松散破碎射气介质中氡运移的气液两相耦合模型及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原地爆破浸出采铀工艺是一种高效、经济的铀矿开采技术,它在低品位硬岩型铀矿资源的开发中具有广阔的应用前景。但其引起的井下氡污染已成为迫切需要解决的问题。原地爆破浸出采场铀矿堆中氡的运移规律研究是原地爆破浸出采铀矿山通风防氡、控氡的重要基础研究课题,对于促进铀矿安全生产、实现铀矿资源的绿色开采和铀矿冶工业的可持续发展有着重要的理论意义和工程实际意义。
     论文在国家自然科学基金项目《松散破碎射气介质中氡运移的多相多过程耦合作用模型及数值模拟研究》(No.10575048)的资助下,将原地爆破浸出采场铀矿堆抽象为松散破碎射气介质,通过理论分析、模型试验、数值模拟以及某原地爆破浸出采铀采场的工程应用,取得的创新性研究成果如下:
     (1)研制出了获得国家发明专利的松散破碎射气介质多功能渗流试验装置。根据原地爆破浸出采场铀矿堆的粒级分布特征,采用Rosin-Rammler分布公式,选配了七组不同级配的试样,采用所研制的试验装置,进行了气液(水)两相渗流试验研究,研究了特征粒径、粒径分布指数对其中气液(水)两相渗流的影响。
     (2)利用松散破碎射气介质气液(水)两相渗流试验结果,采用BP神经网络算法,建立了根据特征粒径、粒径分布指数、孔隙率、含水饱和度预测气液(水)两相有效渗透率的人工神经网络(ANN)模型;采用量纲分析方法,建立了根据松散破碎射气介质气液两相模型试验结果预测松散破碎射气介质原型气液两相有效渗透率的方法。
     (3)研制并建立了获得国家发明专利的松散破碎射气介质瞬态氡析出能力测量装置及计算方法。根据Rosin-Rammler分布,选配了七组不同级配的试样,采用所研制的试验装置,测量了七组试样的氡浓度随时间的变化,研究了特征粒径、粒径分布指数、矿石含水率、氡浓度对瞬态氡析出能力的影响。
     (4)利用瞬态氡析出能力试验结果,采用自适应神经模糊推理系统(ANFIS),建立了根据氡浓度、特征粒径、粒径分布指数和矿石含水率预测瞬态氡析出能力的ANFIS模型;采用量纲分析方法,建立了根据松散破碎射气介质瞬态氡析出能力模型试验结果预测松散破碎射气介质原型瞬态氡析出能力的方法。
     (5)基于多孔介质中的气液两相渗流理论、氡运移的扩散-渗流理论、放射性衰变理论以及氡的溶解规律,建立了松散破碎射气介质中氡运移的气液两相耦合数学模型。
     (6)采用计算流体力学(CFD)方法进行了某原地爆破浸出采铀矿山的采场铀矿堆中氡运移的数值模拟,得到了铀矿堆中氡的浓度分布和氡的运移析出规律,为原地爆破浸出采铀矿山的控氡、降氡提供了理论依据。
In-place leaching of explosively fragmented uranium ore is an economic and high efficiency mining technique suitable for recovering uranium from low grade hard-rock type uranium ore body. However, the air pollution in place leach stope caused by the radon from the fragmented uranium ore is a sever problem which needs to be solved as soon as possible. The regularity for radon transport in the uranium ore heap to be leached in the underground stope is a fundamental research subject for controlling the air pollution caused by radon by ventlation, which is of great significance both in theory and practice for the safety production, green mining of uranium resource and sustainable development of uranium mining and metallurgy industry.
     This dissertation was supported by the National Natural Science Foundation of China project-studies on multi-phase and multi-process coupling model and numercial simulation for radon transport in loose fragmented radioacive medium (No.10575048). The uranium ore heap to be leached in the underground stope was simplified as a kind of radon emanating loose media, and studies were carried out on the radon migration through gas-liquid two-phase fluid in loose fragmented radioactive medium using analytical method, physical modeling, numerical modeling and field test. The main innovative achievments are summed up as follows:
     (1) The self-developed apparatus for the research of gas-liquid(water) single-phase and two-phase seepage in loose fragmented radioactive medium was patented in China. Base on the characteristicse of the particle size distribution of the uranium ore heap to be leached in the underground stope, seven samples were prepared with different particle size distributions in obedience with Rosin-Rammler distribution law. The apparatus was used to study the influence of characteristic particle size, particle size distribution index, porosity and saturation of the medium on gas-liquid(water) two-phase seepage。
     (2) On the basis of the test results of gas-liquid(water) two-phase seepage, the Artifical Neural Network(ANN) models for predicting gas-liquid(water) two-phase effective permeability were established using BP neural network algorithm from the characteristic particle size, particle size distribution index, porosity and saturation. And the method which could predict gas-liquid two-phase effective permeability of prototype on the basis of model test is established using dimension analysis.
     (3) The self-developed apparatus for measuring transient radon emanation capability and proposed method for calculating transient radon emanation capability in loose fragmented radioactive medium was also patented in China. Seven samples were prepared with different particle size distributions in obedience with Rosin-Rammler distribution law, the apparatus was used to measure the variation of radon concentration of seven samples with time, and to study the influence of the radon concentration,characteristic particle size, particle size distribution index and moisture of the medium on the transient radon emanation capability.
     (4) The test results on transient radon emanation capability were used to establish the Adapive Neuro-Fuzzy Inference System(ANFIS) models for predicting transient radon emanation capability from radon concentration,characteristic particle size, particle size distribution index and moisture. And the method which could predict transient radon emanation capability of prototype from the model tests was proposed using dimension analysis.
     (5) The principles of two-phase flow through a porous medium, radon migration by diffusion and seepage, radioactive decay and regular pattern of radon dissolved in water was used to establish gas-liquid two phase coupling model for radon transport in loose fragmented radioactive medium.
     (6) The Computational Fluid Dynamicis(CFD) model was established to simulation the radon migration through gas-liquid two-phase fluid in the uranium ore heap to be leached in the underground stope. The simulation results of radon concentration distribution and emanation in uranium ore heap and the stope provided the theoretical proof for controlling air pollution caused by radon in the stope.
引文
[1]邓佐卿.新世纪展望-中国铀资源、生产和需求[J].铀矿冶,2000,19(1):4-6
    [2]曾毅君,牛玉清,张飞凤,等.中国铀矿冶生产技术进展综述[J].铀矿冶,2003,(1):24-27
    [3]阙为民,王海峰,牛玉清,等.中国铀矿采冶技术发展与展望[J].中国工程科学,2008,10(3):44-53
    [4]辛至秀.澳大利亚铀矿新进展[J].世界核地质科学,2004,24(3):160-162
    [5]OECD/NEA&IAEA. Uranium 2001:Resources, Production and Demand [R]. Paris:Oecd,2002
    [6]全爱国,欧阳建功.我国原地爆破浸出开采及其发展前景[J].铀矿冶,2001,20(1):1-4
    [7]全爱国.原地爆破浸出采铀的工艺技术研究及应用前景[J].铀矿冶,1998,17(1):1-5
    [8]李西栋.原地爆破浸出采铀技术在蓝田铀矿的应用[J].铀矿冶,2006,25(2):71-74
    [9]李先杰,邓文辉,潘佳林.原地爆破浸出铀矿山通风降氡问题初探[J].铀矿冶,2004,23(4):192-195
    [10]潘英杰.浅谈原地爆破浸出矿井通风防护问题[J].铀矿冶,2005,24(2):95-103
    [11]陈仲秋,潘英杰.铀矿山井下通风系统优化方法和措施[J].铀矿冶,2008,27(3):150-153
    [12]周星火.铀矿通风防护技术的发展与对策[J].铀矿冶,1992,11(1):64-68
    [13]朱思明.铀矿通风与降氡[J].铀矿冶,1982,1(4):60-69
    [14]张志高.通风系统调整与氡析出控制[M].北京:原子能出版社,1992
    [15]Haynes W M, ed. CRC Handbook of Chemistry and Physics [M]. CRC Press. 1982,120-125
    [16]Thomas M. The role of radium distribution and porosity in radon emanation from solids [J].Geophysical Research Letters,1990,17(6): 837-840
    [18]Wollenberg H A, Revzan K I. Radium regionalization in California[J]. Geophysical Research Letters,1990,17(6):805-808
    [19]Kristiansson K, Malmqvist L. The depth-dependence of the concentration of 222Rn in soil gas near the surface and its implication for exploration[J]. Geoexploration,1984(22):17-41
    [20]Reimer G M. Reconnaissance techniques for determining soil-gas radon concentrations:an example from Prince Georges County, Maryland [J]. Geophysical Research Letters,1990,17(6):809-812
    [21]吴慧山,白云生,林玉飞.氡迁移的接力传递作用[J].地球物理学报,1997,40(1):136-142
    [22]Etiope G, Martinelli G. Migration of carrier and trace gases in the geosphere:an overview[J]. Physics of the Earth and Planetary Interiors,2002,129 (3,4):185-204
    [23]贾文懿,方方,周蓉生.氡释放的实验研究与机理探讨[J].成都理工学院学报,2002,29(1):61-64
    [24]贾文懿,方方,周蓉生.氡及其子体运移规律与机理研究[J].核技术,2000,23(3):169-175
    [25]乐仁昌,贾文懿,吴允平.氡运移实验研究与氡团簇运移机理[J].辐射防护,2002,22(3):175-181
    [26]Burkea A K, Stancato A C, Paulon V A, et al. Study of radon emanation from polymer modified cementitious materials[J]. Building and Environment,2003,38 (11):1291-1295
    [27]Tuccimei P, Moroni M, Norcia D. Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italywith accumulation chambers and a continuous solid state alpha detector [J]. Applied Radiation and Isotopes,2006,64(2):254-263
    [28]Martin J, Zbynek S. Transient radon diffusion through radon-proof membranes:A new technique for more precise determination of the radon diffusion coefficient[J]. Building and Environment,2009, 44(6):1318-1327
    [29]Masahiro H, Norbert K, Yoshinori Y, et al. Influence of soil particle size on radon emanation and exhalation[C]. Nrc7-Seventh international conference on nuclear and radiochemistry, Budapest, Hungary.2008
    [30]丘寿康.矿石等固体射气析出的影响因素综述[R].衡阳:核工业第六研究所,1985
    [31]丘寿康.粉末矿样矿石射气系数的空气法测定[R].衡阳:核工业第六研究所,1982
    [32]丘寿康.矿样矿石射气系数的影响因素[R].衡阳:核工业第六研究所,1984
    [33]付锦,韩耀照.氡射气系数与铀尾矿含水率关系探讨[J].南华大学学报(理工版),2003,17(3):29-32
    [34]刘小松,刘纯魁.铀矿石湿度对氡析出率影响的研究[J].铀矿冶,2004,23(3):163-165.
    [36]Rogers V C and Nielson K K. A complete description of radon diffusion in earthen materials[M]. Proceedings of the Symposium on Uranium Mill Tailings Management, Fort Collings, Colorado,1982.247-251.
    [37]Thamer B J and Nielson K K. The effects of moisture on radon emanation[R]. Bureau of Mines of Report,1982,184-82
    [38]Nielson K K, Rogers V C. A Mathematical Model for Radon Diffusion in Earthen Materials[M]. U.S. Washington, D. C.:Nuclear Regulatory Commission,1982
    [39]Nielson K K, Rogers V C, Gee G W. Diffusion of radon through soils: A pore distribution model [J]. Soil Sci Soc. Am. J.1984(48):482-487
    [40]Rogers V C, Nielson K K, Kalkwarf D R. Radon Attenuation Handbook for Uranium Mill Tailings Cover Design[M]. Washington, D. C.:U.S. Nuclear Regulatory Commission,1984:1-89
    [41]Rogers V C. The Effects of Advection on Radon Transport Through Earthen Materials[J]. Washington, D. C.:U.S. Nuclear Regulatory Commission,1983
    [42]U.S. Nuclear Regulatory Commission (U.S. NRC). Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings Covers [R]. Office of Nuclear Regulatory Research, Washington, D.C:1989
    [43]Holford D J, Schery S D, Wilson J L. Modeling radon transport in dry, cracked soil [J]. Journal of Geophysical Research,1993,98 (B1): 567-580
    [44]Chen C, Thomas D M, Green R E. Modeling of radon transport in unsaturated soil[J]. Journal of Geophysical Research,1995,100(B8): 15517-15525
    [45]Owczarski P C, Holford D J, Freeman H D. Effects of changing water content and atmospheric pressure on radon flux from surfaces of five soil types[J]. Geophysical Research Letters,1990,17(6):817-820
    [46]Nguyen X T, Le T D, Le V V. Radon transport equation in earth's crust[J]. Radiation Measurements,1995,25(1-4):661-663
    [47]Pal M, Graaf E R, Mei jer R J, et al. Experimental set-up for measuring diffusive and advective transport of radon through building materials[J]. The Science of the Total Environment,2001,272(1-3): 315-321.
    [48]Cecile Ferry, Patrick Richon, Alain Beneito. Evaluation of the effect of a cover layer on radon exhalation from uranium mill tailings:transient radon flux analysis[J]. Journal of Environmental Radioactivity,2002,63(2):49-64
    [49]Kozak J A, Reeves H W, Lewis B A. Modeling rakium and radon transport through soil and vegetation. Journal of Contaminant Hydrology,2003, 66(3-4):179-200
    [50]Clifford K H. Analytical risk-based model of gaseous and liquid-phase radon transport in landfills with radium sources[J]. Environmental Modelling & Software.2008,23(9):1163-1170
    [51]Akihiro S, Yuu I, Katsumi H, et al. Experimental and modeling studies of grain size and moisture content effects on radon emanation[J]. Radiation Measurements,2010,45(2):204-210
    [52]刘庆成,程业勋,章晔.介质中氡运移的模拟[J].华东地质学院学报,1995,18(4):366-370
    [53]何彬,肖刚,路明.气压、气温、风速对室内氡气传输影响的三维瞬态值模拟[J].核技术,2003,26(10):799-802
    [54]刘泰峰,安海忠,亢俊健.煤田陷落柱氡气场的数值计算及空间形态分布特征[J].地球物理学报,2004,47(1):171-177
    [55]Γpammako B A Γ(吴荣祥译).关于局部类型体的射气方法理论[J].铀矿地质,1964(5):31-35
    [56]张哲.氡的析出与排氡通风[M].北京:原子能出版社,1982
    [57]Irmay S. On the theoretical derivation of Darcy and Forchheimer formulas[J]. American Geophysical Union Transactions,1958,39(4): 702-707
    [58]Basak P. Non-Darcy flow and its implications to seepage problems [J]. Journal of the Irrigation and Drainage Division, Proceedings of the American Society of Civil Engineers,1977,103(4):459-473
    [59]陈舟,钱家忠,姜常让,等.多孔介质地下水非达西渗流研究进展[J].合肥工业大学学报(自然科学版),2008,30(10):1539-1543
    [60]Ma H, Ruth D. The microscopic analysis of high Forchheimer number flow in porous media[J]. Transport Porous Med.,1993,13(2):139-160
    [61]Irmay S. On the theoretical derivation of Darcy and Frochheimer formulas [J]. Tran. Amer. Soc. Geophy. Union.,1958,39(9):702-707
    [62]Venkataraman P, Rao P R M. Darcian, transitional, and turbulent flow through porous media[J]. J. Hydr. Eng.,1998,125(4):840-846
    [63]Bordier C, Zimmer D. Drainage equations and non—Darcian modeling in coars porous media or geosynthetic macterials[J]. J. Hydrol. 2000,228(3-4):174-187
    [64]Macini P, Mesini E, Viola R. Laboratory measurements of non-Darcy flow coefficients in natural and artificial unconsolidated porous media[J]. Journal of Petroleum Science and Engineering,2011, 77(3-4):365-374
    [65]Mccorquodale J A, Hannoura A A, Nasser M S. Hydraulic conductivity of Rockfill[J]. Journal of Hydraulic Research,1978,16(2):123-137
    [66]斯蒂芬森D.堆石工程水力计算[M].北京:海洋出版社,1984
    [67]Li B J, Garga V K, DavieM H. Relationships for non-Darcy flow in rockfill[J]. Journal of Hydraulic Engineering,1998,124(2):206-211
    [68]Li B J, Garga V K. Theoretical solution for seepage flow in overtopped rockfill[J]. Journal of Hydraulic Engineering,1998, 124(2):213-218
    [69]Chai Z H, Shi B C, Lu J H, et al. Nor-Darcy flow in disordered porous media:A lattice Boltzmann study[J]. Computers & Fluids,2010, 39(10):2069-2077
    [70]Manuel H, Jorg B, Sabine R. Lattice Boltzmann Simulation of non-Darcy Flow in Porous Media[J]. Procedia Computer Science,2011(4):1048-1057
    [71]Martins R. Turbulent seepage flow through rockfill structures [J]. International Water Power and Dam Construction,1990,42(3): 41-42,44-45
    [72]Markevich N J, Cecilio C B. Through-flow analysis for rockfill dam stability evaluations[M]. Waterpower 91:A New View of Hydro Resources,1991:1734-1743
    [73]Leps T M. Flow through rockfill[M]. New York:Wiley-Intersci, Div of John Wiley& Sons, Inc,1973:87-107
    [74]Sui W H, Liu J Y, Du Y. Permeability and seepage stability of coal-reject and clay mix[M]. Procedia Earth and Planetary Science, 2009,888-894
    [75]杨国瑞.大颗粒碎石材料渗透试验研究[J].水电工程研究,1991(2):20-24
    [76]胡去劣.过水堆石体渗流及其模型相似[J].岩土工程学报,1993,15(6):47-51
    [77]邱贤德,阎宗岭,刘立,等.堆石体粒径特征对其渗透性的影响[J].岩土力学,2004,25(6):950-954
    [78]李健,黄冠华,文章,等.两种不同粒径石英砂中非达西流动的实验研究[J].水利学报,2008,39(6):726-732
    [79]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1999
    [80]马俊伟.堆浸工艺中矿岩散体介质的渗透性试验研究[硕士学位论文][D].长沙:中南大学,2005
    [81]刘卫群,缪协兴,余为,等.破碎岩石气体渗透性的试验测定方法[J].试验力学,2006,21(3):399-401
    [82]刘卫群.破碎岩体渗流理论及其应用研究[博士学位论文][D].徐州:中国矿业大学,2002
    [83]Miao X X, Li S C, Chen Z Q, et al. Bifurcation and catastrophe of seepage flow system in broken rock[J]. Mining Science and Technology, 2009,19(1):1-7
    [84]余为.破碎岩体中的气体流动规律研究[硕士学位论文][D].徐州:中国矿业大学,2005
    [85]孙明贵,李天珍,黄先伍,等.破碎岩石非Darcy流的渗透特性试验研究[J].安徽理工大学学报:自然科学版,2003,23(2):11-13
    [86]李顺才,陈占清,缪协兴,等.破碎岩体中气体渗流的非线性动力学研究[J].岩石力学与工程学报,2007,26(7):1372-1380
    [87]莫勇刚.松散破碎介质非饱和渗流试验研究[硕士学位论文][D].衡阳:南华大学,2007
    [88]李尚远.铀·金·铜矿山堆浸原理与实践[M].北京:原子能出版社,1997
    [89]王昌汉.溶浸液渗滤速度与其调整[J].铀矿冶,2002,21(1):7-11
    [90]吴爱祥,尹升华,王洪江,等.[J].中南大学学报,2006,37(2):385-389
    [91]金锁庆,向钦芳,郭建政.淋滤浸出过程的流体力学和传质[J].铀矿冶,1995,14(3):163-169
    [92]Aler J. Measurement prediction of the fragmentation efficiency of rock mass blasting and its mining applications[J]. International Journal of Rock Mechanics & Mining Sciences,1996,33(2):125-139
    [93]谭本顺,全爱国,李羽,等.794-1工程30#矿体原地破碎浸出采铀工业性试验研究报告[R].衡阳:核工业第六研究所,1993
    [94]全爱国,李羽,欧阳建功.草桃背矿床原地破碎浸出采铀工业性试验研究报告[R].衡阳:核工业第六研究所,1999
    [95]李羽,王海峰.就地爆破浸出爆破块度控制的计算机模拟研究报告[R].衡阳:核工业第六研究所,1998.
    [96]李登伟,张烈辉,周克明,等.可视化微观孔隙模型中气水两相渗流机理[J].中国石油大学学报(自然科学版),2008,32(3):80-83
    [97]杨仕教,杨建明,李广悦,等.原地破碎浸出采铀理论与实践[M].长沙北京:中南大学出版社,2003
    [98]程秋菊.煤岩气-水相对渗透率的测定方法研究[J].焦作工学院学报,2001,20(3):199-201
    [99]贝尔J.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983
    [100]煤地下自燃时覆岩中氡气运移规律及应用研究[博士学位论文][D].太 原:太原理工大学,2010
    [101]Salatore D M, Carlo S, Giulia M. Radon emanation and exhalation rates from soils measured with an electrostatic collector [J]. Appl. Radiat. Isot,1998,49(4):407-413
    [102]Randall R S. Geologic and climatic controls on the radon emanation coefficient[J]. Environmental International,1996,22(suppl.1): 439-446
    [103]Greeman D J, Rose A W. Fatotors controlling the emanation of radon and toron in soils of eastern U. S. A[J]. Chemical Geology,1996, 129(1-2):1-14
    [104]Akihiro S, Katsumi H, Yuu I, et al. First model of the effect of grain size on radon emanation[J], Applied Radiation and Isotopes, 2010,68(6):1169-1172
    [105]付锦,韩耀照.氡射气系数与铀尾矿含水率关系探讨[J].南华大学学报(理工版),2003,17(3):29-32
    [106]Akihiro S, Yuichi N, Katsumi H, et al. Differences of natural radioactivity and radon emanation fraction among constituent minerals of rockor soil[J]. Applied Radiation and Isotopes,2010, 68(6):1180-1184
    [107]杨栋,赵阳升.裂缝中气液两相流体临界渗流现象及其随机混合渗流数学模型研究[J].岩石力学与工程学报,2008,27(1):84-89
    [108]陈伟芳,石于中,曹登泰,等.流动相似规律研究[J].国防科技大学学报,1997,21(4):5-8
    [109]Dullien F A L.现代渗流物理学[M].北京:石油工业出版社,2001
    [111]国家发展和改革委员会.SY/T 5345-2007.岩石中两相流体相对渗透率测定方法.北京:中国标准出版社,2007-10-08
    [112]王红刚.采空区漏风流场与瓦斯运移的叠加方法研究[博士学位论文][D].西安:西安科技大学,2009
    [113]王小波,杨为才,刘文斌,等.原地破碎浸出采铀布液技术研究[R].衡阳:核工业第六研究所,1997
    [114]刘金枝.堆浸浸出过程数值模拟分析及灰色预测研究[博士学位论文][D].长沙:中南大学,2007
    [115]Parker J C, Lenhard R J, Kuppusamy T. A parametric model for constitutive properties governing multiphase flow in porous media[J]. Water Resource Research,1987,23(4):618-624
    [116]Oostrom M, Lenhard R J. Comparison of relative permeability-saturation-pressure parametric models for infiltration and redistribution of a light non-aqueous-phase liquid in a sandy porous media[J]. Advances in Water Resources,1998,21(2): 145-157
    [117]Fagerlund F, Niemi A, Oden M. Comparison of relative permeability-fluid saturation-capillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated, layered media[J]. Advances in Water Resources,2006,29(11): 17051730
    [118]叶自桐,韩冰,杨金忠,等.岩石裂隙毛管压力—饱和度关系曲线的试验研究[J].水科学进展,1998,9(2):112-116
    [119]陈翔,徐文平,李广悦,等.氡的溶解与析出试验研究[J].核技术,2010,33(6):473-476
    [120]王福军.计算流体力学分析[M].北京:清华大学出版社,2004
    [121]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008