草鱼线粒体型超氧化物歧化酶的生化遗传特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超氧化物歧化酶(SOD)是一种对生物细胞保护至关重要,在进化上比较保守的酶。因此,超氧化物歧化酶作为分子钟或分子标记已被广泛应用于生物进化研究、群体遗传结构分析以及品系鉴定。但目前人们对鱼类超氧化物歧化酶的生物化学和遗传学特性都尚未进行过系统和深入的研究。为使这一重要的分子标记能更好地应用于鱼类遗传育种、种质资源保护以及进化研究,本实验采用聚丙烯酰胺梯度凝胶垂直电泳法,研究了草鱼线粒体型超氧化物歧化酶(fm-SOD)的同功酶形式、生化遗传表型、在不同组织中的分布、亚基组成以及金属类型。所得实验结果如下:
     (1)草鱼线粒体型超氧化物歧化酶有三种不同的同功酶形式;按其在酶谱上迁移率的不同,从正极到负极分别命名为fm-SOD 1,fm-SOD 2,fm-SOD 3,其中fm—SOD 1迁移率最快,而fm-SOD 3迁移率最慢。每种不同的fm—SOD均由两条相关的酶带组成,分别命名为主带和亚带。主带相对于亚带而言,迁移率较小而酶活力较高。
     (2)在草鱼群体中三种fm-SOD的不同组合可构成三种不同的草鱼线粒体型超氧化物歧化酶生化遗传学表型,即表型1、表型2与表型3。表型1个体只含有迁移率最快的fm-SOD 1同功酶;表型3个体只含有迁移率最慢的fm-SOD 3同功酶;而表型2个体中含有所有三种不同形式的同功酶。在表型2中,当这三种不同形式的同功酶均存在的时候,fm-SOD 2活力比fm-SOD 1和fm-SOD 3高,而fm-SOD 1与fm-SOD 3活力相当。
     (3)在草鱼心脏、肝脏、脾脏、肾脏、肌肉、尾鳍六种不同的组织中,草鱼线粒体型超氧化物歧化酶存在三种不同的同功酶形式和三种不同的生化遗传学表型。同一草鱼个体的线粒体型超氧化物歧化酶在六种不同组织中表现出相同的酶谱类型,但在不同组织中,酶活性有所不同。其中肝脏中活性最高,而其他组织活性相当。
     (4)在野生草鱼群体中,存在所有三种表现型;而在基因纯合型的雌核发育草鱼群体中只检测到表型1和表型3个体。野生草鱼群体中三种表现型的个体数之比为15:51:28。经过X~2测试,发现
    
    其比值符合常染色体上一个基哪座位~对等位基因1:2:1的孟
    德尔遮传分离比例。
    筑麟摧燕巍;
    基霉、(封草鱼f二s0D由两个亚基组成。
Superoxide dismutase is an evolutionarily conserved enzyme with an important role in protecting organisms and cells from the damages caused by oxygen free radicals. As a molecular clock and genetic marker, superoxide dismutase has been widely used in evolutionary studies, population genetics, and identification of different strains in the same species. However, the biochemical and genetic features of the mitochondrial superoxide dismutase have not been well characterized in fishes. In order to make this molecular marker applied in fish breeding, species protecting and evolutionary research further, we investigated the isozyme forms, biochemical genetic phenotypes. And we also study the distribution of different tissues and subunit construction of Ctenopharyngodon idellus (grass carp) mitochondrial superoxide dismutase (fm-SOD) with polyacrylamide gradient gel electrophoresis in this study. Our data revealed as follows:
    (1) There are three isoforms of fm-SOD which were named as fm-SOD 1, fm-SOD 2 and fm-SOD 3 according to their positions from the positive pole to the negative pole. Fm-SOD 1 is the fastest, while fm-SOD 3 is the slowest. In every different fm-SOD there are two bands, which is named as major band and sub-band. The major band migrates a little more slowly, while at the same time shows the higher activity.
    (2) The combination of three isoforms of fm-SOD constitutes three distinct biochemical phenotypes: phenotype 1, phenotype 2 and phenotype 3. Phenotype 1 was only associated with the fastest migratory isoform fm-SOD 1 and phenotype 3 with the slowest migratory isoform fm-SOD 3, while phenotype 2 was associated with all three isoforms. In phenotype 2, while
    
    
    
    all of the three isoforrs all exist, fm-SOD 2 shows higher activity than that of fm-SOD 1 and fm-SOD 3, but fm-SOD 1 and fm-SOD 3 seem to be the same.
    (3) In the six tissues, such as heart, liver, spleen, kidney, muscle and tailfin, the three isoforms and the three phenotypes all exist. Six tissues of the same individual show the same zymogram while they have different activity: the activity of liver is highest and that of other tissues seems to be the same.
    (4) In wild group of grass carp, all the three phenotypes were observed, whereas in mito-gynogenetic group, only phenotypes 1 and 3 were observed. The ratio of the individual numbers of the three phenotypes is 15:51:28. After X2 test for probability, we find that the ratio of the three phenotypes in the wild group was consistent with the 1:2:1 ratio of Mendelian inheritance for 2 alleles of a single locus in the autosomal chromosomes.
    (5) In addition, all of the three fm-SODs were sensitive to the mixture of 15% ethanol and 25% chloroform but resistant to H2O2, indicating that the fm-SOD in grass carp is Mn-SOD.
    These results suggested that: (i) the mitochondrial superoxide dismutase gene in grass carp resided in chromosomes instead of mitochondrial DNA; (ii) mitochondrial superoxide dismutase was encoded by a single locus; (iii) there were two variant alleles at least in grass carp and (iv) the fm-SQD is composed of two subunits.
引文
[1] Mccord J, Fridovich I. Superoxide dismutase. Journal of Biological chemistry, 1969, 244: 6049-6055.
    [2] Fridovich, I. Superoxide radical and superoxidedismu-tases. Annu. Rev. Biochem, 1995, 64:97-112.
    [3] Irwin Fridovich. Superoxide anion radical, superoxidedismutases, and ralated matters.The Journal ofbiological chemistry, 1997,272(30):18515-18517.
    [4] 方允中,李文杰.自由基与酶.科学出版社,1989,261-262.
    [5] 方允中,郑荣梁,沈文梅.自由基生命科学进展.北京原子能出版社,1993,67-69.
    [6] 翟颐华,邹国林,杨雄.韭菜胞质铜锌超氧化物歧化酶的纯化及性质研究.武汉植物学研究,1998,16(1):18-22.
    [7] 邹国林,罗时文,荣俊等.小白菜叶绿体铜锌超氧化物歧化酶的纯化和某些性质研究.生物化学与生物物理学报,1989,21(1):51-55.
    [8] 邹国林,罗时文.一种小白菜叶细胞溶质铜锌超氧化物歧化酶的纯化和性质研究.生物化学杂志,1989,5(2).1989,5(2)182-184.
    [9] 邹国林,罗时文,裘名宜等.小白菜线粒棒锰超氧化物歧化酶的纯化和性质研究.生物化学与生物物理学报,1992,24 (2).180-183.
    [10] 秦德安等.SOD对人红细胞膜的保护作用.生物化学与生物物理进展,1989,16(2):134-136.
    [11] 赵厚安,方允中.猪肝锰-超氧化物歧化酶的纯化.军事医学科学院院刊,1988,12(60):414-417.
    [16] 顾永清.SOD及其在生物学中的应用.生物学通报,1993,28(7):8-11.
    [17] 李文杰.超氧化物歧化酶在治疗超氧阴离子自由基引起的疾病及抗衰老的应用.中华药学杂志,397-401.
    [18] Kimura K, Isashiki Y, Sonoda S, Kakiuchi-Matsumoto T, Ohba
    
    N. Genetic association of manganese superoxide dismutase with exudative age-related macular degeneration. Am J Ophthalmol, 2000,130(6):769-773.
    [19]李性天.超氧化物歧化酶的作用机理及其抗肿瘤和抗心肌梗塞作用.生化药物杂志,1988,44:16-19.
    [20]Low PA, Nickander KK, Tritschler HJ. The roles of oxidative stress and antiosicant treatment in experimental diabetic neuropathy. Diabetes. 1997, 46: s38-s42.
    [21]Ambrosone CB, Freudenheim JL, Thompson PA, et al. Manganese superoxide dismutase (Mn-SOD) genetic polymorphisms,dietary antioxidants and risk of breast cancer.Cancer Rescerch.1999,59(3):602-606.
    [22]Mitrunen K, Sillanpaa P, Kataja V, Eskelinen M, Kosma VM, Benhamou S, Uusitupa M, Hirvonen A. Association between manganese superoxide dismutase (MnSOD) gene polymorphismand breast cancer risk. Carcinogenesis, 2001, 22(5): 827-829.
    [23]Hannah J. Zhang, Tao yan, Terry D. Oberley, Larry W.Oberley. Comparison of effects of two polymorphicvariants of manganese superoxide dismutase on humanbreast MCF-7 cancer cell phenotype. Cancer Research. 1999,59:6276-6283.
    [24]季波,赵树进.SOD检测与疾病关系的国内研究概况.广东药学,2002,12(1):6-8.
    [25]张博润等.SOD的研究进展和应用前景.微生物学通报,1992,19(6):352-357.
    [26]杜秀敏等.超氧化物歧化酶(SOD)研究进展.中国生物工程杂志,2003,23(1):48-51.
    [27]陈淮杨,刘望夷.从超氧化物歧化酶的分布和结构看其分子进化.生物化学与生物物理进展,1996,23(5):408-413.
    [28]罗广华,王爱国,付爱根.鉴别超氧化物歧化酶类型的定位染色法.生物化学与生物物理进展.1996,23(4):356-359.
    
    
    [29]罗广华,王爱国.植物SOD的凝胶电泳及活性显示.植物生理学通讯,1983,19(6):44.
    [30]Geslin C, Llanos J, Prieur D, Jeanthon C. The manga-nese and iron Superoxide dismutases protect Escheri-chia coli from heavy metal toxicity. Res Microbiol. 2001, 152(10): 901-905.
    [31]Okamoto OK, et al. Different regulatory mechanisms modulate the expression of a dinoflagellate ironsuperoxide dismutase, J Biol Chem, 2001,276(23): 19989-93.
    [32]张龙翔等.生化实验方法和技术.高等教育出版社,1981,145-151.
    [33]朱蓝菲.鱼类同工酶和蛋白质的聚丙烯酰胺梯度凝胶电泳法.水生生物学报,1992,16(2):183-185.
    [34]谭晓风,胡芳名.分子标记及其在林木遗传育种研究中的应用.经济林研究,1997,15(2):19-22.
    [35]李善如等.遗传标记及其在动物遗传育种中的应用.国外畜牧科技,1997,24(1):29-33.
    [36]贾永红,简承松,史宪伟.遗传标记及其在动物育种中的的应用.黄牛杂志,1998,24(6):45-46.
    [37]黄荣华等.分子标记及其在作物遗传育种中的应用.福建稻麦科技,1997,15(3):4-10.
    [38]黄明敏,陈金辉等.草鱼基因随机扩增多态性引物及多态性位点的筛选.科学技术与工程,2004,4(2):91-96.
    [39]林凯东.人工诱导雌核发育草鱼与普通草鱼基因组的微卫星分析.湖南师范大学硕士学位论文.2003,20-26.
    [40]胡能书,万贤国.同工酶技术及其应用.湖南科学技术出版社,1985,21-66.
    [41]张庆朝.同工酶的种类与生理功能.生命的化学,1993,13(6):18-20.
    [42]姜建国,熊全沫,姚汝华.青鱼不同组织中同工酶的表达模式.水生生物学报,1997,21(4):353-358.
    
    
    [43]姜建国,熊全沫,姚汝华.鲢鱼的同工酶研究.华南理工大学学报,1998,26(1):107-111.
    [44]吴力钊,王祖熊.白鲢个体发育过程中同工酶基因的表达与调控研究.水生生物学报,1996,21:49-58.
    [45]赵金良,蔡完其,李思发.中华鳖同工酶的组织特异性研究.上海水产大学学报,1998,7(4):311-316.
    [46]姜建国,熊全沫,姚汝华.鳙鱼不同组织的同工酶研究.华南理工大学学报,1998,26(3):68-72.
    [47]林信伟,熊全沫.寡龄新银鱼同工酶及其与幼态持续的关系.遗传学报,1991,18(3):214-218.
    [48]Champion M J, et al. Developmental genetics of teleostisozymes. In: Isozymes. Developmental biology, 1975, 3: 417-437.
    [49]Shaklee J B. et al. Developmental genetics of teleosts: a biochemical analysis of the lake chubsucker ontogeny. Developmental biology, 1974,38:356-382.
    [50]熊全沫,夏盛林.中国胭脂鱼同工酶的研究.动物学报,1985,31(1):20-27.
    [51]姜建国等.青鱼鲢鳙四种鱼同工酶的比较研究.遗传,1998,20.(2):19-22.
    [52]王强,沈俊宝.白鲢的同工酶研究.遗传,1991,3(3):22-23.
    [53]方丁,房世荣.同工酶在医学上的应用.北京:人民卫生出版社,1982.
    [54]Champion M J, Whitt G S. Differential gene expression in multilocus isozyme systems of the developing greensunfish. J.Exp. Zool,1976,196(3):263-282.
    [55]吴清江,桂建芳.鱼类遗传育种工程.上海科学技术出版社, 1999,86-96.
    [56]王可玲,张培军,刘兰英,尤锋,徐成,王建飞.中国近海带鱼种群生化遗传结构及其鉴别的研究.海洋学报,1994,16(1):93-104.
    [57]夏德全,杨弘,吴婷婷等.天鹅洲通江型长江故道“四大家鱼”
    
    种群遗传结构研究.中国水产科学,1996,3(4):11-18.
    [58]尤峰,王可玲,相建海等.山东近海牙鲆同工酶的生化遗传分析.海洋与湖沼,1999,30(2).127-133.
    [59]杨学明,李思发.长江鲢、草鱼原种—人繁殖群体生长差异与生化遗传变化.中国水产科学,1996,3(4):1-9.
    [60]徐成,王可玲,张培军.鲈鱼群体生化遗传学研究.海洋与湖沼,2001,32(3):248-254.
    [61]Warnke E, et al. Inheritance of superoxide dismutase(Sod-1) in a perennial X annual ryegrass cross and its allelic distribution among cultivars. Theor Appl Genet 2002 Dec; 105(8):1146-1150.
    [62]Hayward, M. D., N. J. Mcadam, J. G. Jones, C. Evans, G.M. Evans, J. W. Forster, A. Ustin, K. G. Hossain, B, Quader,M. Stammers, and J. K. Will. Genetic markers and theselection of quantitative traits in forage grasses.Euphytica. 1994, 77: 269-275.
    [63]Ghiani M.E., Calo M.C., Autuori L., Mameli G.E., SuccaV., VaccaL., Cerutti N., Rabino Massa E., AND Vona. G.New data on the genetic structure of the population ofSicily: analysis of the Alia population (Palermo, Italy).American Journal of Human Biology, 2002, 14:289-299.
    [64]Leesa-nga SN, Siraj SS, Daud SK, Sodsuk PK, Tan SG, SodsukS. Biochemical po]ymorphism in yellow catfish, Mystusnemurus, from Thailand. Biochemical Genetics, 2000, 38: 77-85.
    [65]桂建芳,杨书婷.两个雌核发育白鲢群体同工酶分析及遗传标记的确定.水生生物学报,1999,23(3):264-267.
    [66]王小虎,叶玉珍,吴清江.鲤鲫人工多倍体谱系中同工酶和蛋白的基因表达.水生生物学报,2002,26(5):425-431.
    [67]朱兰菲,蒋一圭.银鲫种内的遗传标记及其在选种中的应用.水生生物学报,1987,11(2),105-111.
    [68]朱蓝菲,桂建芳,梁绍昌,蒋一圭.复合四倍体异育银鲫的血
    
    红蛋白和红细胞的同工酶分析.水生生物学报,1995,19(1):66-69.
    [69]朱蓝菲、蒋一圭.银鲫不同雌核发育系的生物学特性比较研究.水生生物学报,1993,17(2):112-120.
    [70]朱蓝菲、桂建芳、梁绍昌等.鲢的远缘杂交子代和人工三倍体的同工酶表达.水生生物学报,1993,17(4):293-297.
    [71]Zuckerandl E, Pauling L. Molecular Disease, Evolution and Genetic Heterogeneity. Horizens in Biochemistry, New York, 1962.
    [72]唐先华,赖旭龙,钟扬,李涛,杨淑娟.分子钟假说与化石记录.地学前沿,2002,9(2):465-474.
    [73]李华,崔怀德.分子钟简介.生物学通报,1994,29(7):18.
    [74]罗静,张亚平.分子钟及其存在的问题.人类学学报,2000,19(2):151-159.
    [75]Ayala F.J. Neutralism and selectionism: the molecular clock. Gene, 2000, 261: 27-33.
    [76]Ayala F.J. On the virtues and pitfalls of the molecularevolutionary clock. J Hered 1986, 77:226-235.
    [77]Margoliash E. Primary structure and evolution of Cytochrome C. Proc Natl Acad Sci USA, 1963,50:672-679.
    [78]Sarich VM, Wilson A C. Generation time and genomicevolution in primates. Science. 1973,179:1144-1203.
    [79]Walter M. Fitch and Francisco J. Ayala. The superoxidedismutase molecular clock revisited. Proceedings of theNational Academy of Sciences, 1994, 91:6802-6807.
    [80]Lee YM, Friedman DJ, Ayala FJ. Superoxide dismutase: anevolutionary puzzle. Proc Natl Acad Sci USA, 1985,82:824-828.
    [81]Ryoji Fukuhara, Takafumi Tezuka, Takashi Kageyama.Structure, molecular evolution, and gene expression ofprimate superoxide dismutase, Gene. 2002, 296:99-109.
    [82]陈惠芳,王琦,付学池,梅汝鸿.超氧化物歧化酶的分子生物
    
    学.生命的化学,2003,23(4):291-293.
    [83] Ho.Y.-S., et al.. Molecular structure of a functional ratgene for manganese-containing superoxide dismutase. Am.J. Respir. Cell. Mol. Biol.,1991,4:278-286.
    [84] Church S.L. Manganese superoxide dismutase: nucleotideand deduced amino acid sequence of a cDNA encoding a newhumantranscript.Biochem.Biophys.Acta, 1990,1087:250-252.
    [85] Michael W. Smith, Russell F. Doolittle. A comparison ofevolutionary rates of the two major kinds of super-oxidedismutase, Journal ofmolecular evolution,1992,34:175-184.
    [86] Lin Yang, Yang Shu-Ting, Wei Xue-Hong, ad Gui Jian-Fang.Genetic diversity among different clones of thegynogenetic silver crucian carp, carassius auratusgibelio, revealed by transferring and isozyme marker.Biochemical Genetics 2001,39:213-225.
    [87] 章怀云等.草鱼和鲤群体遗传变异的RAPD指纹分析.水生生物学报,1998,22(2):168-173.
    [88] 赵凯,青海湖裸鲤与草鱼群体遗传变异性比较.淡水渔业,2001,31(2):51-52.
    [89] 罗琛,刘筠.人工诱导草鱼和鲫鱼雌核发育的研究.湖南师范大学自然科学学报,1991,14(2):154-159.
    [90] 李冰霞,罗琛.热休克法抑制第一次卵裂实现草鱼雌核发育的细胞学观察,水生生物学报,2003,27(2):154-159.
    [91] 肖亚梅,刘筠,罗琛.雌核发育草鱼近交F-1代的生化遗传特性.水产学报,2001,25(6):495-499.
    [92] 赵金良,李思发.长沙中下游鲢、鳙、草、青鱼种群分化的同工酶分析.水产学报,1996,20(2):104-110.
    [93] 吴力钊,王祖熊.长江中游草鱼天然种群的生化遗传结构及变异.遗传学报,1992,19(3).221-227.
    [94] 姜建国,熊全沫,姚汝华.草鱼同工酶的组织分布及遗传结构
    
    分析.华南理工大学学报,1997,25(12):105-110.
    [95]李思发,吴力钊等.长江、珠江、黑龙江鲢、鳙、草鱼种质资源研究.上海科学技术出版社,51-101。
    [96]吴力钊,王祖熊.草鱼同工酶发育遗传学研究.遗传学报,1987,14(5):387-394.
    [97]吴力钊,王祖熊.草鱼同工酶发育遗传学研究.遗传学报,1987,14(4):278-286.
    [98]吴力钊,王祖熊.草鱼同工酶基因座位多态性的初步研究.水生生物学报,1988,12(2):116-124.
    [99]晏勇等.草鱼线粒体DNA限制性内切酶分析.淡水渔业,1994,24(3):30-31.
    [100]殷文莉等.草鱼线粒体DNA酶切图谱的研究.武汉大学学报(自然科学版),1997,43(2):216-220.
    [101]李思发等.长江中下游鲢鳙草青四大家鱼线粒体DNA多样性分析.动物学报,1998,44(1):82-93.
    [102]张四明等。长江中游水系鲢和草鱼群体mtDNA遗传变异的研究.2002,26(2):142-147.
    [103]薛国雄等.三江水系草鱼种群RAPD分析.中国水产科学,1998,5(1):1-5.
    [104]邓怀等.十种常见淡水鱼类的RAPD鉴定.淡水渔业,1998,28(1):8-10.
    [105]张四明等.长江水系鲢和草鱼遗传结构与变异性的RAPD研究.水生生物学报,2001,25(4):324-330.
    [106]邓岳松,罗琛,刘筠.草鱼人工雌核发育的细胞学观察.激光生物学报,1998,7(3):207-211.
    [107]Baumann M, Bender E, Stommer. G et al. Effects of warm any cold ischemia on mitochondrial functions in brain,liver and kidney. Mol Cell Biochem, 1989, 87(2): 137-140.
    [108]熊全沫.同工酶电泳数据的分析及其在种群遗传上的应用.遗传,1989,8(1):1-5.
    [109]熊全沫.鱼类同工酶分析.遗传,1992,14:41-44.
    [110]张子平,王艺磊,张海萌.鱼类同工酶图谱分析中值得注意的
    
    若干情况.动物学杂志,1994,29(6):49-52.
    [111]唐双炎,邹国林,金建明.牦牛血超氧化物歧化酶电泳多谱带现象研究.动物学报,2000,46(4):422-430.
    [112]邹国林.对SOD研究中若干问题的看法.中国生化药物杂志,1995,16(4):186-189.
    [113]Borgstahl G.E., et al..The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell, 1992, 71:107-118.