重组镰孢霉菌内酯水解酶在手性合成中的新应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镰孢霉菌内酯水解酶是一种高效的生物催化剂,主要功能是催化内酯水解生成羟基酸。它对底物专一性强且立体选择性优越,因而广泛应用于工业化生产D-泛内酯。近二十年来,随着对镰孢霉菌内酯水解酶研究的深入,关于它的筛选、催化、纯化、克隆和表达方面的报道不断涌现。然而这些研究都围绕着一个产品D-泛内酯而展开,虽然偶有关于镰孢霉菌内酯水解酶催化水解其它底物的研究报道,但是不够系统和深入。
     本实验室已经从土壤微生物中筛选得到一株具有较高活性和选择性的真菌,镰孢霉菌Fusarium proliferatum (Matsushima) Nirenberg ECU2002,它能不对称水解手性2-羟基-4-丁内酯。在这样的背景下,本文进一步研究了镰孢霉菌ECU2002内酯水解酶对各种内酯的催化效果,致力于探索其在不对称合成尤其是不对称催化中的新应用。
     本文主要分为三个部分,第一部分是镰孢霉菌ECU2002内酯水解酶的克隆、表达、纯化和催化性能研究。重组后的镰孢霉菌内酯水解酶(recombinant Fusarium proliferatum lactonase,简写reFPL)在大肠杆菌体内表达,从而进一步提高了reFPL的产酶效率,使其成为一种方便易得的生物催化剂。人为地在酶分子的N-端添加组氨酸标签并建立了方便快捷的纯化方法。通过广泛尝试reFPL对一系列内酯化合物的水解活性,本文发现2-羟基-4-取代-4-丁内酯也是reFPL较为合适的底物。
     第二部分详细研究了重组后的镰孢霉菌ECU2002内酯水解酶(reFPL)对2-羟基-4-取代-4-丁内酯这一类化合物的水解性能。首先通过经典的克莱森缩合反应合成了2-羟基-4-取代-4-丁内酯,并通过硅胶柱层析分离了内酯的顺、反两种非对映异构体。然后分别以顺式和反式内酯为底物,研究了酶促拆分的效果。结果表明,2-羟基-4-取代-4-丁内酯的四种立体异构体中的三种都能通过reFPL以光学纯的形式制备出来。而且,reFPL的底物谱比较广、能耐受较高的底物浓度(200 mM)并可以回收重复利用(至少3次)。最后,对水解产物的构型从多个角度进行了表征。通过核磁共振技术(1H-NMR和NOE),对内酯的相对构型进行了鉴定,并经过X-射线衍射数据进行了验证。对于绝对构型,本文通过X-射线衍射(XRD)技术、圆二色光谱(CD)技术、化学相关法和比对旋光等手段从多个角度进行了鉴定。
     第三部分的主要内容,是在酶促水解2-羟基-4-苯基-4-丁内酯的基础上,建立新路线合成2-羟基-4-苯基丁酸:一种合成血管紧张肽转化酶抑制剂(Angiotensin Converting Enzyme inhibitor)类药物的合成前体。本文的研究结果表明,reFPL对顺/反两种内酯的对映选择性水解可以在相同的时间内完成。因此通过酶促水解顺/反-2-羟基-4-苯基-4-丁内酯的混合物,再将水解产物直接氢化(Pd/C催化)还原的方式,最终制备获得了光学纯2-羟基-4-苯基丁酸的两种对映异构体。
Fusarium lactonase is a kind of efficient biocatalyst and its most important capacity is the catalytic hydrolysis of lactones into hydroxyl acids. Due to its great specificity and enantioselectivity, Fusarium lactonase has now been used widely in the industrialized production of D-pantolactone. In past twenty years, reports have been emerging regarding its screening, catalysis, purification, cloning and expression. However, all of these researches focused on the production of D-pantolactone, and only isolated reports are on Fusarium lactonase-mediated hydrolysis of other substrates.
     One fungus, Fusarium proliferatum (Matsushima) Nirenberg ECU2002, has been isolated from soil samples. It shows great activity and stereoselectivity in hydrolyzing 2-hydroxy-4-butyrolactones. In this paper, we carry out further researches on the Fusarium lactonase-catalyzed hydrolysis of chiral lactones, focusing on new application in asymmetric synthesis, especially in asymmetric catalysis.
     This paper is consisted of three parts. In the first part, we describe the cloning and expression of the lactonase gene from Fusarium proliferatum ECU2002 in E. coli JM109 (DE3) (reFPL). By optimizing expression conditions, the lactonase production was significantly enhanced making reFPL an easy-to-make biocatalyst. The reFPL was then purified with the aid of His tags before the N-terminal of mutual enzyme. Furthermore, biocatalytic properties of reFPL were also investigated, particularly its hydrolytic activity towards lactones, and we found that 4-substituted 2-hydroxy-4-butyrolactone was also suitable substrate for reFPL.
     The second part of this paper focused on the reFPL-catalyzed hydrolysis of 4-substituted 2-hydroxy-4-butyrolactones.4-Substituted 2-hydroxy-4-butyrolactones was synthesized via classical Claisen condensation, and in most cases cis-and trans-lactones were separable via chromatography on silica gel. Enzymatic resolution was then carried out on these cis-and trans-racemic mixtures. Three out of four possible stereoisomers of 4-substituted 2-hydroxy-4-butyrolactones could be prepared in good optical purity. ReFPL shows hydrolytic activity towards a broad substrate spectrum against high substrate concentration (up to 200 mM), and it is also recyclable (at least three times). In the end, the configuration of the enzymatic hydrolyzed product was also assigned using different measures. The relative configuration was assigned according to the1H NMR and Nuclear Overhauser Effect (NOE) experiments and confirmed by X-ray diffraction. As for the absolute structure, it was assigned by different methods including X-ray diffraction and circular dichroism.
     In the third part, a new route to chiral 2-hydroxy-4-phenylbutyrates, precursors to the angiotensin converting enzyme inhibitors, was developed on the basis of reFPL-catalyzed hydrolysis of 2-hydroxy-4-phenyl-4-butyrolactone. The enantioselective hydrolysis of cis-and trans-lactones could be completed within the same time. Hydrogenation of this mixture over Pd/C affords chiral 2-hydroxy-4-phenylbutyrates. This route has great potential for industrial application.
引文
[1]Suzuki T, Idogaki H, Kasai N. Dual production of highly pure methyl (R)-4-chloro-3-hydroxybutyrate and (S)-3-hydroxy-γ-butyrolactone with Enterobacter sp. Enzyme Microb Technol.1999,24:13-20.
    [2]Shimizu S, Hattori S, Hata H, Yamada H. One-step microbial conversion of a racemic mixture of pantoyl lactone to optically active D-(-)-pantoyl lactone. Appl Environ Microbiol.1987,53:519-522.
    [3]Shimizu S, Yamada H, Hata H, Morishita T, Akutsu S, Kawamura M. Novel chemoenzymatic synthesis of D(-)-pantoyl lactone. Agric Biol Chem.1987,51:289-290.
    [4]Sakamoto K, Hideaki T, Kyoto Y, Shimizu S. D-Pantolactone hydrolase and process for the preparation thereof. USP 5372940.
    [5]Sakamoto K, Honda K, Wada K, Kita S, Tsuzaki K, Nose H, Kataoka M, Shimizu S. Practical resolution system for dl-pantoyl lactone using the lactonase from Fusarium oxysporum. J Biotechnol.2005,118:99-106.
    [6]Kesseler M, Hauer B, Friedrich T, Mattes R. L-pantolactone-hydrolase and a method for producing D-pantolactone. USP 6998258B1.
    [7]Kesseler M, Friedrich T, Hoffken HW, Hauer B. Development of a novel biocatalyst for the resolution of rac-pantolactone. Adv Synth Catal.2002,344:1103-1110.
    [8]孙志浩.D-泛解酸内酯的微生物酶法制备方法.中国专利,申请号01104070.X.
    [9]Zhang X, Xu JH, Xu Y, Pan J. Isolation and properties of a levo-lactonase from Fusarium proliferatum ECU2002:a robust biocatalyst for production of chiral lactones. Appl Microbiol Biotechnol.2007,75:1087-1094.
    [10]Yu MR, Tan TW. Optical resolution of racemic pantolactone by Fusarium sp. BU-011 with high lactonohydrolase activity. Process Biochem.2005,40:2609-2614.
    [11]张仙,潘江,许建和.内酯酶产生菌的筛选及其催化拆分手性内酯的性能.Chin J Catal.2008,29:997-1002.
    [12]张仙.内酯水解酶的筛选、催化性能及固定化的研究.华东理工大学博士学位论文(2008).
    [13]Sakamoto K, Yamada H, Shimizu S. Method of producing D-pantolactone from DL-pantolactone with Fusanium or other microorganisms. WO9102081.
    [14]Sakamoto K, Yamada H, Shimizu S. Process for the preparation of D-pantolactone. USP 5275949.
    [15]Sakamoto K, Yamada H, Shimizu S. D-pantolactone hydrolase and process for the preparation thereof. USP 5372940.
    [16]Kataoka M, Shimizu K, Sakamoto K. Lactonohydrolase-catalyzed optical resolution of pantoyl lactone:selection of a potent enzyme producer and optimization of culture and reaction conditions for practical resolution. Appl Microbiol Biotechnol.1995. 44:333-338.
    [17]许建和,张仙,潘江,徐毅.左旋内酯水解酶产生菌及其用于制备手性羟基酸的方法.中国专利,公开号:CN1935977.
    [18]Shimizu S, Kataoka M, Shimizu K, Hirakata M, Sakamoto K, Yamada H. Purification and characterization of a novel lactonohydrolase, catalyzing the hydrolysis of aldonate lactones and aromatic lactones, from Fusarium oxysporum. Eur J Biochem.1992, 209:383-390.
    [19]Kobayashi M, Shinohara M, Sakoh C, Kataoka M, Shimizu S. Lactone-ring-cleaving enzyme:genetic analysis, RNA editing, and evolutionary implications. ProcNatl Acad Sci.1998,95:12787-12792.
    [20]柳志强,孙志浩.串珠镰孢霉D-泛解酸内酯水解酶基因的克隆及在大肠杆菌中的表达.生物工程学报.2005,21:390-395.
    [21]Honda K, Tsuboi H, Minetoki T, Nose H, Sakamoto K, Kataoka M, Shimizu S. Expression of the Fusarium oxysporum lactonase gene in Aspergillus oryzae:molecular properties of the recombinant enzyme and its application. Appl Microbiol Biotechnol. 2005,66:520-526.
    [22]Liu Z, Sun Z. Cloning and expression of D-lactonohydrolase cDNA from Fusarium moniliforme in Saccharomyces cerevisiae. Biotechnol Lett.2004,26:1861-1865.
    [23]Liu Z, Sun Z. Leng Y. Directed evolution and characterization of a novel D-pantonohydrolase from Fusarium moniliforme. J Agric Food Chem.2006,54: 5823-5830.
    [24]Chen Y, Xing XH, Ye FC, Kuang Y, Luo MF. Production of MBP-HepA fusion protein in recombinant Escherichia coli by optimization of culture medium. Biochem Eng J.2007,34:114-121.
    [25]Shiloach J, Kaufman J, Guillard AS, Fass R. Effect of glucose supply strategy on acetate accumulation, growth, and recominant protein production by Escherichia coli BL21(λDE3) and Escherichia coli JM109. Biotechnol Bioeng.1996,49:421-428.
    [26]Shin CS, Hong MS, Bae CS, Lee J. Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21 (DE3) [pET-3aT2M2]. Biotechnol Prog.1997,13:249-257.
    [27]Lee C, Sun WJ, Burgess BW, Junker BH, Reddy J, Buckland BC, Greasham RL. Process optimization for large-scale production of TGF-a-PE40 in recombinant Escherichia coli:effect of medium composition and induction timing on protein expression. J Ind Microbiol Biotechnol.1997,18:260-266.
    [28]Viitanen MI, Vasala A, Neubauer P, Alatossava T. Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli. Microbial Cell Factories.2003,2:2.
    [29]Nicolaou KC, Fylaktakidou KC, Monenschein H, Li Y, Weyershausen B, Mitchell HJ, Wei H, Guntupalli P, Hepworth D, Sugita K. Total synthesis of Apoptolidin: construction of enantiomerically pure fragments. J Am Chem Soc.2003,125: 15433-15442.
    [30]Georg GI, Ahn YM, Bliackman B, Farokhi F, Flaherty PT, Mossman CJ, Roy S, Yang KL. Short and efficient chiral pool and RCM approach towards the synthesis of the macrocyclic core of the salicylihalamides. Chem Commun.2001,255-256.
    [31]Trost BM, Klun TP. Chirality transfer via organopalladium chemistry. A synthesis of optically active vitamin E side chain from D-glucose. J Am Chem Soc.1981,103: 1864-1865.
    [32]Amagata T, Usami Y, Minoura K, Ito T, Numata A. Cytotoxic substances produced by a fungal strain from physico-chemical properties and structures. J Antibiot.1998,51: 33-40.
    [33]Mereyala HB, Gadikota RR. A concise synthesis of harzialactone A from D-glucose and revision of absolute stereochemistry. Tetrahedron:Asymmetry.1999,10: 2305-2306.
    [34]Mereyala HB, Joe M, Gadikota RR. Synthesis of harzialactone A and its isomers from D-glucose and assignment of absolute stereochemistry. Tetrahedron:Asymmetry. 2000,11:4071-4081.
    [35]Kotkar SP, Suryavanshi GS, Sudalai A. A short synthesis of (+)-harzialactone A and (R)-(+)-4-hexanolide via proline-catalyzed sequential a-aminooxylation and Horner-Wadsworth-Emmons olefination of aldehydes. Tetrahedron:Asymmetry.2007,18: 1795-1798.
    [36]Jian YJ, Wu Y, Li L, Lu J. An expeditious route to the antipode of harzialactone A. Tetrahedron:Asymmetry.2005,16:2649-2651.
    [37]Uchikawa O, Okukado N, Sakata T, Arase K, Terada K. Synthesis of (S)-and (2R,4R)-2-hydroxy-4-hydroxylmethyl-4-butanolide and their satiety and hunger modulating activities. Bull Chem Soc Jpn.1988,61:2025-2029.
    [38]Georg GI, Ahn YM, Blackman B, Farokhi F, Flaherty PT, Mossman CJ, Roy S, Yang K. Short and efficient chiral pool and RCM approach towards the synthesis of the macrocyclic core of the salicylihalamides. Chem Commun.2001,255-256.
    [39]Schinzer D, Bauer A, Schieber J. Syntheses of (-)-Epothilone B. Chem Eur J.1999, 5:2492-2500.
    [40]Keith JM, Larrow JF, Jacobsen EN. Practical considerations in kinetic resolution reactions. Adv Synth Catal.2001,343:5-26.
    [41]Enders D, Sun H, Leusink FR. Diastereo-and enantioselective synthesis of 4-and 3,4-substituted2-acetoxy-butyrolactones. Tetrahedron.1999,55:6129-6138.
    [42]Blandin V, Carpentier JF, Mortreux A. Asymmetric hydrogenation of 2,4-dioxo esters:selective synthesis of 2-hydroxy-4-oxo esters and direct access to chiral 2-hydroxy-4-butyrolactones. Eur J Org Chem.1999,1787-1793 and references cited therein.
    [43]Casy G. Stereoselective routes to chiral 2-hydroxy-4-oxo acids substituted 2-hydroxybutyrolactones using lactate dehydrogenases. Tetrahedron Lett.1992,33: 8159-8162.
    [44]Fadnavis NW, Radhika KR. Enantio-and regiospecific reduction of ethyl 4-phenyl-2,4-dioxobutyrate with baker's yeast:preparation of (R)-HPB ester. Tetrahedron: Asymmetry.2004,15:3443-3447.
    [45]Yun H, Choi HL, Fadnavis NW, Kim BG. Stereospecific synthesis of (R)-2-hydroxy carboxylic acids using recombinant E. coli BL21 overexpressing YiaE from Escherichia coli K12 and glucose dehydrogenase from Bacillus subtilis. Biotechnol Prog.2005,21: 366-371.
    [46]林国强,陈耀全,李月明,陈新滋.手性合成-不对称反应及其应用.2007
    [47]Denmark SE, Bui T. Lewis base catalyzed enantioselective aldol addition of acetaldehyde-derived silyl enol ether to aldehydes. J Org Chem.2005,70:10190-10193.
    [48]Roussel C, Rio AD, Pierrot-Sanders J, Piras P, Vanthuyne N. Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers. J Chromatogr A.2004,1037:311-328.
    [49]Kiegiel K, Balakier T, Kwiatkowski P, Jurczak J. Diastereoselective allylation of N-glyoxyloyl-(2R)-bornane-10,2-sultam and (1R)-8-phenylmenthyl glyoxylate:synthesis of (2S,4S)-2-hydroxy-4-hydroxymethyl-4-butanolide. Tetrahedron:Asymmetry.2004,15: 3869-3878.
    [50]Seco JM, Quinoa E, Riguera R. A practical guide for the assignment of the absolute configuration of alcohols, amines and carboxylic acids by NMR. Tetrahedron:Asymmetry. 2001,12:2915-2925.
    [51]Snatzke G. Circular dichroism and optical rotatory dispersion - principles and application to the investigation of the stereochemistry of natural products. Angew Chem Int Ed.1968,7:14-25.
    [52]Tajiri A, Fukuda M, Hatano M, Morita T, Takase K. Resolution, circular dichroism, and absolute configuration of 1,1'-biazulenes. Angew Chem Int Ed.1983,22:870-871.
    [53]Ikemoto N, Lo LC, Nakanishi K. Detection of subpicomole levels of compounds containing hydroxyl and amino groups with the fluorogenic reagent,2-naphthoylimidazole. Angew Chem Int Ed.1992,31:890-891.
    [54]MacMillan JB, Linington RG, Andersen RJ, Molinski TF. Stereochemical assignment in acyclic lipids across long distance by circular dichroism:absolute stereochemistry of the aglycone of Caminoside A. Angew Chem Int Ed.2004,43: 5946-5951.
    [55]Bode SE, Drochner D, Muller M. Synthesis, biosynthesis, and absolute configuration of Vioxanthin. Angew Chem Int Ed.2007,46:5916-5920.
    [56]Dalisay DS, Quach T, Nicholas GN, Molinski TF. Amplification of the cotton effect of a single chromophore through liposomal ordering-stereochemical assignment of plakinic acids I and J. Angew Chem Int Ed.2009,48:4367-4371.
    [57]Moretti I, Torre G. Optical rotatory dispersion and circular dichroism of aryl oxiranes. Tetrahedron Lett.1969,10:2717-2720.
    [58]Craig JC, Pereira WE. Abnormal circular dichroism of a-amino acid esters. Tetrahedron Lett.1970,11:1563-1565.
    [59]Beecham AF. Optical activity and lactone ring configurations. Tetrahedron Lett. 1968,9:3591-3594.
    [60]Beecham AF. Circular dichroism in lactones. Tetrahedron Lett.1968,9:2355-2360.
    [61]Marcos IS, Gonzalez JL, Sexmero MJ, Diez D, Basabe P, Williams DJ, Simmonds MSJ, Urones JG. Diterpenic a-and (3-hydroxybutanolides with antifeedant activity: semisynthesis and absolute configuration. Tetrahedron Lett.2000,41:2553-2557.
    [62]Forzato C, Nitti P, Pitacco G. Bicyclic y-butyrolactones. Relation between conformation of the lactone ring and chiroptical properties. Tetrahedron:Asymmetry.1997, 8:4101-4110.
    [63]Konno T, Meguro H, Tuzimura K. D-pantolactone as a circular dichromism (CD) calibration. Anal Biochem.1975,67:226-232.
    [64]Welzel P, Bullan HP, Maulshagen A, Muller D, Snatzke G. Moenuronic acid: synthetic studies and absolute configuration. Tetrahedron.1984,40:3657-3666.
    [65]PoKonski T. Optical activity of lactones and lactams-II. Chiroptical properties of 4-oxazolidinones. Tetrahedron.1983,39:3139-3143.
    [66]Ferber S, Richardson FS. Conformational dependence of the 1Lb and n→π* rotatory strengths in a-substituted phenylacetic acids. Tetrahedron.1977,33:1095-1100.
    [67]Nishida Y, Ohrui H, Meguro H, Mori K. Circular dichroic studies on marmelo lactones and the related y-lactones with unsaturation at the C-5 position. Agric Biol Chem. 1986,50:813-818.
    [68]Poκonski T. Optical activity of lactones and lactams-I. Conformational dependence of the circular dichroism of 1,3-dioxolan-4-ones. Tetrahedron.1983,39: 3131-3137.
    [69]Okuda T, Harigaya S, Kiyamoto A. Studies on optical rotatory dispersion of five-membered sugar-lactones:configuration and the sign of an optical rotatory dispersion curve. Chem Pharm Bull.1964,12:504-506.
    [70]Mathieson AM. The conformation of six-membered rings involving a planar group. Tetrahedron Lett.1963,4:81-84.
    [71]Wolf H.8-Lactone. Cotton-effect und konformation des δ-lactonrings. Tetrahedron Lett.1966,7:5151-5156.
    [72]Milewska MJ, Gdaniec M, Polonski T. Synthesis, stereochemistry'and chiroptical spectra of cyclopropyl lactones and thionolactones. Tetrahedron:Asymmetry.1996,7: 3169-3180.
    [73]Jennings JP, Klyne W, Scopes PM. Optical rotatory dispersion. Part XXIV. J Chem Soc.1965,7211-7229.
    [74]Chen CS, Fujimoto Y, Girdaukas G, Sih CJ. Quantitative analyses of biochemical kinetic resolution of enantiomers. J Am Chem Soc.1982,104:7294-7299.
    [75]Chadha A, Manohar M. Enzymatic resolution of 2-hydroxy-4-phenylbutanoic acid and 2-hydroxy-4-phenylbutenoic acid. Tetrahedron:Asymmetry.1995,6:651-652.
    [76]谢开林.苯那普利两个关键中间体的合成研究.浙江大学硕士学位论文(2005).
    [77]Watthey JWH, Stanton JL, Desai M, Babiarz JE, Finn BM. Synthesis and biological properties of (carboxyalkyl)amino-substituted bicyclic lactam inhibitors of Angiotensin Converting Enzyme. J Med Chem.1985,28:1511-1516.
    [78]Thaper, Kumar R, Shantanu DE. Process for the preparation of benazepril. EP1383741.
    [79]Boyer SK, Pfund RA, Portmann RE, Sedelmeier GH, Wetter HF. Notiz zur syntheses eines optisch aktiven ACE-Hemmers mit Amino-oxo-benzazepin-1-alkansaure-Struktur mittels enantiokonvergier ender kristallisationsinduzierter racemat-Trennung. Helv Chim Acta.1988,71:337-343.
    [80]Blaser HU, Jalett HP, Sedelmeier G. Novel sulfonic acid esters and their preparation. USP 4785089.
    [81]Attwood MR, Hassall CH, Krohn A, Lawton G, Redshaw S. The design and synthesis of the Angiotensin Converting Enzyme inhibitor Cilazapril and related bicyclic compounds. J Chem Soc, Perkin Trans 1.1986,1011-1019.
    [82]Lin WQ, He Z, Jing Y, Cui X, Liu H, Mi AQ. A practical synthesis of ethyl (R)-and (R)-2-hydroxy-4-phenylbutanoate and D-homophenylalanine ethyl ester hydrochloride from L-malic acid. Tetrahedron:Asymmetry.2001,12:1583-1587.
    [83]Kurauchi M, Hagiwara Y, Matsueda H. Process for producing optically active 2-hydroxyl-4-arykbutyric acid or its ester, and intermediate therefore. EP0759424.
    [84]Lin WQ, He Z, Jing Y, Cui X, Liu H, Mi AQ. A practical synthesis of ethyl (R)-and (S)-2-hydroxy-4-phenylbutanoate and D-homophenylalanine ethyl ester hydrochloride from L-malic acid. Tetrahedron:Asymmetry.2001,12:1583-1587.
    [85]Hashimoto M, Aoki M, Osanai Y. Preparation of arylhydroxyalkanoic acid derivatives as intermediates for pharmaceuticals. JP62212329.
    [86]McManus JW, Genus JF. Process for preparing benzylpyruvic acids and esters as intermidiates for dipeptide Angiotensin Converting Enzyme Inhibitors. EP387058.
    [87]Herold P, Indolese AF, Studer M, Jalett HP, Siegrist U, Blaser HU. New technical synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate of high enantiomeric purity. Tetrahedron.2000,56:6497-6499.
    [88]Cha M, Kim EJ, Yun H, Cho BK, Kin BG. Synthesis of enantiopure (S)-2-hydroxyphenylbutanoic acid using novel hydroxy acid dehydrogenase from Enterobacter sp. BK2K. Biotechnol Prog.2007,23:606-612.
    [89]Chen Y, Lin H, Xu X, Xia S, Wang L. Preparation the key intermediate of Angiotensin-Converting Enzyme (ACE) inhibitors:high enantioselective production of ethyl (R)-2-hydroxy-4-phenylbutyrate with Candida boidinii CIOC21. Adv Synth Catal. 2008,350:426-430.
    [90]Lacerda PSB, Ribeiro JB, Leite SGF, Coelho RB, Silva Lima EL, Antunes OAC. Microbial enantioselective reduction of ethyl-2-oxo-4-phenyl-butanoate. Biochem Eng J. 2006,28:299-302.
    [91]Zhang W, Ni Y, Sun Z, Zheng P, Lin W, Zhu P, Ju N. Biocatalytic synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate with Candida krusei SW2026:A practical process for high enantiopurity and product titer. Process Biochemistry.2009,44:1270-1275.
    [92]He C, Chang D, Zhang J. Asymmetric reduction of substituted α-and β-ketoesters by Bacilluspumilus Phe-C3. Tetrahedron:Asymmetry.2008,19:1347-1351.
    [93]Baskar B, Pandian NG, Priya K, Chadha A. Asymmetric reduction of alkyl 2-oxo-4-arylbutanoates and-but-3-enoates by Candida parapsilosis ATCC 7330: assignment of the absolute configuration of ethyl 2-hydroxy-4-(p-methylphenyl)but-3-enoate by1H NMR. Tetrahedron:Asymmetry.2004,15: 3961-3966.
    [94]Lacerda PSB, Ribeiro JB, Leite SGF, Ferrara MA, Coelho RB, Bon EPS, Silva Lima EL, Antunes OAC. Microbial reduction of ethyl 2-oxo-4-phenylbutyrate. Searching for R-enantioselectivity. New access to the enalapril like ACE inhibitors. Tetrahedron: Asymmetry.2006,17:1186-1188.
    [95]Wu X, Wang Y, Ju J, Chen C, Liu N, Chen Y. Enantioselective synthesis of ethyl (S)-2-hydroxy-4-phenylbutyrate by recombinant diketoreductase. Tetrahedron:Asymmetry, doi:10.1016/j.tetasy.2009.10.036.
    [96]何春茂,常东亮,张杰.生物催化不对称还原法制备(R)-和(S)-2-羟-4-苯基丁酸乙酯.精细化工.2008,25:720-723.
    [97]Segura RL, Palomo JM, Mateo C, Cortes A, Terreni M, Fernandez-Lafuente R, Guisan JM. Different properties of the lipases contained in porcine pancreatic lipase extracts as enantioselective biocatalysts. Biotechnol Prog.2004,20:825-829.
    [98]Sugai T, Ohta H. A simple preparation of (R)-2-hydroxy-4-phenyl-butanoic acid. Agric Biol Chem.1991,55:293-294.
    [99]Chadha A, Baskar B. Biocatalytic deracemisation of a-hydroxy esters:high yield preparation of (S)-ethyl 2-hydroxy-4-phenylbutanoate from the racemate. Tetrahedron: Asymmetry.2002,13:1461-1464.
    [100]Glueck SM, Larissegger-Schnell B, Csar K, Kroutil W, Faber K. Biocatalytic racemisation of a-hydroxycarboxylic acids at physiological conditions. Chem Commun. 2005,1904-1905.
    [101]Larissegger-Schnell B, Kroutil W, Faber K. Chemo-enzymatic synthesis of (R)-and (S)-2-hydroxy-4-phenylbutanoic acid via enantio-complementary deracemization of (±)-2-hydroxy-4-phenyl-3-butenoic acid using a racemase-lipase two-enzyme system. Synlett.2005,1936-1938.
    [102]Glueck SM, Pirker M, Nestl BM, Ueberbacher BT, Larissegger-Schnell B, Csar K, Hausr B, Stuermer R, Kroutil W, Faber K. Biocatalytic racemization of aliphatic, arylaliphatic, and aromatic a-hydroxycarboxylic acids. J Org Chem.2005,70:4028-4032.
    [103]Nestl BM, Glueck SM, Hall M, Kroutil W, Stuermer R, Hauer B, Faber K. Biocatalytic racemization of (hetero)aryl-aliphatic a-hydroxycarboxylic acids by Lactobacillus spp. Proceeds via an oxidation-reduction sequence. Eur J Org Chem.2006, 4573-4577.