, 2005, 131(2):257-262.
    79. Gao J, Coggeshall RE, Chung JM, et al. Functional motoneurons develop from human neural stem cell transplants in adult rats. Neuroreport, 2007,18(6):565-9
    80. Zurn AD, Henry H, Schluep M, et al. Evaluation of an intrathecal immune response inamyotrophic lateral sclerosis patients implanted with encapsulated genetically engineered xenogeneic cells. Cell Transplant, 2000, 9(4):471-84.
    81. Mazzini L, Mareschi K, Ferrero I. Stem cell treatment in Amyotrophic Lateral Sclerosis. J Neurol Sci, 2008, 265(1-2):78-83.
    82. Imitola J. Prospects for neural stem cell-based therapies for neurological diseases. Neurotherapeutics, 2007, 4(4):701-714
    1. Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci, 2006; 7: 395-406.
    2. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature, 2006; 441: 1094-96.
    3. Harkany T, Andang M, Kingma HJ et al. Region-specific generation of functional neurons from naive embryonic stem cells in adult brain. J Neurochem, 2004; 88: 1229-1239.
    4. Imitola J, Raddassik K, Park KI et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA, 2004; 101: 18117-18122.
    5. Vats A, Bielby RC, Tolley NS et al. Stem cells, Lancet, 2005; 366: 592-602.
    6. Jaenisch R. Human cloning-the science and ethics of nuclear transplantation. N Engl J Med, 2004; 351: 2787-2791.
    7. Kim K, Lerou P, Yabuuchi A et al. Histocompatible embryonic stem cells by parthenogenesis. Science, 2007; 315: 482-486.
    8. Mcdonald JW, Liu XZ, Qu Y et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Med, 1999; 5: 1410-1412.
    9. Englund U, Bjorklund A, Wictorin K et al. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci USA, 2002; 99: 17089-17094.
    10. Gao J, Prough DS, McAdoo DJ et al. Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol, 2006; 201: 281-292.
    11. Cummings BJ, Uchida N, Tamaki SJ et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA, 2005; 102: 14069-74.
    12. Wernig M, Benninger F, Schmandt T et al. Functional integration of embryonic stem cell-derived neurons in vivo. J Neurosci, 2004; 24: 5258-5268.
    13. Ishibashi S, Sakaguchi M, Kuroiwa T et al. Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res, 2004; 78: 215-123.
    14. Lepore AC, Neuhuber B, Connors TM et al. Long-term fate of neural precursor cells following transplantation into developing and adult CNS. Neuroscience, 2006; 142: 287-304.
    15. Benninger F, Beck H, Wernig M et al. Functional integration of embryonic stem cell-derived neurons in hippocampal slice cultures. J Neurosci, 2003; 23: 7075-7083.
    16. Kim JH, Auerbach JM, Rodriguez-Gomez JA et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson,s disease. Nature, 2002; 418: 50-56.
    17. van Praag H, Schinder AF, Christie BR et al. Functional neurogenesis in the adult hippocampus. Nature, 2002; 415: 1030-1034.
    18. Scheffler B, Schmandt T, Schr?der W et al. Functional network integration of embryonic stem cell-derived astrocytes in hippocampal slice cultures. Development, 2003; 130: 5533-5541.
    19. Rüschenschmidt C, Koch P, Brüstle O et al. Functional properties of ES cell-derivedneurons engrafted into the hippocampus of adult normal and chronically epileptic rats. Epilepsia, 2005; 46: 174-183.
    20. Shihabuddin LS, Holets VR, Whittemore SR. Selective hippocampal lesions differentially affect the phenotypic fate of transplanted neuronal precursor cells. Exp Neurol, 1996; 139: 61-72.
    21. Lundberg C, Englund U, Trono D et al. Differentiation of the RN33B cell line into forebrain projection neurons after transplantation into the neonatal rat brain. Exp Neurol, 2002; 175: 370-387.
    22. Kellv S, Bliss TM, Shah AK et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA, 2004; 101: 11839-44.
    23. Harkany T, And?ng M, Kingma HJ et al. Region-specific generation of functional neurons from naive embryonic stem cells in adult brain. J Neurochemi, 2004; 88: 1229-1239.
    24. Rosser AE, Tyers P, Dunnet SB et al. The morphological development of neurons derived from EGF- and FGF-2-driven human CNS precursors depends on their site of integration in the neonatal rat brain. Eur J Neurosci, 2000; 12: 2405-2413.
    25. Lie DC, Colamarino SA, Song HJ et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005; 437: 1370-1375.
    26. Ge S, Goh EL, Sailor KA et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 2006; 439: 589-593.
    27. Lee JP, Jevakumar M, Gonzalez R et al. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med, 2007; 13: 439-447.
    28. Yasuhara T, Matsukawa N, Hara K et al. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson's disease. J Neurosci, 2006; 26: 12497-12511.
    29. Lindvall O, Kokaia Z, Martinez-Serrano A. stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med, 2004; 10: S42-S50.
    1. Oliveira AA Jr, Hodges HM. Alzheimer's disease and neural transplantation as prospective cell therapy. Current Alzheimer Research, 2005,2(1):79-95
    2. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature, 2006; 441: 1094-96.
    3. Lindvall O, Kokaia Z, Martinez-Serrano A.(2004) Stem cell therapy for human neurodegenerative disorders–how to make it work. Nat Med.10 Suppl:S42-50
    4. Martinez-Serrano A, Hantzopoulos P A, Bjorklund A. Ex vivo gene transfer of brain-derived neurotrophic factor to the intact rat forebrain: Neurotrophic effects on cholinergic neurons. Eur J Neurosci, 1996, 8: 727-735.
    5. Sinden JD, Stroemer P, Grigoryan G, et al. Functional repair with neural stem cells. Novartis Found Symp, 2000, 231: 270-283.
    6. Qu T, Brannen C L, Kim H M, et al. Human neural stem cells improve cognitive function of aged brain. Neuroreport, 2001, 12: 1127-1132.
    7. Wang Q, Matsumoto Y, Shindo T, et al. Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Invest.2006, 53(1-2): 61-69.
    8. Auerbach JM, Eiden MV, McKay RD. Transplanted CNS stem cells form functional synapses in vivo. Eur J Neurosci, 2000, 12:1696–1704.
    9. Englund U, Bjorklund A, Wictorin K, et al. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci USA, 2002, 99:17089-17094.
    10. Bühnemann C, Scholz A, Bernreuther C, et al. Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain, 2006, 129(12):3238-48.
    11. Teng L, Meng GL, Xing Y, Shang KG, Wang XK, Gu J. Labeling embryonic stem cell with enhanced green fluorescent protein on the hypoxanthineguanine phosphoribosyl transferase locus. Chin. Med. J. 2003, 116:267-272.
    12. Xu HW, Fan XT, Wu X, Tang J, Yang H. Neural precursor cells differentiated from mouse embryonic stem cells relieve symptomatic motor behaviour in a rat model of Parkinson’s disease. Biochem. Bioph. Res. Co. 2005, 326:115-122.
    13. Xu HW, Fan XT, Tang J, Zhou GJ, Yang L, Wu X, Liu SY, Qu JF, Yang H. (2005) A modified method for generation of neural precursor cells from cultured mouse embryonic stem cells. Brain Res. Protoc, 15:52-58.
    14. Giovannelli, L., Casamenti, F., Scali, C., Bartolini , L., Pepeu. G. (1995) Differential effects of amyloid peptidesβ-(1–40) andβ-(25–35) injections into the rat nucleus basalis. Neuroscience, 66, 781-792.
    15. Giovannelli, L., Scali, C., Faussone Pellegrini, M.S., Pepeu, G., Casamenti, F.(1998) Long-term changes in the aggregation state and toxic effects ofβ-amyloid injected into the rat brain. Neuroscience, 87,349-357.
    16. Paxinos, G., Watson, G. (1998) The Rat Brain in Stereotaxic Coordinates. 2nd Ed Academic Press, Spiral Bound, New York.
    17. Giovannelli, L., Scali, C., Faussone Pellegrini, M.S., Pepeu, G., Casamenti, F.(1998) Long-term changes in the aggregation state and toxic effects ofβ-amyloid injected into the rat brain. Neuroscience, 87,349-357.
    18. Morris, R., 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Meth. 11, 47-60.
    19. Kee N, Teixeira CM, Wang AH, et al. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci, 2007, 10(3):273-5.
    20. Schmued, L.C., Hopkins, K.J., 2000. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 874(2), 123-130.
    21. Hoglinger, G.U., Widmer, H.R., Spenger, C., Meyer, M., Seiler, R.W., Oertel, W.H., Sautter, J., 2001. Influence of time in culture and BDNF pretreatment on survival and function of grafted embryonic rat ventral mesencephalon in the 6-OHDA rat model of Parkinson’s disease. Exp. Neurol. 167, 148-157.
    22. Svendsen CN, Smith AG (1999) New prospects for human stem-cell therapy in the nervous system. Trends Neurosci 22: 357–364.
    23. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418: 50-56.
    24. Wernig M, Benninger F, Schmandt T, Rade M, Tucker KL, Büssow H, Beck H, Brüstle O (2004) Functional integration of embryonic stem cell-derived neurons in vivo.J Neurosci 24(22):5258-68.
    25. Xu, H.W., Fan, X.T., Wu, X., Tang, J., Yang, H., 2005. Neural precursor cells differentiated from mouse embryonic stem cells relieve symptomatic motor behaviour in a rat model of Parkinson’s disease. Biochem. Bioph. Res. Co. 326, 115-122.
    26. Cho MS, Lee YE, Kim JY, et al. (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA, 105(9):3392-7.
    27. Pineda JR, Rubio N, Akerud P, et al. (2007) Neuroprotection by GDNF-secreting stem cells in a Huntington’s disease model:optical neuroimage tracking of brain-grafted cells. Gene Ther, 14:118-128
    28. Ankeny, D.P., McTigue, D.M., Jakeman. L.B., 2004. Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp. Neurol. 190, 17-31.
    29. Daadi MM, Maag AL, Steinberg GK, et al. (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS ONE, 3(2):e1644.
    30. Tuszynski, MH. et al. (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature Med. 11, 551-555.
    31. Englund U, Bjorklund A, Wictorin K et al. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci USA, 2002; 99: 17089-17094.
    32. Wernig M, Benninger F, Schmandt T et al. Functional integration of embryonic stem cell-derived neurons in vivo. J Neurosci, 2004; 24: 5258-5268.
    33. Muotri AR, Nakashima K, Toni N, Sandler VM, Gage FH.(2005) Development of functional human embryonic stem cell-derived neurons in mouse brain.Proc Natl Acad Sci USA. 102(51):18644-8.
    34. Rüschenschmidt C, Koch P, Brüstle O et al. Functional properties of ES cell-derived neurons engrafted into the hippocampus of adult normal and chronically epileptic rats. Epilepsia, 2005; 46: 174-183.
    35. Martino G, Pluchino S. (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci, 7(5):395-406