基于观测器的自适应模糊控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,作为智能控制研究领域的一个重要分支,非线性系统的模糊自适应控制引起了越来越多学者的重视。本文就此领域的相关问题展开系列研究,主要研究了不确定非线性系统的控制器与观测器设计问题。以李亚普诺夫(Lyapunov)稳定、输入到状态稳定(ISS)、小增益定理、自适应控制、模糊逼近等理论为基础对闭环控制系统进行设计与分析。主要工作如下:
     首先,对一类不确定非线性系统,利用H∞控制技术和T-S模糊系统,在状态不完全可测的情况下,提出了一种基于观测器的直接自适应模糊控制方法。通过引入最优逼近误差补偿项,取消了最优逼近误差平方可积的假设条件。基于Lyapunov稳定理论,证明了闭环自适应模糊系统半全局一致终结有界,且跟踪误差渐近收敛到零。
     其次,对一类状态不完全可测的非仿射不确定非线性系统,利用泰勒展开方法和隐函数定理把系统转化为增益函数未知的不确定非线性系统,结合H∞控制技术和I型模糊系统,提出一种基于观测器的直接自适应模糊控制方法。该方法不仅取消了最优逼近误差平方可积的假设条件,而且获得了良好的跟踪性能。基于Lyapunov稳定理论,证明了闭环自适应模糊系统半全局一致终结有界,且跟踪误差渐近收敛到零。
     再次,对一类未知常数增益的不确定非线性系统,将输入到状态稳定理论(ISS)、小增益定理相结合,在状态不完全可测的情况下,提出一种基于Luenberger观测器的自适应模糊控制的新方法。理论分析证明了闭环系统半全局一致终结有界,只有两个参数需要在线调节,同时避免了在一些自适应控制中由于采用线性反馈技术而可能引起的控制器的奇异问题。
     最后,对一类状态不完全可测且增益函数未知的不确定非线性系统,利用输入到状态稳定理论(ISS)、小增益定理,提出了一种基于高增益观测器的自适应模糊控制的新方法。该方法取消了基于普通观测器设计控制器时要求待观测量和观测量有界的假设条件。理论分析证明了闭环系统半全局一致终结有界,调节参数始终只有两个。通过本文的研究,较好地解决了一些不确定非线性系统的模糊自适应控制问题。仿真结果表明所提控制方案的有效性。
As an important branch in the field of intelligent control, fuzzy adaptive control for nonlinear systems has been received more and more attention in recent years. Some correlative issues in this area are studied in this paper. The main issues are the controller and observer design problems of uncertain nonlinear systems. The design and analysis procedure is based on a series of control theories, which include Lyapunov stability theory, input-to-state stability theory, small-gain theorem, adaptive control theory, fuzzy approximate theory, and so on. The main work in this paper is summarized as follows.
     Firstly, using H∞control technique and T-S fuzzy systems, an observer-based direct adaptive fuzzy control is developed for a class of uncertain nonlinear systems under the condition that not all of the state variables of the systems is available. By introducing the adaptive compensation term of the optimal approximation error, the square integrable condition of the approximation error is avoided. Based on Lyapunov stability theorem, the closed-loop adaptive fuzzy control system is proved to be semi-globally uniformly ultimately bounded, with the tracking error converging to zero asymptotically.
     Secondly, an observer-based direct adaptive fuzzy control is developed for a class of nonaffine uncertain nonlinear systems under the condition that not all of the state variables of the systems is available. Using Taylor expansion method and connotative function theorem, the controlled object is changed into a class of uncertain nonlinear systems with unknown gain function. The observer-based adaptive fuzzy controller is gained by use of H∞control technique and fuzzy systems. Not only the square integrable condition of the approximation error is avoided, but also the good tracking performance is obtained. Based on Lyapunov stability theorem, the closed-loop adaptive fuzzy control system is proved to be semi-globally uniformly ultimately bounded, with the tracking error converging to zero asymptotically.
     Thirdly, using ISS theory, small-gain theorem and T-S type fuzzy logic systems, which are used to approximate the uncertain system function, a Luenberger observer-based direct robust adaptive fuzzy control is developed for a class of nonlinear systems with unknown constant gain under the condition that not all of the state variables of the systems are available. The resulting closed-loop system is proved to be semi-globally uniformly ultimately bounded. In addition, the controller singularity problem commonly encountered in adaptive feedback linearization control can be avoided and only two learning parameters need to be adjusted on line.
     Lastly, using ISS theory, small-gain theorem and T-S type fuzzy logic systems, which are used to approximate the uncertain system function, a high-gain observer-based robust adaptive fuzzy control is developed for a class of nonlinear systems with uncertain gain function under the condition that not all of the state variables of the systems is available. The supposed condition that the unavailable state and the observed state of the systems have upper bounds usually encountered in adaptive fuzzy control which is based on common observer is avoided. The resulting closed-loop system is proved to be semi-globally uniformly ultimately bounded. In addition, the controller singularity problem commonly encountered in adaptive feedback linearization control can be avoided and only two learning parameters need to be adjusted on line. Simulation results show the effectiveness of the control scheme.
     Through the research in this paper, some fuzzy adaptive control problems for uncertain nonlinear systems have been properly solved. Numerical simulation experiments of these control schemes demonstrate their effectiveness.
引文
[1] 胡寿松.自动控制原理[M].北京:科学出版社,2002
    [2] 周东华.非线性系统的自适应控制导论[M].北京:清华大学出版社,2002
    [3] 孙增圻等.智能控制理论与技术[M].北京:清华大学出版社,1997
    [4] 俞立.鲁棒控制—线性矩阵不等式处理方法[M].北京:清华大学出版社,2002
    [5] Ge S S, Hang C C, Lee T H, et al. Stable adaptive neural network control [M]. Norwell, MA: Kluwer Academic, 2001
    [6] Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, 8(3):338-353
    [7] Tanaka K, Sugeno M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Trans Systems, Man and Cybernetics, 1985, 15(1): 116-132
    [8] Tanaka K, Sugeno M. Stability analysis and design of fuzzy control systems [J]. Fuzzy Sets and Systems, 1992, 45(2):135-156
    [9] Wang L X. Adaptive fuzzy systems and control-design and stability analysis [M]. New Jersey: Pretice Hall, 1994, 102-185
    [10] Wang L X. Stable adaptive fuzzy control of nonlinear systems [J]. IEEE Trans on Fuzzy Systems, 1993, 1(2): 146-155
    [11] 王立新. 自适应模糊系统与控制——设计与稳定性分析[M]. 北京: 国防工业出版社,1995
    [12] 佟绍成,周军.非线性模糊间接和直接自适应控制器的设计和稳定性分析[J].控制与决策,2000,15(3):293-296
    [13] 张乃尧,金晖.对稳定的模糊自适应控制方案的研究与改进[J].自动化学报,1997,23(2):160-166
    [14] 张天平,朱清,杨月全. 一类 MOMO 非线性系统的直接自适应模糊滑模控制 [J].控制理论与应用,2003,20(4):560-564
    [15] 张天平.间接自适应模糊控制器的设计与分析[J].自动化学报,2002, 28(6):678-681
    [16] 张天平,张惠艳,顾海军. 基于后推设计的直接自适应模糊控制[J].控制与决策,2004,19(1): 22-26
    [17] 张天平. 一类非线性系统的间接自适应模糊控制器的研究[J]. 控制与决策,2002,17(2):199-214
    [18] Zhang T, Ge S S, Hang C C. Stable adaptive control for a class of nonlinear systems using a modified lyapunov function [J]. IEEE Trans on AutomaticControl, 2000,45(1): 129-132
    [19] 张 天 平 . 自 适 应 模 糊 变 结 构 控 制 器 的 一 种 新 设 计 [J]. 控 制 与 决策,2000,15(6):977-983
    [20] 胡跃明. 变结构控制理论与应用[M]. 北京:科学出版社 2003
    [21] 张天平,冯纯伯.一类非线性系统的自适应模糊滑模控制[J].自动化学报,1997,23(3):361-369
    [22] Wook C, Jin B P, et al. Design of robust fuzzy-model-based controller with sliding mode control for SISO nonlinear systems [J]. Fuzzy Sets and Systems, 2002, 125(1): 1-22
    [23] Zhang T, Ge S S, Hang C C. Design and performance analysis of a direct adaptive controller for nonlinear systems [J]. Automatica,1999,35(11):1809-1817
    [24] Dai X H, Li C K, Rad A B. Adaptive control of a class of nonlinear systems with fuzzy approximators [C]. The IEEE International Conference on Fuzzy Systems, 2003: 384-389
    [25] Chen B S, Lee C H, Chang Y C. H ∞tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach [J]. IEEE Trans on Fuzzy Systems, 1996, 4(1): 32-43
    [26] Park J H, Park G T, Kim S H, Moon C J. Direct adaptive self-structuring fuzzy controller for nonaffine nonlinear system [J]. Fuzzy Sets and Systems, 2005, 153(3): 429-445
    [27] Wang D, Huang J. Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form [J]. Automatica, 2002,38(8): 1365-1372
    [28] Zhang T, Ge S S, Hang C C. Adaptive neural network for strict-feedback nonlinear systems using backstepping design [J]. Automatica, 2000, 36(12): 1835-1846
    [29] Ge S S, Wang J. Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems [J]. IEEE Trans on Neural Networks, 2002, 13(6): 1409-1418
    [30] Koshkouei A J, Zinober A S I. Adaptive backstepping control of nonlinear systems with unmatched uncertainty [C]. Proceedings of the 39th IEEE Conference on Decision & Control, Sydney, Australia, 2000: 4765-4770
    [31] Yang Y S, Ren J S. Adaptive fuzzy robust tracking controller design via small gains approach and its application [J]. IEEE Trans on Fuzzy Systems, 2003, 11(6): 783-795
    [32] Yang Y S, Feng G, Ren J S. A combined backstepping and small-gain approach torobust adaptive fuzzy control for strict-feedback nonlinear systems [J]. IEEE Trans on Systems, Man and Cybernitics: Part A, 2004, 34(3): 406-420
    [33] Yang Y S. Direct robust adaptive fuzzy control for uncertain nonlinear systems using small gain theorem [J]. Fuzzy Sets and Systems, 2005, 151(1): 79-97
    [34] Yang Y S, Zhou C J. Robust adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems via small-gain approach [J]. Information Sciences, 2005, 170(2-4): 211-234
    [35] Yang Y S, Zhou C J. Adaptive fuzzy H ∞ stabilization for strict-feedback canonical nonlinear systems via backstepping small-gain approach [J]. IEEE Trans on Fuzzy Systems. 2005, 13(1): 104-114
    [36] Jiang Z P, Teel A, Praly L.Small-gain theorem for ISS systems and applications [J]. Math Control, Signals Systems, 1994, 7(2): 95-120
    [37] Sontag E D. Smooth stabilization implies coprime factorization [J]. IEEE Trans on Automatic Control, 1989, 34(4): 435-443
    [38] Li J, Wang H O, Niemann D, Tanaka K. Dynamic parallel distributed compensation for Takagi-Sugeno fuzzy systems: An LMI approach [J]. Information Sciences, 2000,123 (3-4): 201-221
    [39] Lee K Ri, Jeung E T, Park H B. Robust fuzzy H ∞ control for uncertain nonlinear systems via state feedback: an LMI approach [J]. Fuzzy Sets and Systems, 2001,120 (1): 123–134
    [40] Liu H P, Sun F C, Hu Y N. H ∞control for fuzzy singularly perturbed systems [J], Fuzzy Sets and Systems, 2005, 155 (2):272–291
    [41] Guan X P, Chen C L. Delay-dependent guaranteed cost control for T-S fuzzy systems with time delays [J]. IEEE Trans on Fuzzy Systems, 2004, 12(2): 236-246
    [42] Shyu K K, Liu W J, Hsu K C. Design of large-scale time delayed systems with dead-zone input via variable structure control [J]. Automatica, 2005, 41(7): 1239-1246
    [43] Liu H P, Sun F C, Sun Z Q. Stability analysis and synthesi of fuzzy singularlay perturbed systems [J]. IEEE Trans on Fuzzy Systems, 2005, 13(2): 273-279
    [44] Tong S C, Han X L, Wang W. Observer-based adaptive fuzzy control for SISO nonlinear systems [J]. Fuzzy Sets and Systems, 2004, 148 (3): 355-376
    [45] Ho H F, Wong Y K, Rad A B, et al. State observer based indirect adaptive fuzzy tracking control [J]. Simulation Modeling Practices and Theory, 2005, 13(7): 646-663
    [46] Leu Y G, Wang W Y. Observer-based adaptive fuzzy-neural control for unknownnonlinear dynamical systems [J]. IEEE Trans Systems Man Cybernet, 1999, 29(5): 583-591
    [47] Lin T C, Wang C H, Lih H L. Observer-based indirect adaptive fuzzy-neural tracking control for nonlinear SISO systems using VSS and H ∞ approaches [J]. Fuzzy Sets and Systems, 2004, 143(2): 211-232
    [48] Tong S C, Chen B, Wang Y F. Fuzzy adaptive output feedback control for MIMO nonlinear systems [J]. Fuzzy Sets and Systems, 2005, 156(2): 285-299
    [49] Park J H, Park G T, Kim S H, Moon C J. Output-feedback control of uncertain nonlinear systems using a self-structuring adaptive fuzzy observer [J]. Fuzzy Sets and Systems, 2005, 151(1):21-42
    [50] Kung C C, Chun T H. Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems [J]. Fuzzy Sets and Systems, 2005, 155(2): 292-308
    [51] Huang S N, Tan K K, Lee T H. Further result on a dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems [J]. Automatica, 2005,41(12): 2161-2162
    [52] Chatlatanagulechai W, Peter H M. Robust observer backstepping neural network control of nonlinear systems in strict feeback form [C]. Proceeding of The 2004 American Control Conference, 2004: 3035- 3040
    [53] 佟绍成. 一类模糊非线性系统自适应输出反馈控制[J]. 自动化学报,1999,25(4):553-559
    [54] Tong S C, Wang T, Tang J T. Fuzzy adaptive output tracking control of nonlinear systems [J]. Fuzzy Sets and Systems, 2000, 111 (2): 169-182
    [55] Kim D H, Wang H O, Shin S, Kim E S. State Estimations and output feedback control for nonlinear systems with cascade observers [C]. SICE Annual Conference in Sapporo, 2004: 629-634
    [56] 王江,周翊民,曾启明. 基于级联观测器的多输入多输出非线性系统的故障诊断[J]. 控制理论与应用,2005,22(2):237-242
    [57] 顾海军,张天平,于建江.基于观测器的非线性系统直接自适应模糊控制[J]. 系统工程与电子技术,2004,26(6):785-788
    [58] Ge S S, Zhang J. Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback [J]. IEEE Trans on Neural Networks, 2003, 14(4): 900-918
    [59] Ge S S, Lee T H, Wang J. Adaptive control of nonaffine nonlinear systems using neural networks [C]. Proceedings of the 15th IEEE International Sysposium onIntelligent Control, 2002:13-18
    [60] Wang Q G, Lee T H. Output tracking control of MIMO fuzzy nonlinear systems using variable structure control approach [J]. IEEE Trans on Fuzzy Systems, 2002, 10(6): 686-697
    [61] 佟绍成,朱延枫. 多变量非线性系统的间接模糊输出反馈自适应控制[J]. 控制与决策,2003,18(6):667-671
    [62] 朱永红, 姜长生, 费树岷. 基于神经网络 MIMO 非线性系统自适应输出反馈控制[J]. 控制理论与应用,2005,22(1):23-34
    [63] 王永富, 柴天佑. 一类非线性 MIMO 系统的自适应模糊输出反馈控制[J]. 系 统 仿 真 学 报,2005,17(10):2442-2446
    [64] 杜贞斌, 胡寿松. 多输入多输出非线性系统的间接自适应模糊跟踪控制[J].应用科学学报,2006,24(1):41-44
    [65] Tanaka K, Ikeda T, Kim E, et al. Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs [J]. IEEE Trans on Fuzzy Systems, 1998, 6(2): 250-265
    [66] Ma X J, Sun Z Q. Analysis and design of fuzzy controller and fuzzy observer [J]. IEEE Trans on Fuzzy Systems, 1998, 6(1): 41-51
    [67] Hua C C, Li F L, Guan X P. Observer-based adaptive control for uncertain time-delay systems [J]. Information Sciences, 2006, 176(2): 201-214
    [68] Jiang X F, Xu W L, Han Q L. Observer-based fuzzy control design with adaptation to delay parameter for time-delay systems [J]. Fuzzy Sets and Systems, 2005, 152(3): 637-649
    [69] Lu G, Ho D W C. Robust H ∞ observer for nonlinear discrete systems with time delay and parameter uncertainties [J]. IEE Proceedings online, 2004, 151(4): 439-444
    [70] Chen B S, Tseng C S, Uang H J. Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach [J]. IEEE Trans on Fuzzy Systems, 2000, 8(3): 249-265
    [71] Liu X D,Zhang Q L. New approach to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI [J]. Automatica, 2003, 39(9): 1571-1582
    [72] Spooner J T, Manfredi M, Ordonez R, Passino K M. Stable adaptive control and estimation for nonlinear systems [M]. New York: John Wiley&Sons, Inc.,2002
    [73] Ge S S. Adaptive neural control of uncertain MIMO nonlinear systems [J]. IEEE Trans on Neural Networks, 2004, 15(3): 674-692
    [74] 郑大钟.线性系统理论[M].北京:清华大学出版社,2001
    [75] 汤兵勇,路林吉,王文杰. 模糊控制理论与应用技术[M]. 北京: 清华大学出版社,2002
    [76] 李士勇. 模糊控制·神经网络控制和智能控制论[M]. 哈尔滨工业大学出版社,1996
    [77] 胡跃明. 非线性控制系统理论与应用[M]. 北京:国防工业出版社,2002
    [78] 刘增良. 模糊技术与应用选编(2)[M]. 北京:航空航天大学,1997
    [79] Kim E, Lee H. New approaches to relaxed quadratic stability condition of fuzzy control systems [J]. IEEE Trans on Fuzzy Systems, 2000, 8(5): 523-534
    [80] Chang Y C. Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and H ∞ approaches [J]. IEEE Trans on Fuzzy Systems, 2001, 9(2): 278-292
    [81] 韩曾晋.自适应控制[M]. 北京:清华大学出版社,2003
    [82] Jo N H, Seo J H. A state observer for nonlinear systems and its application to ball and beam system [J]. IEEE Trans on Automatic Control, 2000, 45(5): 968-973
    [83] Leu Y G, Wang W, Lee T T. Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems [J]. IEEE Trans on Neural Networks, 2005, 16(4): 853-861
    [84] Stoev J, Choi J Y, Farrell J. Adaptive control for output feedback nonlinear systems in the presence of modeling errors [J]. Automatica, 2002, 38(8): 1761-1767
    [85] Chen W H. Disturbance observer based control for nonlinear systems [J]. IEEE/ASME Trans on Mechatronics, 2004, 9(4): 706-710
    [86] Tarek A A, Francoise L L. Sliding observer-controller design for uncertain triangular nonlinear systems [J]. IEEE Trans on Automatic Control, 1999, 44(6): 1244-1249
    [87] Choi J Y, Farrell J A. Adaptive observer backstepping control using neural networks [J]. IEEE Trans on Neural Nerworks, 2001, 12(5): 1103-1112
    [88] Wang T, Tong S C. Output feedback control of nonlinear systems using adaptive fuzzy sliding mode controller [C]. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 2005: 1345-1350
    [89] Janardhanan S, Bandyopadhyay B. Output feedback discrete-time sliding mode control for time delay systems [J]. IEE Proceedings Control Theory Appl, 2006, 153(4): 387-396
    [90] Ye X D. Adaptive output-feedback control of nonlinear systems with unknown nonlinearities [J]. Automatica, 2005, 41(8):1367 – 1374
    [91] Hovakimyan N, Yang B J, Calise A J. Adaptive output feedback controlmethodology applicable to non-minimum phase nonlinear systems [J]. Automatica, 2006, 42(4): 513 – 522
    [92] Hamzaoui A, Essounbouli N, Benmahammed K, Zaytoon J. State observer based robust adaptive fuzzy controller for nonlinear uncertain and perturbed systems [J]. IEEE Trans on Systems, Man, and, Cybernetics-Part B: Cybernetics, 2004, 34(2): 942-950
    [93] Farza M, M’Saad M, Rossignol L. Observer design for a class of MIMO nonlinear systems [J]. Automatica, 2004(2), 40: 135 – 143
    [94] Zheng F, Wang Q G, and Lee T H. Output tracking control of MIMO fuzzy nonlinear systems using variable structure control approach [J]. IEEE Trans on Fuzzy Systems, 2002, 10(6): 686-697
    [95] Zhang J, Ge S S, Lee T H. Output feedback control of a class of discrete MIMO nonlinear systems with triangular form inputs [J]. IEEE Trans on Neural Networks, 2005, 16(6): 1491-1503
    [96] Kim E, Lee S. Output feedback tracking control of MIMO systems using a fuzzy disturbance observer and its application to the speed control of a PM synchronous motor [J]. IEEE Trans on Fuzzy Systems, 2005, 13(6): 725-741
    [97] EI-Hawwary M I, Elshafei A L, Emara H M, et al. Output feedback control of a class of nonlinear systems using direct adaptive fuzzy controller [J]. IEE Proc. Control Theory Appl., 2004, 151 (5): 615-625
    [98] Krishnamurthy P, Khorrami F. Global adaptive output feedback tracking for nonlinear systems linear in unmeasured states [C]. Proceedings of the American Control Conference, Arlington, VA, 2001:4814-4819
    [99] Chen W T, Ji F J, Wang X H. Robust out-feedback control of a class of nonlinear systems with general uncertainties [J]. Control Theory and Applications, 2000, 17(3): 437-441
    [100] Li M L, Lo J C. Static nonlinear output feedback H2 control for T-S fuzzy models [C]. Proc. the 12th IEEE Conf. Fuzzy Systems, 2003: 1380-1383
    [101] 杨昌利,阮荣耀. 一类不确定非线性系统的输出反馈鲁棒自适应控制器的 设计与分析 [J]. 控制理论与应用, 2002, 19(6):833-840