日粮非纤维性碳水化合物对人工瘤胃发酵、微生物合成和纤维分解菌菌群的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日粮中的非纤维性碳水化合物(NFC)主要包括淀粉、可溶性糖以及中性洗涤可溶性纤维(NDSF),是反刍动物的主要能量来源。目前研究中,NFC常以单个值出现在日粮组成中,但不同来源饲料的NFC组成差异较大,例如玉米谷物中,NFC主要为淀粉;糖蜜中,NFC主要为可溶性糖(单糖和双糖);而对于甜菜渣,NFC则主要为NDSF。然而,不同NFC组分在瘤胃中的发酵特性不同。与淀粉相比,果胶发酵不产生或产生极少乳酸,但具有较高的乙丙比,当瘤胃pH较低时,果胶发酵受到抑制或不再继续发酵;可溶性糖发酵较快,产生较高的丁酸。因而,在生产中将NFC作为统一整体考虑并不合适。生产中常用糖蜜和甜菜渣类饲料替代日粮中的部分谷物,但此类饲料对动物瘤胃发酵和生产性能的影响,各研究间结论并不一致。本研究通过四个人工瘤胃试验系统研究了体外环境条件下日粮NFC组分对养分降解、瘤胃发酵、微生物合成以及纤维分解菌菌群的影响,以期得到淀粉、可溶性糖和NDSF间适宜的供应方式,为糖蜜和甜菜渣类饲料在生产中的合理应用提供理论基础。现摘要如下:
     试验一日粮瘤胃降解蛋白(RDP)水平和NFC类型对瘤胃发酵、微生物合成和纤维分解菌菌群的影响。本研究采用2×4的双因素试验设计,其中2种RDP水平,4种NFC类型(玉米淀粉、蔗糖、柑橘果胶和菊粉)。RDP水平通过向四种日粮中分别添加0(低RDP)或1.56g(高RDP)酪蛋白酸钠调节。主效应方面(2中RDP水平下的平均值,以下同),蔗糖和果胶组的干物质(DM)和有机物质(OM)表观消失率显著高于其它处理组(P <0.01)。日粮RDP水平和NFC来源在影响中性洗涤纤维(neutraldetergent fiber,NDF)的表观消失率上存在交互作用(P <0.01),低RDP处理组,蔗糖(P=0.10)和果胶组(P=0.09)趋向于低于淀粉组(P值),但高RDP处理组之间差异不显著。主效应方面,果胶组的液相和固相部分的Ruminococcus albus的16S rDNA拷贝数分别高于(P <0.01)和趋向于(P=0.10)高于淀粉组。在影响液相(P <0.01)和固相(P=0.02)Ruminococcus flavefaciens的16S rDNA拷贝数方面,日粮RDP水平和NFC来源间存在交互作用,其中低RDP下,蔗糖组固相Ruminococcus flavefaciens拷贝数趋向于(P=0.06)低于淀粉组。增加日粮RDP水平提高了所有处理组的总挥发性脂肪酸(VFA)产量(P <0.01)和总微生物氮(MN)流量(P <0.01)。主效应上,果胶组的乙酸摩尔比例(P <0.05)和乙丙比最高(P <0.01)。不论RDP水平,蔗糖和菊粉组的丁酸摩尔比例均高于其它处理组(P <0.01)。低RDP下各处理组的总MN流量差异不显著,但提高RDP使得蔗糖和果胶组的总MN流量分别高于(P <0.01)和趋向于(P=0.10)高于淀粉组。结果表明,日粮RDP水平和NFC类型在影响瘤胃发酵、微生物合成和纤维分解菌菌群方面存在交互作用,当日粮中有足够的瘤胃可利用氮时,蔗糖和果胶在微生物合成方面比淀粉更具有优势。
     试验二日粮NDSF和蔗糖对瘤胃发酵、微生物合成和纤维分解菌菌群的影响。本研究采用2×2的双因素试验设计,日粮含有2种蔗糖添加量,高糖(约1.01g/d)和低糖(约0.26g/d);2种NDSF水平,高NDSF(2.70g/d)和低NDSF(1.95g/d)。日粮NDSF和蔗糖在影响固相木聚糖酶活性(P=0.04)和DM (P=0.08)、OM (P=0.04)、NDF (P=0.01)、半纤维素(P=0.09)的表观消失率上存在交互作用,在高糖条件下增加NDSF供应量能够降低上述指标。尽管日粮NDSF和蔗糖在影响丁酸摩尔比例(P=0.05)方面存在交互作用,但与低NDSF日粮相比,高NDSF日粮增加了乙酸摩尔比例并降低了丁酸摩尔比例。然而,补加蔗糖对瘤胃VFA参数的影响则依赖日粮NDSF的水平。日粮蔗糖和NDSF在影响甲烷产量方面存在交互作用(P <0.01),提高NDSF供应量仅在低蔗糖日粮下增加甲烷产生量。提高NDSF和蔗糖供应量均降低了每天的净氨氮产量(P <0.01和P=0.03)。与低NDSF日粮相比,高NDSF日粮的总非氨态氮(NAN)(P=0.01)、MN(P=0.01)、固相微生物(SAM)(P <0.01)流量和微生物合成效率(EMS)(P=0.02)均较高。提高NDSF供应量增加了R. flavefaciens拷贝数(P <0.02),同时降低了R. albus拷贝数(P <0.01)。补加蔗糖提高了液相Ruminococcus albus拷贝数(P=0.01),但不影响总MN流量和固相纤维分解菌菌群。结果表明,在反刍动物日粮配合中,需要考虑NDSF和可溶性糖对瘤胃发酵以及纤维降解的交互影响;仍需进一步研究可溶性糖在瘤胃中的发酵和代谢。
     试验三日粮NDSF替代淀粉对瘤胃发酵、微生物合成和纤维分解菌菌群的影响。本研究采用单因素试验设计,日粮的NDSF含量分别为12.7%、16.4%、20.1%和23.8%。提高日粮NDSF含量对DM(P=0.05)、OM(P=0.08)和NDF(P=0.06)表观消失率的影响,呈先增加后降低的趋势,较高值均出现在16.4%组。增加日粮NDSF含量提高了酸性洗涤纤维(ADF)(P=0.03)的表观消失率和纤维素酶活性,但降低了R. albus和R. flavefaciens的数量以及N的表观消失率(P <0.01)。用NDSF替代淀粉增加了乙酸摩尔比例(P <0.01)、乙丙比(P <0.01)、甲烷产量(P=0.03)和甲烷与VFA比(P<0.01)。提高日粮NDSF含量降低了氨氮产生量(P <0.01),增加了NAN(P <0.01)、SAM(P <0.01)流量和EMS (P=0.07),但总MN合成量在NDSF含量超过20.1%后没有进一步增加(P=0.07)。结果表明,当日粮NDSF含量占到16.4%时,提高了养分消化率(除N)和MN合成,进一步增加NDSF含量并不抑制MN合成,但显著降低了日粮N的消化。考虑到增加的微生物合成和瘤胃非降解N流量,用NDSF替代淀粉对反刍动物是有益的。
     试验四高糖日粮NDSF替代淀粉对瘤胃发酵、微生物合成和纤维分解菌菌群的影响。本研究采用单因素试验设计,日粮的NDSF含量分别为12.9、16.6和20.3%。提高日粮NDSF含量降低了DM(P=0.03)、OM(P=0.05)、N(P <0.01)和NDF(P=0.09)的表观消失率,但增加了NFC的表观消失率(P=0.03)。用NDSF替代淀粉增加了丁酸摩尔比例(P <0.01)、乙丙比(P=0.06)以及甲烷与VFA比(P=0.04),降低了丙酸摩尔比例(P=0.04)。提高日粮NDSF含量降低了氨氮产量(P=0.04),增加了NAN(P=0.02)、SAM(P <0.01)流量和EMS(P=0.06),但总MN合成量在NDSF含量超过16.6%后没有进一步增加(P=0.13)。增加日粮NDSF含量降低了液相木聚糖酶和固相羧甲基纤维素酶活性,但不影响3种典型的纤维分解菌菌群。结果表明,高糖日粮下用NDSF替代淀粉虽降低了养分消化率(尤其日粮N),但提高了微生物合成。考虑到增加的微生物N合成和瘤胃非降解N流量,用NDSF替代淀粉对反刍动物是有益的,但需要考虑其对纤维消化的抑制影响。
Dietary non-fibre carbohydrates (NFC) are the major source of energy forhigh-producing dairy cattle. They are a very diverse group of carbohydrates, which includestarch, sugars, and neutral detergent soluble fiber (NDSF, largely pectic substances). Differentfeed sources vary greatly in the major components of NFC, although NFC has beenrepresented as a single value for feeds or diets. The NFC in corn grain is mostly starch, citruspulp provides sugars and NDSF, and sugars are predominant in molasses. However,fermentation of different NFC sources varies in digestion characteristics and the profiles oforganic acids produced. For example, pectins differ from starch and sugars producing little orno lactate, and they also elicit a higher acetate-to-propionate ratio compared with starch. Inaddition, the fermentation of pectin can be repressed or be ceased by lower ruminal pH.Sugars produce more butyrate compared with starch and pectin. Therefore, it is notappropriate for NFC as a whole. Effects of replacing cereal with molasses or sugar beet pulpon ruminal fermentation and animal production were not consistent among studies in pastyears. We investigate the effects of NFC on nutrients digestion, ruminal fermentation,microbial synthesis, and populations of ruminal cellulolytic bacteria using four artificialrumen (RUSITEC) experiments in order to determine the appropriate supply methods amongstarch, sugars, and NDSF and to provide theoretical basis for rational use of molasses andsugar beet pulp in the production and practice.
     Trial1The objective of this study was to investigate the effects of rumen degradableprotein (RDP) and non-fibre carbohydrates (NFC) on ruminal fermentation, microbialsynthesis, and populations of ruminal cellulolytic bacteria using the rumen simulationtechnique (RUSITEC). Treatments consisted of four NFC types (corn starch, sucrose, pectin,and inulin) supplemented with0g/d (low RDP) or1.56g/d (high RDP) sodium caseinate.Apparent disappearance of dry matter (DM) and organic matter (OM) was greater (P <0.01)for the main effect means of sucrose and pectin than for other treatments, when averaged over both RDP supplementation rates. A NFC×RDP interaction (P <0.01) was observed forapparent neutral detergent fibre (NDF) disappearance, which tended to be lower for sucrose (P=0.10) and pectin (P=0.09) than for starch treatment under low RDP conditions, but did notdiffer among treatments under high RDP conditions. The16S ribosomal deoxyribonucleicacid (rDNA) copies of Ruminococcus albus were greater (P <0.01) and tended to be greater(P=0.10) for the main effect means of pectin than for starch treatment in liquid and solidfraction, respectively. There were NFC×RDP interactions for16S rDNA copy numbers ofRuminococcus flavefaciens, which in solid fraction tended to be lower (P=0.06) for sucrosethan for starch treatment under low RDP conditions. Increasing dietary RDP increased totalvolatile fatty acids production (P <0.01) and total microbial nitrogen (N) flow (P <0.01) inall treatments. The molar proportion of acetate and the ratio between acetate and propionatewere both greatest (P <0.05and P <0.01, respectively) for the main effect means of pectinamong treatments. Butyrate molar proportions were greater (P <0.01) for sucrose and inulintreatments than for other treatments regardless of RDP level. Total microbial N (MN) flow didnot differ among treatments under low RDP conditions, but sucrose (P <0.01) and pectin (P=0.10) produced greater MN than starch with increased RDP. Results showed NFC type, RDPlevel, and their interaction affected ruminal fermentation, microbial synthesis, and cellulolyticbacteria populations, and under sufficient ruminal available N sucrose and pectin had greateradvantage in microbial N synthesis than starch.
     Trial2The objective of this study was to investigate the effects of neutral detergentsoluble fiber (NDSF) and sucrose supplementation on ruminal fermentation, microbialsynthesis, and populations of ruminal cellulolytic bacteria in Rusitec fermenters. Theexperiment had a2×2factorial design with two dosages of sucrose, low (ca.0.26g/d,low-sucrose) and high (ca.1.01g/d, high-sucrose), and two dosages of supplied NDSF, low(1.95g/d, low-NDSF) and high (2.70g/d, high-NDSF). Numerical or significant interactionsbetween NDSF and sucrose were detected for apparent disappearance of DM (P=0.08), OM(P=0.04), NDF (P=0.01), and hemicellulose (P=0.09), and xylanase from solid phase (P=0.04), which were reduced by supplemental NDSF only in high-sucrose diets. Althoughinteractions between NDSF and sucrose were detected for the molar proportions of butyrate(P=0.05), on the whole, high-NDSF diets increased the molar proportion of acetate andreduced that of butyrate compared with low-NDSF diets; however, the effects of supplementalsucrose on VFA profiles depended upon NDSF amount. A NDSF×sucrose interaction wasobserved for the production of methane (P <0.01) where supplementation with NDSF only increased the production of methane in low-sucrose diets. Supplementation with NDSF andsucrose both reduced the net production of ammonia-N (P <0.01and P=0.03, respectively).High-NDSF fermenters had greater daily flow of total non-ammonia N (NAN)(P=0.01),total MN (P=0.01), and solid-associated microbial pellets (SAM)(P <0.01) and greaterefficiency of microbial synthesis (EMS)(P=0.02), expressed as g microbial N/kg OMfermented compared with low-NDSF fermenters. Supplementation with NDSF resulted in anincrease in16S rDNA copies of Ruminococcus flavefaciens (P <0.02) and a reduction incopies of Ruminococcus albus (P <0.01). Supplementation with sucrose increased the16SrDNA copies of Ruminococcus albus (P=0.01) from liquid fraction, but did not affect dailytotal MN flow and cellulolytic bacterium populations from solid fraction. These data indicatethat the effects of the interaction between NDSF and sugars on ruminal fermentation and fiberdigestion should be taken into account in diet formulation. Ruminal fermentation andmetabolism of sugars warrant further investigation.
     Trial3The objective of this study was to investigate the effects of replacing dietarystarch with neutral detergent soluble fiber (NDSF) on ruminal fermentation, microbialsynthesis, and populations of ruminal cellulolytic bacteria using the rumen simulationtechnique (RUSITEC). Experimental diets contained12.7,16.4,20.1, and23.8%NDSFsubstituted for dietary starch on a dry matter basis. With the increasing dietary NDSF,apparent disappearance of DM (P=0.05), OM (P=0.08) and NDF (P=0.06) had afluctuation change, increasing first and decreasing afterwards, with the maximum valueobserved in the16.4%NDSF diet. Increasing dietary NDSF caused an increase in apparentdisappearance of acid detergent fiber (ADF)(P=0.03) and fibrolytic enzyme activity and areduction in the number of ruminal cellulolytic bacteria (i.e., R. albus and R. flavefaciens) andapparent disappearance of dietary nitrogen (P <0.01). Substituting NDSF for starch appearedto increase the molar proportion of acetate (P <0.01), acetate: propionate (P <0.01), theproduction of methane (P=0.03), and methane: VFA (P <0.01). Increasing dietary NDSFreduced the daily production of ammonia-N (P <0.01) and increased the daily flow of NAN(P <0.01) and SAM (P <0.01), and EMS (P=0.07), but total microorganisms flow did notfurther increase as dietary NDSF exceeded20.1%of diet DM (P=0.07). Results suggest thatsubstituting NDSF for starch up to16.4%of diet DM increased digestion of nutrients (exceptfor N) and microbial synthesis, and further increase (from16.4to23.8%) in dietary NDSF didnot repress microbial synthesis but significantly reduced digestion of dietary N. Replacingdietary starch with NDSF may be beneficial for ruminants production due to increased flow of microbial protein and ruminally undegradable feed protein.
     Trial4The objective of this study was to investigate the effects of replacing dietarystarch with neutral detergent soluble fiber (NDSF) in high sucrose diets on ruminalfermentation, microbial synthesis, and populations of ruminal cellulolytic bacteria using therumen simulation technique (RUSITEC). Experimental diets contained12.9,16.6, and20.3%NDSF substituted for dietary starch on a dry matter basis. Increasing dietary NDSF reducedor tended to reduce the apparent disappearance of DM (P=0.03), OM (P=0.05), N (P <0.01), and NDF (P=0.09), but increased that of NFC (P=0.03). Substituting NDSF forstarch appeared to increase the molar proportion of butyrate (P <0.01), acetate: propionate(P=0.06), and methane: VFA (P=0.04), and reduced the molar proportion of propionate (P=0.04). Increasing dietary NDSF reduced the daily production of ammonia-N (P=0.04) andincreased the daily flow of NAN (P=0.02) and SAM (P <0.01), and EMS (P=0.06). Totalmicroorganisms flow did not further increase as dietary NDSF exceeded16.6%of diet DM (P=0.13). Increasing dietary NDSF caused a reduction in xylanase activity from liquid fraction(P=0.02) and carboxymethylcellulase activity from solid fraction (P=0.02), but did notaffect typical cellulolytic bacteria population. Results suggest that substituting NDSF forstarch reduced digestion of nutrients especially dietary N, but improved the microbialsynthesis under high sugar conditon. Replacing dietary starch with NDSF may be beneficialfor ruminant production due to increased flow of microbial protein and ruminallyundegradable feed protein, but its repression on fiber digestion should be taken into account indiet formulation.
引文
Abrahamse P, Vlaeminck B, Tamminga S, Dijkstra J.2008. The effect of silage and concentrate typeon intake behavior, rumen function, and milk production in dairy cows in early and late lactation. Journalof Dairy Science,91(12):4778~4792.
    Akalin A, G n S, Akba Y.2002. Variation in organic acids content during ripening of pickled whitecheese. Journal of Dairy Science,85(7):1670~1676.
    Alamouti A A, Alikhani M, Ghorbani G, Zebeli Q.2009a. Effects of inclusion of neutral detergentsoluble fibre sources in diets varying in forage particle size on feed intake, digestive processes, andperformance of mid~lactation Holstein cows. Animal Feed Science and Technology,154(1~2):9~23.
    Alamouti A A, Ghorbani G, Alikhani M, Rahmani H, Yansari A T, Südekum K.2009b. Effects oflucerne particle size and source of dietary carbohydrates on in situ degradation and ruminal variables insheep. Czech Journal of Animal Science,54(6):277~285.
    Allen M S.1997. Relationship between fermentation acid production in the rumen and the requirementfor physically effective fiber. Journal of Dairy Science,80(7):1447~1462.
    Allen M S.2000. Effects of diet on short-term regulation of feed intake by lactating dairy cattle.Journal of Dairy Science,83(7):1598~1624.
    AlZahal O, Or-Rashid M, Greenwood S, Douglas M, McBride B.2009. The effect of dietary fiberlevel on milk fat concentration and fatty acid profile of cows fed diets containing low levels ofpolyunsaturated fatty acids. Journal of Dairy Science,92(3):1108~1116.
    Arelovich H, Abney C, Vizcarra J, Galyean M.2008. Effects of dietary neutral detergent fiber onintakes of dry matter and net energy by dairy and beef cattle: Analysis of published data. The ProfessionalAnimal Scientist,24(5):375~383.
    Ariza P, Bach A, Stern M, Hall M.2001. Effects of carbohydrates from citrus pulp and hominy feed onmicrobial fermentation in continuous culture. Journal of Animal Science,79(10):2713.
    Bach A, Yoon I, Stern M, Jung H, Chester-Jones H.1999. Effects of type of carbohydratesupplementation to lush pasture on microbial fermentation in continuous culture. Journal of Dairy Science,82(1):153~160.
    Barrios~Urdaneta A, Fondevila M, Castrillo C.2003. Effect of supplementation with differentproportions of barley grain or citrus pulp on the digestive utilization of ammonia~treated straw by sheep.Animal Science,76(2):309~318.
    Batajoo K, Shaver R.1994. Impact of nonfiber carbohydrate on intake, digestion, and milk productionby dairy cows. Journal of Dairy Science,77(6):1580~1588.
    Bauman D E, Griinari J M.2000. Regulation and nutritional manipulation of milk fat: low-fat milksyndrome. Livestock Production Science,70(1-2):15~29.
    Beauchemin K, Rode L.1997. Minimum versus optimum concentrations of fiber in dairy cow dietsbased on barley silage and concentrates of barley or corn. Journal of Dairy Science,80(8):1629~1639.
    Beckman J, Weiss W.2005. Nutrient Digestibility of Diets with Different Fiber to Starch Ratios whenFed to Lactating Dairy Cows. Journal of Dairy Science,88(3):1015~1023.
    Ben-Ghedalia D, Yosef E, Miron J, Est Y.1989. The effects of starch-and pectin-rich diets onquantitative aspects of digestion in sheep. Animal Feed Science and Technology,24(3~4):289~298.
    Benefield B C, Li eiro M, Ipharraguerre I, Clark J H.2006. Nutridense corn grain and corn silage fordairy cows. Journal of Dairy Science,89(5):1571~1579.
    Bhattacharya A, Harb M.1973. Dried citrus pulp as a grain replacement for Awasi lambs. Journal ofAnimal Science,36(6):1175~1180.
    Bhatti S, Firkins J.1995. Kinetics of hydration and functional specific gravity of fibrous feedby-products. Journal of Animal Science,73(5):1449~1458.
    Bodas R, Giráldez F J, López S, Rodríguez A B, Mantecón A.2007. Inclusion of sugar beet pulp incereal-based diets for fattening lambs. Small Ruminant Research,71(1):250~254.
    Bodas R, López S, Rodríguez A B, Andrés S, Mantecón A, Giráldez F J.2010. Feed intake,digestibility, and carcass characteristics of lambs fed a diet supplemented with soluble fibre. AnimalProduction Science,50(1):45~51.
    Boeckaert C, Vlaeminck B, Dijkstra J, Issa~Zacharia A, Van Nespen T, Van Straalen W, Fievez V.2008.Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acidcomposition of dairy cows. Journal of Dairy Science,91(12):4714~4727.
    Brückner J.1955. Estimation of monosaccharides by the orcinol–sulphuric acid reaction. BiochemicalJournal,60(2):200~205.
    Broderick G, Luchini N, Reynal S, Varga G, Ishler V.2008. Effect on production of replacing dietarystarch with sucrose in lactating dairy cows. Journal of Dairy Science,91(12):4801~4810.
    Broderick G, Mertens D, Simons R.2002. Efficacy of carbohydrate sources for milk production bycows fed diets based on alfalfa silage. Journal of Dairy Science,85(7):1767~1776.
    Broderick G, Radloff W.2004. Effect of Molasses Supplementation on the Production of LactatingDairy Cows Fed Diets Based on Alfalfa and Corn Silage. Journal of Dairy Science,87(9):2997~3009.
    Brown W, Johnson D.1991. Effects of energy and protein supplementation of ammoniated tropicalgrass hay on the growth and carcass characteristics of cull cows. Journal of Animal Science,69(1):348~357.
    Bueno M, Ferrari E, Bianchini D, Leinz F, Rodrigues C.2002. Effect of replacing corn withdehydrated citrus pulp in diets of growing kids. Small Ruminant Research,46(2-3):179~185.
    Cabrita A, Bessa R, Alves S, Dewhurst R, Fonseca A.2007. Effects of dietary protein and starch onintake, milk production, and milk fatty acid profiles of dairy cows fed corn silage-based diets. Journal ofDairy Science,90(3):1429~1439.
    Cameron M, Klusmeyer T, Lynch G, Clark J, Nelson D.1991. Effects of urea and starch on rumenfermentation, nutrient passage to the duodenum, and performance of cows. Journal of Dairy Science,74(4):1321~1336.
    Carro M, Ranilla M.2003. Influence of different concentrations of disodium fumarate on methaneproduction and fermentation of concentrate feeds by rumen micro-organisms in vitro. British Journal ofNutrition,90(3):617~624.
    Chamberlain D G, Robertson S, Choung J J.1993. Sugars versus starch as supplements to grass silage:effects on ruminal fermentation and the supply of microbial protein to the small intestine, estimated fromthe urinary excretion of purine derivatives, in sheep. Journal of the Science of Food and Agriculture,63(2):189~194.
    Cherney D, Cherney J, Chase L.2003. Influence of dietary nonfiber carbohydrate concentration andsupplementation of sucrose on lactation performance of cows fed fescue silage. Journal of Dairy Science,86(12):3983~3991.
    Chester-Jones H, Stern M, Metwally H, Linn J, Ziegler D.1991. Effects of dietary protein~energyinterrelationships on Holstein steer performance and ruminal bacterial fermentation in continuous culture.Journal of Animal Science,69(12):4956~4966.
    Chikunya S, Newbold C, Rode L, Chen X, Wallace R.1996. Influence of dietary rumen-degradableprotein on bacterial growth in the rumen of sheep receiving different energy sources. Animal Feed Scienceand Technology,63(1):333~340.
    Clark J, Klusmeyer T, Cameron M.1992. Microbial protein synthesis and flows of nitrogen fractions tothe duodenum of dairy cows. Journal of Dairy Science,75(8):2304~2323.
    Coen J A, Dehority B.1970. Degradation and utilization of hemicellulose from intact forages by purecultures of rumen bacteria. Applied microbiology,20(3):362~368.
    Coleman G.1985. The cellulase content of15species of entodiniomorphid protozoa, mixed bacteriaand plant debris isolated from the ovine rumen. The Journal of Agricultural Science,104(02):349~360.
    Cooke K, Bernard J.2005. Effect of length of cut and kernel processing on use of corn silage bylactating dairy cows. Journal of Dairy Science,88(1):310~316.
    Cooke K, Bernard J, West J.2009. Performance of lactating dairy cows fed ryegrass silage and cornsilage with ground corn, steam~flaked corn, or hominy feed. Journal of Dairy Science,92(3):1117~1123.
    Cotta M A.1993. Utilization of xylooligosaccharides by selected ruminal bacteria. Applied andEnvironmental Microbiology,59(11):3557~3563.
    Cotta M A, Zeltwanger R L.1995. Degradation and utilization of xylan by the ruminal bacteriaButyrivibrio fibrisolvens and Selenomonas ruminantium. Applied and Environmental Microbiology,61(12):4396~4402.
    Crocker L, DePeters E, Fadel J, Perez~Monti H, Taylor S, Wyckoff J, Zinn R.1998. Influence ofprocessed corn grain in diets of dairy cows on digestion of nutrients and milk composition. Journal ofDairy Science,81(9):2394~2407.
    Danesh Mesgaran M.2009. Effect of different rumen-degradable carbohydrates on rumen fermentation,nitrogen metabolism and lactation performance of Holstein dairy cows. Asian-Australasian journal ofanimal sciences,22(5):651~658.
    Dehority B.1967. Rate of isolated hemicellulose degradation and utilization by pure cultures of rumenbacteria. Applied microbiology,15(5):987~993.
    Delahoy J, Muller L, Bargo F, Cassidy T, Holden L.2003. Supplemental carbohydrate sources forlactating dairy cows on pasture. Journal of Dairy Science,86(3):906~915.
    Demeyer D.1991. Quantitative aspects of microbial metabolism in the rumen and hindgut. In Jouany J.P.(Ed.), Ruminant microbial metabolism and ruminal digestion, pp.217-237
    Denman S E, McSweeney C S.2006. Development of a real‐time PCR assay for monitoringanaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS microbiology ecology,58(3):572~582.
    Dewhurst R, Davies D, Merry R.2000. Microbial protein supply from the rumen. Animal Feed Scienceand Technology,85(1-2):1~21.
    Du ková D, Marounek M.2001. Fermentation of pectin and glucose, and activity of pectin-degradingenzymes in the rumen bacterium Lachnospira multiparus. Letters in Applied Microbiology,33(2):159~163.
    Fluharty F L, Dehority B A.1995. Effects of sugar beet pulp and corn as energy supplements for cattlefed forage diets on diet digestibility and ruminal microorganisms. Special circular-ohio agriculturalresearch and development center issue: No.156, The Ohio State University, Columbus, Ohio, USA.pp.:51~55.
    Fung Y, Sparkes J, Van Ekris I, Chaves A, Bush R.2010. Effects of feeding fresh citrus pulp to Merinowethers on wool growth and animal performance. Animal Production Science,50(1):52~58.
    Galo E, Emanuele S, Sniffen C, White J, Knapp J.2003. Effects of a polymer-coated urea product onnitrogen metabolism in lactating Holstein dairy cattle. Journal of Dairy Science,86(6):2154~2162.
    Galyean M, Abney C.2006. Assessing roughage value in diets of high-producing cattle, SouthwestNutr. Manage. Conf. Univ. of Arizona, Tucson.: p.127.
    Gholizadeh H, Naserian A.2010. The effects of replacing dried citrus pulp with barley grain on theperformance of Iranian Saanen kids. Journal of Animal and Veterinary Advances,9(15):2053~2056.
    Golombeski G, Kalscheur K, Hippen A, Schingoethe D.2006. Slow-release urea and highlyfermentable sugars in diets fed to lactating dairy cows. Journal of Dairy Science,89(11):4395~4403.
    Gradel C M, Dehority B.1972. Fermentation of isolated pectin and pectin from intact forages by purecultures of rumen bacteria. Applied and Environmental Microbiology,23(2):332~340.
    Grigelmo-Miguel N, Martín-Belloso O.1998. Characterization of dietary fiber from orange juiceextraction. Food research international,31(5):355~361.
    Griswold K, Apgar G, Bouton J, Firkins J.2003. Effects of urea infusion and ruminal degradableprotein concentration on microbial growth, digestibility, and fermentation in continuous culture. Journal ofAnimal Science,81(1):329~336.
    Hall M.2003. Challenges with nonfiber carbohydrate methods. Journal of Animal Science,81(12):3226~3232.
    Hall M, Herejk C.2001. Differences in yields of microbial crude protein from in vitro fermentation ofcarbohydrates. Journal of Dairy Science,84(11):2486~2493.
    Hall M, Larson C, Wilcox C.2010. Carbohydrate source and protein degradability alter lactation,ruminal, and blood measures. Journal of Dairy Science,93(1):311~322.
    Hall M, Pell A, Chase L.1998. Characteristics of neutral detergent-soluble fiber fermentation by mixedruminal microbes. Animal Feed Science and Technology,70(1~2):23~39.
    Hall M B.2002: Working with non-ndf carbohydrates with manure evaluation and environmentalconsiderations, Proceedings of the Mid-south Ruminant Nutrition Conference, Arlington, TX, USA.
    Hall M B, Hoover W H, Jennings J P, Webster T K M.1999. A method for partitioning neutraldetergent-soluble carbohydrates. Journal of the Science of Food and Agriculture,79(15):2079~2086.
    Harmison B, Eastridge M, Firkins J.1997. Effect of percentage of dietary forage neutral detergent fiberand source of starch on performance of lactating Jersey cows. Journal of Dairy Science,80(5):905~911.
    Hatfield R, Weimer P.1995. Degradation characteristics of isolated and in situ cell wall lucerne pecticpolysaccharides by mixed ruminal microbes. Journal of the Science of Food and Agriculture,69(2):185~196.
    Heinrichs J, Kononoff P.2002. Evaluating particle size of forages and TMRs using the new Penn StateForage Particle Separator. Cooperative Extension, College of Agricultural Sciences,(42):1~15.
    Heldt J, Cochran R, Stokka G, Farmer C, Mathis C, Titgemeyer E, Nagaraja T.1999. Effects ofdifferent supplemental sugars and starch fed in combination with degradable intake protein on low~qualityforage use by beef steers. Journal of Animal Science,77(10):2793~2802.
    Hemingway R, Parkins J, Fraser J.1986. A note on the effect of molasses inclusion in sugar beet pulpon the yield and composition of the milk of dairy cows. Anim. Prod,42:417~420.
    Hindrichsen I, Kreuzer M.2009. High methanogenic potential of sucrose compared with starch at highruminal pH. Journal of Animal Physiology and Animal Nutrition,93(1):61~65.
    Hindrichsen I, Wettstein H R, Machmüller A, Soliva C, Knudsen K E B, Madsen J, Kreuzer M.2004.Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release invitro. Canadian journal of animal science,84(2):265~276.
    Hoover W.1986. Chemical factors involved in ruminal fiber digestion. Journal of Dairy Science,69(10):2755~2766.
    Hoover W, Tucker C, Harris J, Sniffen C, De Ondarza M.2006. Effects of nonstructural carbohydratelevel and starch: sugar ratio on microbial metabolism in continuous culture of rumen contents. Animal FeedScience and Technology,128(3~4):307~319.
    Hristov A, Ropp J.2003. Effect of dietary carbohydrate composition and availability on utilization ofruminal ammonia nitrogen for milk protein synthesis in dairy cows. Journal of Dairy Science,86(7):2416~2427.
    Huhtanen P.1988. The effects of barley, unmolassed sugar-beet pulp and molasses supplements onorganic matter, nitrogen and fibre digestion in the rumen of cattle given a silage diet. Animal Feed Scienceand Technology,20(4):259~278.
    Huhtanen P, Khalili H.1991. Sucrose supplements in cattle given grass silage-based diet.3. Rumenpool size and digestion kinetics. Animal Feed Science and Technology,33(3-4):275~287.
    Huntington G, Harmon D, Richards C.2006. Sites, rates, and limits of starch digestion and glucosemetabolism in growing cattle. Journal of Animal Science,84(suppl):E14~E24.
    Huntington G B.1997. Starch utilization by ruminants: from basics to the bunk. Journal of AnimalScience,75(3):852~867.
    Jommuengbout P, Pinitglang S, Kyu K L, Ratanakhanokchai K.2009. Substrate-binding site of family11xylanase from Bacillus firmus K-1by molecular docking. Bioscience, biotechnology, and biochemistry,73(4):833~839.
    Jones D, Hoover W, Webster T K M.1998. Effects of concentrations of peptides on microbialmetabolism in continuous culture. Journal of Animal Science,76(2):611~616.
    Joy M, DePeters E, Fadel J, Zinn R.1997. Effects of corn processing on the site and extent of digestionin lactating cows. Journal of Dairy Science,80(9):2087~2097.
    Kajikawa H, Jin H, Terada F, Suga T.2003. Operation and characteristics of newly improved andmarketable artificial rumen (Rusitec). Memoirs of National Institute of Livestock and Grassland Science,2:1~30.
    Kajikawa H, Odai M, Saitoh M, Takahashi T, Tano R, Abe H, Abe A.1990. Effects of sugar-beet pulpon ruminal and lactation performances of cows having different rumen fermentation patterns. Animal FeedScience and Technology,31(1~2):91~104.
    Keady T, Mayne C.2001. The effects of concentrate energy source on feed intake and rumenfermentation parameters of dairy cows offered a range of grass silages. Animal Feed Science andTechnology,90(3-4):117~129.
    Khafipour E, Krause D, Plaizier J.2009. Alfalfa pellet-induced subacute ruminal acidosis in dairycows increases bacterial endotoxin in the rumen without causing inflammation. Journal of Dairy Science,92(4):1712~1724.
    Khalili H, Huhtanen P.1991a. Sucrose supplements in cattle given grass silage-based diet.1. Digestionof organic matter and nitrogen. Animal Feed Science and Technology,33(3-4):247~261.
    Khalili H, Huhtanen P.1991b. Sucrose supplements in cattle given grass silage~based diet.2.Digestion of cell wall carbohydrates. Animal Feed Science and Technology,33(3-4):263~273.
    Kononoff P, Heinrichs A.2003. The effect of reducing alfalfa haylage particle size on cows in earlylactation. Journal of Dairy Science,86(4):1445~1457.
    Krause K, Combs D.2003. Effects of forage particle size, forage source, and grain fermentability onperformance and ruminal pH in midlactation cows. Journal of Dairy Science,86(4):1382~1397.
    Krause K M, Oetzel G R.2006. Understanding and preventing subacute ruminal acidosis in dairy herds:A review. Animal Feed Science and Technology,126(3):215~236.
    Krizsan S, Broderick G, Muck R, Promkot C, Colombini S, Randby T.2007. Effect of alfalfa silagestorage structure and roasting corn on production and ruminal metabolism of lactating dairy cows. Journalof Dairy Science,90(10):4793~4804.
    Lee M R F, Merry R J, Davies D R, Moorby J M, Humphreys M O, Theodorou M K, MacRae J C,Scollan N D.2003. Effect of increasing availability of water-soluble carbohydrates on in vitro rumenfermentation. Animal Feed Science and Technology,104(1-4):59~70.
    Lees J, Oldham J, Haresign W, Garnsworthy P.1990. The effect of patterns of rumen fermentation onthe response by dairy cows to dietary protein concentration. British Journal of Nutrition,63(2):177~186.
    Leiva E, Hall M, Van Horn H.2000. Performance of dairy cattle fed citrus pulp or corn products assources of neutral detergent-soluble carbohydrates. Journal of Dairy Science,83(12):2866~2875.
    Mansfield H, Stern M, Otterby D.1994. Effects of beet pulp and animal by-products on milk yield andin vitro fermentation by rumen microorganisms. Journal of Dairy Science,77(1):205~216.
    Marounek M, Bartos S, Brezina P.1985. Factors influencing the production of volatile fatty acids fromhemicellulose, pectin and starch by mixed culture of rumen microorganisms. Z. Tierphysiol. Tierernahr.Futtermittelkd,53(1-5):50~58.
    Marounek M, Du ková D.1999. Metabolism of pectin in rumen bacteria Butyrivibrio fibrisolvens andPrevotella ruminicola. Letters in Applied Microbiology,29(6):429~433.
    Martin S A, Streeter M N, Nisbet D J, Hill G M, Williams S E.1999. Effects of DL-malate on ruminalmetabolism and performance of cattle fed a high-concentrate diet. Journal of Animal Science,77(4):1008~1015.
    Masuda Y, Kondo S, Shimojo M, Goto I.1999. Effect of sugar-beet pulp supplementation on fiberdegradation of grass hay in the rumen of goats. Asian-Australasian Journal of Animal Sciences,12:186~188.
    McCormick M, Redfearn D, Ward J, Blouin D.2001. Effect of protein source and soluble carbohydrateaddition on rumen fermentation and lactation performance of Holstein cows. Journal of Dairy Science,84(7):1686~1697.
    McDougall E.1948. Studies on ruminant saliva.1. The composition and output of sheep's saliva.Biochemical Journal,43(1):99~109.
    Mertens D.1997. Creating a system for meeting the fiber requirements of dairy cows. Journal of DairyScience,80(7):1463~1481.
    Migwi P, Godwin I, Nolan J, Kahn L.2011. The effect of energy supplementation on intake andutilisation efficiency of urea-treated low-quality roughage in sheep I. Rumen digestion and feed intake.Asian-Australasian Journal of Animal Sciences,24:623~635.
    Minor D, Trower S, Strang B, Shaver R, Grummer R.1998. Effects of nonfiber carbohydrate andniacin on periparturient metabolic status and lactation of dairy cows. Journal of Dairy Science,81(1):189~200.
    Miron J, Yosef E, Ben-Ghedalia D.2001. Composition and in vitro digestibility of monosaccharideconstituents of selected byproduct feeds. Journal of agricultural and food chemistry,49(5):2322~2326.
    Moe P, Tyrrell H.1979. Methane production in dairy cows. Journal of Dairy Science,62(10):1583~1586.
    Mohammed N, Lila Z, Ajisaka N, Hara K, Mikuni K, Kanda S, Itabashi H.2004. Inhibition of ruminalmicrobial methane production by β-cyclodextrin iodopropane, malate and their combination in vitro.Journal of Animal Physiology and Animal Nutrition,88(5-6):188~195.
    Mojtahedi M, Danesh Mesgaran M.2011. Effects of the inclusion of dried molassed sugar beet pulp ina low-forage diet on the digestive process and blood biochemical parameters of Holstein steers. LivestockScience,141:95~103.
    Moloney A, Almiladi A, Drennan M, Caffrey P.1994. Rumen and blood variables in steers fed grasssilage and rolled barley or sugar cane molasses-based supplements. Animal Feed Science and Technology,50(1-2):37~54.
    Nennich T, Linn J, Johnson D, Endres M, Jung H.2003. Comparison of feeding corn silages from leafyor conventional corn hybrids to lactating dairy cows. Journal of Dairy Science,86(9):2932~2939.
    Ngwe T, Nukui Y, Oyaizu S, Koike S, Ueda K, Nakatsuji H, Kondo S, Kobayashi Y.2012. Bean husksas a supplemental fiber for ruminants: Potential use for activation of fibrolytic rumen bacteria to improvemain forage digestion. Animal Science Journal,83:43~49.
    Nocek J, Russell J.1988. Protein and energy as an integrated system. Relationship of ruminal proteinand carbohydrate availability to microbial synthesis and milk production. Journal of Dairy Science,71(8):2070~2107.
    Nombekela S, Murphy M.1995. Sucrose supplementation and feed of dairy cows in early lactation.Journal of Dairy Science,78(4):880~885.
    Nombekela S, Murphy M, Gonyou H, Marden J.1994. Dietary preferences in early lactation cows asaffected by primary tastes and some common feed flavors. Journal of Dairy Science,77(8):2393~2399.
    NRC.2001. Nutrient requirements of dairy cattle.7th. ed. Washington, D. C.: National AcademyPress.
    O’mara F, Murphy J, Rath M.1997. The effect of replacing dietary beet pulp with wheat treated withsodium hydroxide, ground wheat, or ground corn in lactating cows. Journal of Dairy Science,80(3):530~540.
    Oba M, Allen M.2003. Effects of corn grain conservation method on feeding behavior andproductivity of lactating dairy cows at two dietary starch concentrations. Journal of Dairy Science,86(1):174~183.
    Obara Y, Fuse H, Terada F, Shibata M, Kawabata A, Sutoh M, Hodate K, Matsumoto M.1994.Influence of sucrose supplementation on nitrogen kinetics and energy metabolism in sheep fed with lucernehay cubes. Journal of Agricultural Science (cambridge),123:121~121.
    Odenyo A, Mackie R, Fahey G, White B.1991. Degradation of wheat straw and alkaline hydrogenperoxide-treated wheat straw by Ruminococcus albus8and Ruminococcus flavefaciens FD-1. Journal ofAnimal Science,69(2):819~826.
    Odenyo A A, Mackie R I, Stahl D A, White B A.1994. The use of16S rRNA-targeted oligonucleotideprobes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcusspecies and evidence for bacteriocin production. Applied and Environmental Microbiology,60(10):3688~3696.
    Oh Y, Kim K, Kim J, Choung J, Chamberlain D.1999. The effect of the form of nitrogen in the diet onruminal fermentation and the yield of microbial protein in sheep consuming diets of grass silagesupplemented with starch or sucrose. Animal Feed Science and Technology,78(3):227~237.
    Owens D, McGee M, Boland T, O’Kiely P.2008. Intake, rumen fermentation and nutrient flow to theomasum in beef cattle fed grass silage fortified with sucrose and/or supplemented with concentrate. AnimalFeed Science and Technology,144(1):23~43.
    Pan J, Suzuki T, Koike S, Ueda K, Kobayashi Y, Tanaka K, Okubo M.2003. Effects of urea infusedinto the rumen on liquid~and particle~associated fibrolytic enzyme activities in steers fed low quality grasshay. Animal Feed Science and Technology,104(1-4):13~27.
    Parkins J, Hemingway R, Fraser J.1986. A note on dried, molassed sugar-beet pulp and unmolassed,pressed sugar-beet pulp as comparative foods for dairy cows. Animal Production,43(02):351~354.
    Penner G, Guan L, Oba M.2009. Effects of feeding Fermenten on ruminal fermentation in lactatingHolstein cows fed two dietary sugar concentrations. Journal of Dairy Science,92(4):1725~1733.
    Penner G, Oba M.2009. Increasing dietary sugar concentration may improve dry matter intake,ruminal fermentation, and productivity of dairy cows in the postpartum phase of the transition period.Journal of Dairy Science,92(7):3341~3353.
    Philippeau C, Landry J, Michalet-Doreau B.2000. Influence of the protein distribution of maizeendosperm on ruminal starch degradability. Journal of the Science of Food and Agriculture,80(3):404~408.
    Pinzon F, Wing J.1976. Effects of Citrus Pulp in High Urea Rations for Steers. Journal of DairyScience,59(6):1100~1103.
    Pol A, Demeyer D I.1988. Fermentation of methanol in the sheep rumen. Applied and EnvironmentalMicrobiology,54(3):832~834.
    Rajaram S, Varma A.1990. Production and characterization of xylanase from Bacillusthermoalkalophilus grown on agricultural wastes. Applied microbiology and biotechnology,34(1):141~144.
    Ranilla M, Carro M.2003. Diet and procedures used to detach particle-associated microbes fromruminal digesta influence chemical composition of microbes and estimation of microbial growth in Rusitecfermenters. Journal of Animal Science,81(2):537~544.
    Reynal S, Broderick G.2009. Technical note: A new high-performance liquid chromatography purineassay for quantifying microbial flow. Journal of Dairy Science,92(3):1177~1181.
    Rooke J, Armstrong D.1989. The importance of the form of nitrogen on microbial protein synthesis inthe rumen of cattle receiving grass silage and continuous intrarumen infusions of sucrose. British Journalof Nutrition,61(01):113~121.
    Rooke J, Lee N, Armstrong D.1987. The effects of intraruminal infusions of urea, casein, glucosesyrup, and a mixture of casein and glucose syrup on nitrogen digestion in the rumen of cattle receivinggrasssilage diets. British Journal of Nutrition,57:89~98.
    Rosendo O, Hall M B, Staples C, Bates D.2010. The effect of different neutral-detergent-solublepolysaccharides in digestive cynetics in vitro of neutral detergent forrage fiber and the synthesis ofmicrobial protein. Revista Cient¨afica,13(1):18~27.
    Ruppert L, Drackley J, Bremmer D, Clark J.2003. Effects of tallow in diets based on corn silage oralfalfa silage on digestion and nutrient use by lactating dairy cows. Journal of Dairy Science,86(2):593~609.
    Russell J, O'connor J, Fox D, Van Soest P, Sniffen C.1992. A net carbohydrate and protein system forevaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science,70(11):3551.
    Rustomo B, AlZahal O, Odongo N, Duffield T, McBride B.2006. Effects of rumen acid load from feedand forage particle size on ruminal pH and dry matter intake in the lactating dairy cow. Journal of DairyScience,89(12):4758~4768.
    Sannes R, Messman M, Vagnoni D.2002. Form of rumen-degradable carbohydrate and nitrogen onmicrobial protein synthesis and protein efficiency of dairy cows. Journal of Dairy Science,85(4):900~908.
    Santos J, Huber J, Theurer C, Nussio L, Nussio C, Tarazon M, Lima~Filho R.1999a. Performance andnutrient digestibility by dairy cows treated with bovine somatotropin and fed diets with steam-flakedsorghum or steam-rolled corn during early lactation. Journal of Dairy Science,82(2):404~411.
    Santos J, Huber J, Theurer C, Nussio L, Tarazon M, Santos F.1999b. Response of lactating dairy cowsto steam-flaked sorghum, steam-flaked corn, or steam-rolled corn and protein sources of differingdegradability. Journal of Dairy Science,82(4):728~737.
    Satter L, Slyter L.1974. Effect of ammonia concentration on rumen microbial protein production invitro. British Journal of Nutrition,32(02):199~208.
    Sauvant D, Perez J M, Tran G.2004: Tables of composition and nutritional value of feed materials:pigs, poultry, cattle, sheep, goats, rabbits, horses and fish. Wageningen Academic Publishers.
    Scheller H V, Ulvskov P.2010. Hemicelluloses. Annual review of plant biology,61:263~289.
    Silveira C, Oba M, Yang W, Beauchemin K.2007. Selection of barley grain affects ruminalfermentation, starch digestibility, and productivity of lactating dairy cows. Journal of Dairy Science,90(6):2860~2869.
    Soliva C, Hess H.2007: Measuring methane emission of ruminants by in vitro and in vivo techniques.[HPS Makkar and PE Vercoe, editors]. Dordrecht, The Netherlands: Springer.
    Solomon R, Chase L, Ben-Ghedalia D, Bauman D.2000. The effect of nonstructural carbohydrate andaddition of full fat extruded soybeans on the concentration of conjugated linoleic acid in the milk fat ofdairy cows. Journal of Dairy Science,83(6):1322~1329.
    Strobel H.1993. Evidence for catabolite inhibition in regulation of pentose utilization and transport inthe ruminal bacterium Selenomonas ruminantium. Applied and Environmental Microbiology,59(1):40~46.
    Strobel H J, Dawson K A.1993. Xylose and arabinose utilization by the rumen bacterium Butyrivibriofibrisolvens. FEMS microbiology letters,113(3):291~296.
    Strobel H J, Russell J B.1986. Effect of pH and energy spilling on bacterial protein synthesis bycarbohydrate-limited cultures of mixed rumen bacteria. Journal of Dairy Science,69(11):2941~2947.
    Suárez B, Van Reenen C, Beldman G, Van Delen J, Dijkstra J, Gerrits W.2006. Effects ofSupplementing Concentrates Differing in Carbohydrate Composition in Veal Calf Diets: I. AnimalPerformance and Rumen Fermentation Characteristics1. Journal of Dairy Science,89(11):4365~4375.
    Sunvold G, Hussein H, Fahey J G, Merchen N, Reinhart G.1995. In vitro fermentation of cellulose,beet pulp, citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, humans, and pigs andruminal fluid from cattle. Journal of Animal Science,73(12):3639.
    Sutoh M, Obara Y, Miyamoto S.1996. The effect of sucrose supplementation on kinetics of nitrogen,ruminal propionate and plasma glucose in sheep. Journal of Agricultural Science (cambridge),126:99~106.
    Sutton J, Phipps R, Cammell S, Humphries D.2001. Attempts to improve the utilization ofurea~treated whole~crop wheat by lactating dairy cows. Animal Science,73(1):137~148.
    Swain S, Armentano L.1994. Quantitative evaluation of fiber from nonforage sources used to replacealfalfa silage. Journal of Dairy Science,77(8):2318~2331.
    Tafaj M, Zebeli Q, Baes C, Steingass H, Drochner W.2007. A meta-analysis examining effects ofparticle size of total mixed rations on intake, rumen digestion and milk production in high-yielding dairycows in early lactation. Animal Feed Science and Technology,138(2):137~161.
    Taylor C, Allen M.2005. Corn grain endosperm type and brown midrib3corn silage: Site of digestionand ruminal digestion kinetics in lactating cows. Journal of Dairy Science,88(4):1413~1424.
    Teimouri Yansari A, Valizadeh R, Naserian A, Christensen D, Yu P, Eftekhari Shahroodi F.2004.Effects of alfalfa particle size and specific gravity on chewing activity, digestibility, and performance ofHolstein dairy cows. Journal of Dairy Science,87(11):3912~3924.
    Theurer C, Lozano O, Alio A, Delgado-Elorduy A, Sadik M, Huber J, Zinn R.1999. Steam-processedcorn and sorghum grain flaked at different densities alter ruminal, small intestinal, and total tractdigestibility of starch by steers. Journal of Animal Science,77(10):2824~2831.
    Thurston B, Dawson K, Strobel H.1994. Pentose utilization by the ruminal bacterium Ruminococcusalbus. Applied and Environmental Microbiology,60(4):1087~1092.
    Ueda K, Ferlay A, Chabrot J, Loor J, Chilliard Y, Doreau M.2003. Effect of linseed oilsupplementation on ruminal digestion in dairy cows fed diets with different forage: concentrate ratios.Journal of Dairy Science,86(12):3999~4007.
    Vallimont J, Bargo F, Cassidy T, Luchini N, Broderick G, Varga G.2004. Effects of replacing dietarystarch with sucrose on ruminal fermentation and nitrogen metabolism in continuous culture. Journal ofDairy Science,87(12):4221~4229.
    Van Soest P J.1994: Nutritional ecology of the ruminant. Cornell Univ Pr.
    Van Soest P J, Robertson J, Lewis B.1991. Methods for dietary fiber, neutral detergent fiber, andnonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science,74(10):3583~3597.
    Van Vuuren A, Van der Koelen C, Vroons-de Bruin J.1993. Ryegrass versus corn starch or beet pulpfiber diet effects on digestion and intestinal amino acids in dairy cows. Journal of Dairy Science,76(9):2692~2700.
    Voelker J, Allen M.2003a. Pelleted beet pulp substituted for high-moisture corn:1. Effects on feedintake, chewing behavior, and milk production of lactating dairy cows. Journal of Dairy Science,86(11):3542~3552.
    Voelker J, Allen M.2003b. Pelleted beet pulp substituted for high-moisture corn:2. Effects ondigestion and ruminal digestion kinetics in lactating dairy cows. Journal of Dairy Science,86(11):3553~3561.
    Voelker J, Allen M.2003c. Pelleted beet pulp substituted for high-moisture corn:3. Effects on ruminalfermentation, pH, and microbial protein efficiency in lactating dairy cows. Journal of Dairy Science,86(11):3562~3570.
    Voelker Linton J, Allen M.2007. Nutrient demand affects ruminal digestion responses to a change indietary forage concentration. Journal of Dairy Science,90(10):4770~4779.
    Waghorn G, Woodward S, Tavendale M, Clark D.2006. Inconsistencies in rumen methaneproduction-effects of forage composition and animal genotype. International Congress Series,1293. pp.115–118.
    Walker D, Hopgood M.1961. The hydrolysis of wheaten hay hemicellulose by a purified enzyme fromrumen microorganisms. Australian Journal of Agricultural Research,12:651~660.
    Wattiaux M, Karg K.2004. Protein level for alfalfa and corn silage-based diets: I. Lactational responseand milk urea nitrogen. Journal of Dairy Science,87(10):3480~3491.
    Weatherburn M.1967. Phenol-hypochlorite reaction for determination of ammonia. AnalyticalChemistry,39(8):971~974.
    Weisbjergm M, Hvelplund T, Bibby B M.1998. Hydrolysis and fermentation rate of glucose, sucroseand lactose in the rumen. Animal Science,42:12~18.
    Weiss W.1993. Predicting energy values of feeds. Journal of Dairy Science,76(6):1802~1811.
    Weiss W, Fisher G, Erickson G.1989. Effect of source of neutral detergent fiber and starch on nutrientutilization by dairy cows. Journal of Dairy Science,72(9):2308~2315.
    Weiss W, Wyatt D.2002. Effects of feeding diets based on silage from corn hybrids that differed inconcentration and in vitro digestibility of neutral detergent fiber to dairy cows. Journal of Dairy Science,85(12):3462~3469.
    West J, Hill G, Fernandez J, Mandebvu P, Mullinix B.1999. Effects of dietary fiber on intake, milkyield, and digestion by lactating dairy cows during cool or hot, humid weather. Journal of Dairy Science,82(11):2455~2465.
    Yang W, Beauchemin K.2006. Physically effective fiber: Method of determination and effects onchewing, ruminal acidosis, and digestion by dairy cows. Journal of Dairy Science,89(7):2618~2633.
    Yang W, Beauchemin K.2007. Altering physically effective fiber intake through forage proportion andparticle length: digestion and milk production. Journal of Dairy Science,90(7):3410~3421.
    Yang W, Beauchemin K.2009. Increasing physically effective fiber content of dairy cow diets throughforage proportion versus forage chop length: Chewing and ruminal pH. Journal of Dairy Science,92(4):1603~1615.
    Yang W, Beauchemin K, Rode L.2001. Effects of grain processing, forage to concentrate ratio, andforage particle size on rumen pH and digestion by dairy cows. Journal of Dairy Science,84(10):2203~2216.
    Zebeli Q, Dijkstra J, Tafaj M, Steingass H, Ametaj B, Drochner W.2008. Modeling the adequacy ofdietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition ofthe diet. Journal of Dairy Science,91(5):2046~2066.
    Zebeli Q, Mansmann D, Steingass H, Ametaj B.2010. Balancing diets for physically effective fibreand ruminally degradable starch: A key to lower the risk of sub-acute rumen acidosis and improveproductivity of dairy cattle. Livestock Science,127(1):1~10.
    Zebeli Q, Tafaj M, Steingass H, Metzler B, Drochner W.2006. Effects of physically effective fiber ondigestive processes and milk fat content in early lactating dairy cows fed total mixed rations. Journal ofDairy Science,89(2):651~668.
    Zhao X, Zhang T, Xu M, Yao J.2011. Effects of physically effective fiber on chewing activity, ruminalfermentation, and digestibility in goats. Journal of Animal Science,89(2):501~509.