枯草芽孢杆菌Na-002纳豆激酶基因的克隆、表达及定点突变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳豆激酶是从日本传统的大豆发酵食品——纳豆中发现的新型纤溶酶。这种酶具有较高的纤溶活性,无毒副作用,不引起内出血,在体内半衰期长。纳豆激酶无论作为抗血栓药物还是预防血栓栓塞性疾病的保健食品,都具有重要的开发价值。天然的纤溶酶活性往往较低,通过利用体外DNA分子改造等基因操作技术,构建高比活力的工程菌是实现产业化的重要途径。
     本研究主要进行了以下工作:
     (1)通过酪蛋白平板初筛和血纤维蛋白平板复筛结合的方法,从豆豉、纳豆样品中筛选到了21株纤溶酶产生菌,获得了一株高产纤溶酶菌株Na-002,纤溶酶活性可达10875U/g,比相关报道的出发菌株活性都要高。
     (2)通过形态鉴定、生理生化鉴定和16SrDNA序列分析等多项分类法,对Na-002进行了鉴定,确定其属于枯草芽孢杆菌。
     (3)通过PCR扩增技术,克隆获得了纤溶酶基因,与公布的11株纳豆激酶的核苷酸序列相似性达到99.8%~99.2%,氨基酸序列相似性达到98.6%~99.7%,说明该纤溶酶基因是纳豆激酶系列的一种,该基因的序列保守性强。
     (4)通过PCR技术克隆得到pro-NK基因,并分别构建pET-32a(+)表达载体、pWB980表达载体与pPIC9K表达载体,实现了在大肠杆菌BL21(DE3)、枯草芽孢杆菌WB800和毕赤酵母GS115中进行表达。实验表明,大肠杆菌表达的酶蛋白表达量高,易于纯化,但是多以包涵体形式存在,需要通过变性复性的方法才能获得有活性的酶;枯草芽孢杆菌表达活性最好,但是表达量少,纯化难度大;毕赤酵母表达系统的纯度高,但存在活性低,表达量相对较小的缺点。
     (5)通过定点突变的方法,从pH稳定性的角度对该酶基因进行了定点突变研究,获得了S182L、S182W、S182K、L203E、L203K等5个突变体,并实现了毕赤酵母表达。通过对该酶最适pH的测定发现,该酶最适pH的变化与碱基替换呈现出相关性:酸性氨基酸有利于酶在pH值为酸性范围内稳定,而碱性氨基酸有利于酶在pH值为碱性范围内稳定。
     (6)通过同源建模,推测该酶具有两个结构域:结合结构域(CBM)和催化结构域(CD)。CBM是结合在底物表面的,位于N端,用1scjB(同源性97.183%)作为模板,构建CBM的三维结构,它是由第7个氨基酸到第77个氨基酸共71个氨基酸构成,形成了两个α螺旋和3个β折叠;CD的三维结构用1scjA (同源性98.545%)作为模板来构建,由第78个氨基酸到第352个氨基酸共275个氨基酸构成,形成了一个(β/α)7桶状结构。
     本研究丰富了纳豆激酶的酶学基础理论知识,并为进一步的基因水平酶分子进化理论的研究以及口服溶栓药物的开发和应用奠定了基础。
Nattokinase(NK) is a novel fibrinolysin which is first found in Japanese traditionalfermentation food,natto.Nattokinase owns the characteristics such as the high activity offibre dissolution,no poisonous and other side effects,no internal hemorrhage and longhalf life in vivo. Nattokinase has the important value whether as an anti-thrombus drugor as a healthy food preventing the thromboembolism. While the activity of naturalfibrinolysin is usually very low, therefore, it is a major approach to industrializenattokinase by DNA operation technique to construct engineering bacterium with highspecific activity. This paper mainly carried out the work as follows:
     (1) 21 bacteria producing fibrinolysin were obtained from the samples of natto andfermented soya beans by the way of preliminary screening with casein culture mediumand second screening with blood fibrin culture medium. Among them there was a strainNa-002, which had a high activity of fibrinolysin, achieving to 10875U/g, higher thanany reported strains.
     (2) Strain Na-002 was identified as a Bacillus subtilis by morphological indexes,physiological and biochemical indexes and 16SrDNA sequence analyses.
     (3) The fibrinolysin gene was cloned by PCR amplification, which had the99.8%~99.2% similarities with the 11 published nucleotide sequence of nattokinase. Thesimilarities of amino acid reached 98.6%~99.7%. It revealed that the cloned fibrinolysingene was one kind of nattokinase and the gene had good sequence conservation.
     (4) The pro-NK gene was cloned by PCR technique. Meanwhile, the expressionvector of pET-32α(+), pWB980 and pPIC9K were constructed, respectively. Thecloned gene was expressed in E. coli BL21 (DE3), Bacillus subtilis WB800 and pichiapastoris GS115. It disclosed that the expression amount of E. coli was high and theproduction was purified easier, while the protein existed in the form of inclusion body,which meant more work on obtaining the active enzyme. The expression amount ofBacillus subtilis was in a low level and it was difficult to purify the enzyme, though the production owned a better activity. The expression amount of pichia pastoris was lowand the production carried the poor activity, though it had a high purity.
     (5) The 5 mutants, S182L, S182W, S182K, L203E and L203K were obtained bysite-directed mutagenesis based on the pH stability, and they were all expressed in pichiapastoris. There was a close relationship between the optimum pH and the base displace.The acidic amino acid kept the stability of the enzyme in the acidity condition, while thealkaline amino acid kept the stability of the enzyme in the alkalescence condition.
     (6) It was presumed by homology modeling that there were two structural domains,combining domain (CBM) and catalyzing domain (CD). CBM combined the substratesurface and located in the N-terminal. The three dimensional structure of CBM wasconstructed with the model of 1scjB (97.183% homology). It was consisted of 71 aminoacid from amino acid 7 to amino acid 77, which formed 2α-helix and 3β-pleatedsheet structure. The three dimensional structure of CD was constructed with the model of1scjA (98.545% homology). It was consisted of 275 amino acid from amino acid 78 toamino acid 352, which formed a (β/α)7 tubbiness structure.
     This research enriched the basic theory of nattokinase and laid a foundation not onlyfor further study on the enzyme molecular evolution in gene level but also for theapplication of oral taking drugs of thrombolysis.
引文
布坎南R E,吉本斯N E。伯杰氏手册。北京:科学出版社,1986,263
    陈偿。甲醇毕赤氏酵母表达体系。热带农业科学,1999,2:36-43
    陈撷珠。血栓溶解治疗的进展。国内医学内科学分册,1991,18(2):50-54
    陈蓉,谢梅林。新型抗血栓药物作用机制研究进展。中国药理学通报,2004,20(8):857-860
    从玉文,刘耀明,陈家佩。蚓激酶的研究进展。中国生化药物杂志,2000,21(3):159-161
    丁吉新。抗血栓药物研究进展。国外医药——合成药、生化药、制剂分册,1997,18(3):131-135
    丁文惠,李建平。基因重组链激酶静脉溶栓治疗急性心肌梗塞临床研究。中国临床药理学杂志,2000,10(4):259-261
    董明盛,江晓,刘诚。胞外纤溶酶产生菌的筛选及其产酶条件研究。食品与发酵工业,20()2,27(1):23-27
    董明盛,江晓,刘诚。纳豆激酶稳定性的研究。食品与发酵工业,2000,27(4):13
    冯周琴。实用血栓病学。郑州:河南科学技术出版社,1998
    郭怀芳,何执中,张莉。蚓激酶的临床应用进展。药物生物技术,2002,(9):57-60
    韩润林,张小勇,张建交。枯草杆菌溶栓酶的分离纯化研究。中国生化药物杂志,2000,21(5):219-222
    黄培堂,王嘉玺,朱厚础等译。分子克隆实验指南。北京:科学出版社,2003,1080-1087
    黄瑛,蔡勇,杨江科,闫云君。基于易错PCR技术的短小芽孢杆菌YZ02脂肪酶基因BpL的定向进化。生物工程学报,2008,3:445-451
    黄志立,罗立新,杨汝德,等。纳豆激酶。生命的化学,2000,20(2):82-83
    黄志立,罗立新,凌均建。纳豆激酶基因的克隆及其在大肠杆菌中的表达。广东药学院学报,2001,16(4):265-267
    黄志立,罗立新,杨汝德,等。纳豆激酶。生命的化学,2000 20 2):82-83
    江晓,董明胜,江汉湖。一种食源性纤溶酶(纳豆激酶)酶学性质的研究。中国酿造,2002,22(1):36-40
    姜涌明,戴祝英,陈俊刚,胡健。分子酶学导论。中国农业大学出版社,中国,北京,2000,145-158
    静国中。基因工程及其分子生物学基础。北京:北京大学出版社,1999,250-251
    康明官。中外著名发酵食品生产工艺手册。北京:化学工业出版社,1997,211-217
    李家增。溶血栓药的作用机制。中华医学杂志,2004,84(11):964-965
    李江伟,冉国侠,陈新梅。豆豉溶栓酶的分离纯化及其体外溶栓作用。中国生化药物杂志,1999,20(3):148-150
    凌均建,罗立新,杨汝德。纳豆激酶的分子生物学研究进展。广东药学院学报,1999,15(3):300-303
    刘北域,官孝群,宋后燕。纳豆激酶原的基因克隆及其在大肠杆菌中的表达。上海医科大学学报,1999,26(6):401-404
    刘北域,宋后燕。纳豆激酶基因的克隆及其在枯草杆菌中的表达。生物化学与生物物理学报,2002,34(3):338-340
    刘晨光,王鹏。海洋假单胞菌纤溶酶的体外溶栓实验研究。中国生化药物杂志,2002 23(l):34-35。
    罗立新,黄志立,凌均建。纳豆激酶基因重组表达载体的构建及其稳定性。华南理工大学学报(自然科学版),2001,29(4):59-62
    彭勇,张义正。豆豉溶栓酶产生菌的筛选及其酶学性质的初步研究。高技术通讯,2002,02:30-34
    彭勇,张义正。解淀粉芽孢杆菌DC-4豆豉溶栓酶成熟肽编码序列的克隆及表达。应用与环境生物学报,2002,8(3):285-289
    萨姆布鲁克,D.W.拉塞尔。分子克隆试验指南。北京:科学出版社,2002,562-570石英。血栓与血栓性疾病的治疗进展。新疆医学,1989,19(4):231-233
    孙月娥,钱和。豆豉纤溶酶生产菌的诱变育种。河南工业大学学报(自然科学版),2005,26(5):31-34
    孙志浩,柳志强。酶的定向进化及其应用。生物加工过程,2005,3:7-13
    王纷。人体及动物生理学。北京:高等教育出版社出版,1997,163-167
    王鸿利。抗血栓药物的血液学原理。中国处方药,2004,1(22):58-63
    王金英,刘宇峰,王占成,等。豆豉抗栓作用的研究。生物技术,1997,7(5):18-20
    王骏,王敏,王以光。链霉菌产生的新型纤溶酶的纯化和性质的研究。生物工程学报,1999,15(2):148-152
    王敏,王骏,邵明远等。链霉菌产生的新型纤溶酶的纤溶性质和溶栓作用。药学学报,1998,33(7):481-485
    王贤舜,路阳。枯草杆菌碱性蛋白酶E的纯化和性质。生物化学与生物物理进展,1992,19(5):398-400
    王兆钱。溶栓治疗的现状及研究进展。国外医学内科学分册,2000,27(8):323-326
    王振义,李家增,阮长耿。血栓与止血基础理论与临床(第二版),上海:上海科学技术出版社,199:63-96
    汪钟,郑植苓。现代血栓病学。北京:北京医科大学出版社,1997,523-532
    吴乃虎。基因工程原理。第二版。北京:科学出版社,1998,169-169
    吴梧桐。蛋白质工程技术与新型生物催化剂设计。药物生物术,2004,11:1-6
    谢秋玲,孙奋勇,廖美德等。纳豆激酶基因的克隆及表达。华南理工大学学报(自然科学版),2002,30(6):19-21
    须见洋行。化学与生物。1991,29(2):119-123
    须见洋行。化学与生物。1993,51(1):826-827
    徐天鹏。里氏木霉纤维素酶基因的克隆及其在毕赤酵母中的表达的研究。东北农业大学博士论文,2007
    徐仲,赵晓东,郑稚莺等。纳豆菌(Bacillus natto)纤溶活性分析。东北农业大学学报,1998,29(4):13-15
    阎家麟,童岩,臧莹安。豆豉纤溶酶的纯化及其性质研究。药物生物技术,2000,7(3):149-152
    张浩,毛秉智。定点突变技术的研究进展。免疫学杂志,2000,16:108-110
    张今。进化生物技术-酶定向进化。北京:科学出版社,2004
    张丽萍。血栓形成及抗血栓药物研究的进展。心功能杂志,1998,10(l):29-34
    张淑梅,李晶,王玉霞,等。纳豆激酶基因的表达及纯化。生物技术,2003,13(5):23-2653
    张淑梅,张云湖,赵晓祥,等。纳豆激酶基因的克隆与表达。中国生物化学与分子生物学报,1999,15(6):912-915
    张秀艳。β-葡聚糖酶的定向进化及热稳定性研究。浙江大学博士论文,2006
    张勇,王忠彦,胡承。离子诱变选育纤溶酶高产菌及其发酵条件的研究。四川大学学报(自然科学版),2002,39(4):780-782
    张致平,中国新抗生素研究的进展。中国抗生素杂志,1998,23(2):81-91
    钟青萍,谢俊杰,余世望。纳豆菌的分离鉴定及抗菌活性。食品科学,2002,23(10):109-112
    周红。第三代溶栓剂的作用特点及其研究现状。国外医学心血管疾病分册,2000,27(5):274-276
    邹和昌。溶栓剂的发展及研究。中国药学杂志,1997,32(5):263-267
    Astrup T,Mullertz S, The fibrin plate method for estimating fibrinolytic activity,Arch.Biochem.Biophys., 1952, (40): 346-351
    A.V. Kabanov, N.L. Klyachko, Engineering of functional supramolecular complexesof proteins (enzymes) using reversed micelles as a matrix microreactors, ProteinEng., 1991, (4): 1009-1017
    A. Carlson, R. Nagarajan, Release and recovery of porcine pepsin and bovinechymosin from reverse micelles: a new technique based on isopropyl alcoholaddition, Biotechnol. Prog., 1992 (8): 85-90
    Berlanga,M.,Montero, M. T.,Borrel, J. H., Guerrero, R.. Rapid spectrofluorometricscreening of poly-hydroxyalkanoate-producing bacteria from microbial mats.International Microbiology, 2006 (92): 95-102
    Bradford, M.M. A rapid and sensitive method for the quantitation ofmicrogramquantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.,1976, ( 72): 248-254
    Chang, C.T. et al. Potent fibrinolytic enzyme from a mutant of Bacillus subtilisIMR-NK1. J. Agric. Food Chem., 2000, (48): 3210–3216
    Chavakis T, Robin A, Pixley,et al. A novel antithronbotic role for high molecularweight kininogen as inhibitor of Plasmnogen activator inhibior function.J BiolChem, 2002, 277(36):32677-32682
    Chitte, R.R. and Dey, S. Production of a fibrinolytic enzyme by thermophilicStreptomyces species. World J. Microbiol. Biotechnol., 2002, (18): 289-294
    C.T. Chang, M.H. Fan, F.C. Kuo, H.Y. Sung, Potent fibrinolytic Enzyme from amutant of Bacillus subtilis IMR-NK1, J. Agric. Food Chem., 2000, (48):3210-3216
    Cui, L. et al. A novel fibrinolytic enzyme from Cordyceps militaris, aChinesetraditional medicinal mushroom. World J. Microbiol. Biotechnol., 2008,(24): 483-489
    Deepak, V., Kalishwaralal, K., Ramkumarpandian, S., Babu, S.V., Senthilkumar, S.R.,Sangiliyandi, G., Optimization of media composition for nattokinase productionby Bacillus subtilis using response surface methodology. Bioresource Technology,2008, (99): 8170-8174
    Doutremepuich C,Dehaor E,Guyot M,et al. Antithrombotic activity of recombinanthirudin in the rat:a comparative study with heparin. Thromb Res, 1989,54(5):439-445
    D.P. Hong, R. Kuboi, Evaluation of the alcohol-mediated interaction between micellesusing percolation processes of reverse micellar systems, Biochem. Eng. J., 1999,(4) 23-29
    Egoorv S , Kochetov A,Khaidarova. V. Isolation and ProPerties of the fibrinolyticenzyme from the Actinomyces thermovulgaris culutral broth.Mikrobiologiia, 1976,(45): 455-459E.P. Melo, C.M. Carvalho, M.R. Aires-Barros, S.M. Costa, B. Deactivation,
    Conformational changes of cutinase in reverse micelles, Biotechnol. Bioeng.,1998, (58): 380-387
    Fessi, H., Puisieux, F., Devissaguet, J.P., Ammoury, N., Benita, S.,. Nanocapsuleformation by interfacial polymer deposition following solvent displacement.International Journal of Pharmaceutics, 1989, (55): R1-R4
    Fleury V, Loyau, Lijnen H R, et al.Molecular assembly of Plasminogen andtissue-type Plasmingoen activator on an evolving fibrin surface. Eur J Biochem,1993, 216(2): 549-556
    Fujita, M., Nomura, K., Hong, K., Ito, Y., Asada, A., Mishimuro, S.,. Purification andcharacterization of the strong fibrinolytic enzyme nattokinase in the vegetablecheese natto, a popular soybean fermented food in Japan. Biochemical andBiophysical Research Communications, 1993, (197): 1340–1347
    Fujita, M. et al. Thrombolytic effect of nattokinase on a chemically inducedthrombosis model in rat. Biol. Pharm. Bull., 1995, (18): 1387-1391
    G.A. Krei, H. Hustedt, Extraction of enzymes by reversed micelles, Chem. Eng. Sci.,1992, (47): 99-111
    Gianfreda, L., Scarfi, M.R., Enzyme stabilization: state of the art. Molecular andCellular Biochemistry, 1991,(100): 97-128
    G.J. Lye, J.A. Asenjo, D.L. Pyle, Protein extraction using reverse micelles: kinetics ofprotein partitioning, Chem. Eng. Sci., 1994, (49): 3195-3204
    Hans, M.L., Lowmanm, A.M., Biodegradable nanoparticles for drug delivery andtargeting. Current Opinion in Solid State Mechanics, 2002, (63): 19-327
    Hong, K., Sun, S., Tian, W., Chen, G.Q., Huang, W., A rapid method for detectingbacterial polyhydroxyalkanoates in intact cells by Fourier transform infraredspectroscopy. Applied Microbiology and Biotechnology, 1999,(51): 523-526
    Hsieh, C.W., Lu, W.C., Hsieh, W.C., Huang, Y.P., Lai, C.H., Ko, W.C., Improvementof the stability of nattokinase using c-polyglutamic acid as a coating material formicroencapsulation. LWT - Food Science and Technology, 2009,(42): 144-149
    H. Sumi, H. Hamado, H. Tsushima, H. Mihara, H. Murica, A novel fibrinolyticenzyme (nattokinase) in the vegetable cheese Natto: a typical and popular soybeanfood in the Japanese diet, Experientia, 1987, (43): 1110-1111
    H. Sumi, H. Hamada, K. Nakanishi, H. Hiratani, Enhancement of the fibrinolyticactivity in plasma by oral administration of Nattokinase, Acta Haemotol., 1990,(84): 139-143
    Jeong, Y.K. et al. Purification and biochemical characterization of a fibrinolyticenzyme from Bacillus subtilis BK-17. World J. Microbiol. Biotechnol., 2001, (17):89-92
    Jeong, Y.K. et al. Molecular cloning and characterization of the geneencoding afibrinolytic enzyme from Bacillus subtilis strain A1. World J.Microbiol.Biotechnol., 2004, (20): 711-717
    J.M.S. Cabral, M.R. Aires-Barros, in: J.F. Kennedy, J.M.S. Cabral (Eds.), RecoveryProcesses for Biological Materials, John Wiley & Sons, UK, 1993, pp. 247-271
    Ju H K,Jun P Y,Lei Z,et al.Identification of two novel fibrinolytic enzymes fromBacillus subtilis QK02.Comp Biochem Physiol (Part C), 2004, (137): 65-74
    K.E. Goklen, Liquid-liquid extraction of biopolymers: selective solubilization ofproteins in reverse micelles, PhD thesis, MIT, USA, 1986
    Kim, H.K. et al. Purification and characterization of a novel fibrinolyticenzyme fromBacillus sp., KA38 originated from fermented fish. J. Ferment. Bioeng., 1997,(84): 307-312
    Kim, S.B. et al. Purification and characterization of a fibrinolytic subtilisinlikeprotease of Bacillus subtilis TP-6 from an Indonesian fermented soybean,Tempeh.J. Ind. Microbiol. Biotechnol., 2006, (33): 436-444
    Kim, S.H. and Choi, N.S. Purification and characterization of subtilisin DJ-4secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang. Biosci.Biotechnol.Biochem., 2000, (64): 1722-1725
    Kim, W,Choi K,Kiln,Y, et al.Purification and characterization of a fibrinolyticenzyme produced from Bacillus sp.srtain CK 11-4 screened fromChunkgook-Jang.App1 Envrion Microbiol, 1996,62(7): 2482-2488
    K. Nakanishi, K. Nomura, K. Tajima, H. Hiratani, Fibrinolytic protein and productionmethod thereof, [P] United States Patent, 1998
    Ko, J.H. et al. Identification of two novel fibrinolytic enzymes from BacillussubtilisQK02. Comp. Biochem. Physiol. C: Pharmacol. Toxicol. Endocrinol., 2004, (137):65-74
    Laemmli, U.K. Cleavage of structural proteins during the assembly of thehead ofbacteriophage T4. Nature, 1970, (227): 680-685
    Lee, S.K. et al. Purification and characterization of a fibrinolytic enzymefromBacillus sp., KDO-13 isolated from soybean paste. J. Microbiol. Biotechnol., 2001,(11): 845-852
    Lee, S.Y. et al. Purification and characterization of fibrinolytic enzyme fromculturedmycelia of Armillaria mellea. Protein Expr. Purif., 2005, (43): 10-17
    Liu, J. et al. Optimization of nutritional conditions for nattokinase production byBacillus natto NLSSE using statistical experimental methods. Process Biochem.,2005, (40): 2757-2762
    Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente,R.,. Improvement of enzyme activity, stability and selectivity via immobilizationtechniques. Enzyme and Microbial Technology , 2007, (40): 1451-1463
    M. Dekker, R. Hilhorst, C. Lanne, Isolating enzyme by reversed micelles, Anal.Biochem., 1989, (178): 217-226
    M. Fujita, K. Hong, Y. Ito, S. Misawa, N. Takeuchi, K. Kariya, S. Nishimuro,Transport of nattokinase across the rat intestinal tract, Biol. Pharm. Bull., 1995,(18): 1194-1196
    M. Fujita, K. Hong, Y. Ito, R. Fuji, K. Kariya, S. Nishimuro, Thrombolytic effect ofNattokinase on a chemically induced thrombosis model in rat, Biol. Pharm. Bull.,1995, (18): 1387-1391
    M. Fujita, K. Nomura, K. Hong, Y. Ito, A. Asada, S. Nishimuro, Purification andcharacterization of a strong fibrinolytic enzyme (nattokinase) in the vegetablecheese Natto, a popular soybean fermented food in Japan, Biochem. Bioph. Res.Co., 1993, (197): 1340-1347
    M.L. Ansen, The estimation of pepsin, trypsin, papain, and cathepsin withhemoglobin, J. Gen. Physiol., 1939, (22): 78-79
    M.M. Bradford, A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding, Anal. Biochem.,1976, (72): 248-254
    M.S. Andrade, S.M.B. Costa, Structural changes of _-chymotrypsin in reversemicelles of AOT studied by steady state and transient state fluorescencespectroscopy, J. Mol. Struct., 2001, (565-566): 219-223
    Nakajima, N. et al. Characterization of potent fibrinolytic enzymes in earthworm,Lumbricus rubellus. Biosci. Biotechnol. Biochem, 1993, (57): 1726-1730
    Nakajima, N. et al. Potent fibrinolytic enzyme from the lysate of Katsuwonus pelamisdigestive tract (Shiokara): purification and characterization. Biosci. Biotechnol.Biochem, 1993, (57): 1604-1605
    Noh, K.A. et al. Isolation of fibrinolytic enzyme producing strains from Kimuchi.Korean J. Food Sci. Technol., 1999, (31): 219-223
    N. Takashi, Y. Yamagata, E. Ichishima, Nucleotide sequence of the subtilisin NATgene, aprN of Bacillus subtilis (natto), Biosci. Biotech. Biochem., 1992, (56):1869-1871
    Omura, K., Hitosugi, M., Zhu, X., Ikeda, M., Maeda, H., A newly derived proteinfrom Bacillus subtilis natto with both antithrombotic and fibrinolytic effects.Journal of Pharmacological Sciences, 2005, (99): 247-251
    Paik, H.D. et al. Purification and characterization of the fibrinolytic enzymeproducedby Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol., 2004,(14): 829-835
    Peng, Y. et al. Purification and characterization of a fibrinolytic enzyme produced byBacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinesesoybean food. Comp. Biochem. Physiol. Biochem. Mol. Biol., 2003, (134): 45-52
    Peng, Y. et al. Microbial fibrinolytic enzymes: an overview of source,production,properties, and thrombolytic activity in vivo. Appl. Microbiol.Biotechnol. ,2005,(69): 126-132
    Peng, Y., Yang, X., Zhang, Y., Microbial fibrinolytic enzymes: an overview of source,production, properties, and thrombolytic activity in vivo. Applied Microbiologyand Biotechnology, 2005, (69): 126-132
    P.L. Luisi, M. Giomini, M.P. Pileni, B.H. Robinson, Reverse micelles as hosts forproteins and small molecules, Biochim. Biophys. Acta, 1988, (947): 209-246
    P.P. Wangikar, T.P. Graycar, D.A. Estell, D.S. Clark, J.S. Dordick, Protein and solventengineering of subtilisin BPN’in nearly anhydrous organic media, J. Am. Chem.Soc., 1993, (115): 12231-12237
    Q. Chang, H. Liu, J. Chen, Extraction of lysozyme, chymotrypsin, and pepsin intoreverse micelles formed using an anionic surfactant, isooctane, and water, EnzymeMicro. Technol., 1994, (16): 970-973
    Spee J H, Vos W M, Kuipes O P. Efficient random mutagenesis method withadjustable mutation by use of PCR and dITP. Nucl Acids Res, 1993, (21): 777-778S.R. Dungan, T. Bausch, T.A. Hatton, P. Plucinski, W. Nitsch, Interfacial transportprocesses in the reversed micellar extraction of proteins, J. Colloid Interf. Sci.,1991, (145): 33-50
    Srisodsuk M, Reinikainen T, Penttila M, Teeri T T. Role of the interdomain linkerpeptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystallinecellulose. J Biol Chem, 1993, (268): 20756-20761
    Stemmer W P C. Rapid evolution of a protein in vitro by DNA shufling. Nature,1994,( 370): 389-391
    Stephen Y L, Edited by David A T, Edwin C J. Potential and Challenge, in Progress inBiomass conversion. Lignin Utilization, 1983, (4): 31-35
    Sumi,Hmada H,Tsushima H,etal.A novel fibrinolytic enzyme(nattokinase) in thevegetable cheese Natto:a typeical and popular soybean food in the Japanesediet.Experientia,1987, 43(10): 1110-1111
    Sumi, H., Hamada, H., Tsushima, H., Mihara, H., Muraki, H., A novel fibrinolyticenzyme nattokinase in the vegetable cheese natto; a typical and popular soybeanfood in the Japanese diet. Experientia, 1987, (15): 1110-1111
    Sumi, H., Hamada, H., Nakanishi, K., Hiratani, H., Enhancement of the fibrinolyticactivity in plasma by oral administration of nattokinase. Acta Haematologica,1990, (843): 139-143
    Sumi, H. et al. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto;a typical and popular soybean food in the Japanese diet. Experientia, 1987, (43):1110-1111
    Sumi, H. et al. Fibrinolysis relating substances in marine creatures. Comp. Biochem.Physiol., 1992, (102B): 163-167
    Sumi, H. et al. In vitro and in vivo fibrinolytic properties of nattokinase. Thromb.Haemost., 1992, (89): 1267
    Sun Ye, Cheng jia-yang. Hydrolysis of lignocellulosic materials for ethanolproduction: A review. Bioresource Technology, 2002, 83(1): 1-11
    Takahashi T T, Austin R J, Roberts R W. mRNA Display: Ligand discovery,interaction analysis and beyond. Trends Biochem Sci, 2003, (28): 159-165
    Takao S. Expression of a thermostable cellulase gene from a thermophilic anaerobe inSaccharomyces cerevisiae, J. ferment bioeng, 1990, (69): 282-288
    Takashima S, Nakamura A. Molecular cloning and expression of the novel fungalbeta- glucosidase genes from Humicola grisea and Trichoderma reesei. Biochem(Tokyo), 1999, (125): 728-736
    Tamber, H., Johansen, P., Merkle, H.P., Gander, B., Formulation aspects ofbiodegradable polymeric microspheres for antigen delivery. Advanced DrugDelivery Reviews, 2005, (57): 357-376
    Tann C M, Qi D, Distefano M D. Enzyme design by chemical modification of proteinscaffolds. Curt Opin Chem Bi01, 2001, (5): 696—704
    Teeri T T. Crystalline cellulose degradation: new insight into the function ofcellobiohydrolases. Trends Biotechnol, 1997, (15): 160-167
    Thomas M. Wood cellulase of Trichoderma koningii . Methods in Enzymology, 1998,(160): 221-240
    Thompson N S., In Wood and Agricultural Residues . New York:Academic Press,1983, 103-147
    Tilbeurgh H V, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G. Limitedproteolysis of the cellobiohydrolase I from Trichoderma reesei: separation offunctional domains. FEBS letters, 1986, (204): 223-227
    Tomme P, Driver D P, Amandoron E A, MillerJr R C, Antony R, Warren J, Kilburn DG. Comparison of a fungal(familyI) and bacterial(familyII)cellulose-bindingdomain.J.Bacteriol, 1995, (177): 4356-4364
    Tsuyoshi S, Hirokazu I, Jun-ichi N, Takashi Y, Katsuya O,Yoshihiro H, Susumu I.Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of anindustrial enzyme. Mol Biol, 2001, (310): 1079-1087
    T. Urano, H. Ihara, K. Umemura, Y. Suzuki, M. Oike, S. Akita, Y. Tskamoto, I. Suzuki,A. Takada, The profibrinolytic enzyme subtilisin NAT purified from Bacillussubtilis cleaves and inactivates plasminogen activator inhibitor type 1, J. Biol.Chem., 2001, (276): 24690-24696
    Ueda, M. et al. Purification and characterization of fibrinolytic alkalineprotease fromFusarium sp. BLB. Appl. Microbiol. Biotechnol., 2007, (74): 331-338
    Van Peij N N M E, Gielkens M M C, Vries R P, Visser J, Graaff L H. TheTranscriptional Activator XlnR Regulates Both Xylanolytic and EndoglucanaseGene Expression in Aspergillus niger. Applied and Environmental Microbiology,1998, 64(10): 3615-3619
    Van Rensburg P, van Zyl W H, Pretorius I S. Over-expression of the Saccharomycescerevisiae exo-beta-1, 3-glucanase gene together with the Bacillus subtilisexo-beta-1, 3-1, 4-glucanase gene and the Butyrivibrio fibrisolvens exo-beta-1,4-glucanasegene in yeast.J.Biothechnol., 1997, (55): 43-53
    Verlinden, R.A.J., Hill, D.J., Kenward, M.A., Williams, C.D., Radecka, I., Bacterialsynthesis of biodegradable polyhydroxyalkanoates. Journal of AppliedMicrobiology, 2007, (102): 1437-1449
    Voget S, Leggewie C, Uesbeck A, et a1.Prospecting for novel biocatalysts in a soilmetagenome.Applied and Environmental Microbiology, 2003, 69(4) : 6235-6242
    Volova, T.G., Shishatskaya, E.I., Sevastianov, V.I., Efremov, S., Mogilnaya, O.,Results of biomedical investigations of PHB and PHB/PHV fibers. BiochemicalEngineering Journal, 2003(16): 125-133
    Wang, C.T. et al. Purification and characterization of a fibrinolytic enzyme of Bacillussubtilis DC33, isolated from Chinese traditional Douchi. J. Ind.Microbiol.Biotehnol., 2006, (33): 750-758
    Wang, J. et al. () Purification and characterization of a novel fibrinolytic enzyme fromStreptomyces spp. Chin. J. Biotechnol., 1999,(15): 83-89
    Wang, S.H. et al. Screening of a high fibrinolytic enzyme producing strain andcharacterization of the fibrinolytic enzyme produced from Bacillus subtilisLD-8547. World J. Microbiol. Biotechnol., 2008,(24): 475-482
    Wang, S.L. and Yeh, P.Y. Purification and characterization of a chitosanasesfrom anattokinase producing strain Bacillus subtilis TKU007. Process Biochem.,2008,(43): 132-138
    Wang T, Liu X M, Yu Q, Zhang X, Qu Y B, Gao P G, Wang T H. Directed evolutionfor engineering pH profile ofendoglucanaseⅢfrom Trichoderma reesei.Biomolecular Engineering, 2005, (22): 89-94
    Wegner E H, Biochemical conversions by yeast fermentation at high-cell dendities,US.Patent, 1983, (8): 314-329
    Wey T T, Hseu T H, Huang L. Molecular cloning and sequence analysis of thecellobiohydrolaseⅠgene from Trichoderma koningii G-39 . Curr Microbiol, 1994,(28): 31-39
    Wilson C R, Tang M R, Christianson T, Expression systems for commercialproduction of cellulase and xylanase in Bacillus licheniforms. United States Patent,1999, (30): 588-880
    Wohlfahrt G, Pellikka T, Boer H, Teeri T T, Koivula A T. ProbingpH-dependentfunctional elements in proteins: modification of carboxylic acidpairs in Trichoderma reesei cellobiohydrolase Cel6A. Biochemistry, 2003, (42):10095-10103
    Wong, A.H.K. and Mine, Y. Novel fibrinolytic enzyme in fermented shrimp paste, atraditional Asian fermented seasoning. J. Agric. Food Chem., 2004, (52): 980-986
    Wong W K, Gerhard R B, Guo Z M et al, Characterization and structure of anendoglucanase gene cenA of Cellulomonas fimi. Gene, 1986, (44): 315-324
    Wood T M, Bhat K M. Methods for measuring cellulase activities. Methods inEnzymology, 1988, (160): 87-112
    Wood T M, McCrae S I.The cellulase of Penicillium pinophilum: Synergism betweenenzyme components in solubilizing cellulose with special reference to theinvolvement of two immunologically distinct cellobiohydrolases. Biochem, 1986,(234): 93-99
    Wood T M, McCrae S I, Wilson C, Bhat K M, Cow L. Aerobic and anaerobic fungalcellulases wspecial reference to their mode of attack on crystalline cellulose.Biochemisand Genetics of Cellulose Degradation, FEMS Syrup, 1988, (43):31-52.
    Wood T M, McCrae S L, Bhat K M. The mechanismof fungal cellulose action.Synergism between enzyme components of Penicillium pinophilum cellulose insolubilizing hydrogen bond-ordered cellulose. Biochem, 1989, (260): 37-43
    Wood T M, MeCrae, S L, The purification and properties of the Ca component ofTrichoderma koningii cellulases. Biochem, 1972, (128): 1183-1192
    Wood T M. Microbial enzymes involved in the degradation of the cellulosecomponent of plant cell walls. Rower Research Institute Ammal Report,1992, 10-24
    Wood T M, Properties of cellulolytic enzyme systems. Biochem. Soc.Trans,1985, (13):407-410
    Wood T M. The celloulase of fusarium solani purification and specificity of the(1,4)-glucosidase components. Biochem, 1971, (12l): 353-362
    Xiao-Lan, L. et al. Purification and characterization of a novelfibrinolytic enzymefrom Rhizopus chinensis 12. Appl. Microbiol. Biotechnol., 2005, (67): 209-214
    Xu J, Baase W A, Baldwin E, Matthews B W. The response of T4 lysozyme tolarge-to-small substitutions within the core and its relation to the hydrophobiceffect. Protein Sci., 1998, (7): 158-177
    Xu L, Aha P, Gu K, et a1. Directed Evolution of High-affinity Antibody MimicsUsing mRNA Display. Chem Biol, 2002, (9): 933-942
    Yoshikazu Yuki, Tomoyo, Nakagawa, Mitsugu Fujita, Aki Asada, Koichiro Nakanishi,Kazuo Kato, A sandwich enzyme-linked immunosorbent assay for nattokinase,Biosci. Biotech. Biochem.,1994, 58(2): 366-370
    Yoon H H, Wu Z W,Lee Y Y.Ammonia-recycled percolation process for pretreatmentof biomass feedstock. Applied Biochemistry and Biotechnology,1995, (51/52):5-19
    Zanetti-Ramos, B.G., Lemos-Senna, E., Cramail, H., Cloutet, E., Borsali, R., Soldi, V.,The role of surfactant in the miniemulsion polymerization of biodegradablepolyurethane nanoparticles. Materials Science and Engineering, C: Biomimeticand Supramolecular Systems, 2008, 28(4): 526-531
    Z.F. Xu, R. Affleck, P. Wangikar, V. Suzawa, J.S. Dordick, D.S. Clark, Transition statestabilization of subtilisins in organic media, Biotechnol. Bioeng, 1993,(43):515-520
    Zhang Y, Himmel M, Mielenz J. Outlook for cellulase improvement: screening andselectiong strategies. Biotechnology Advances, 2006, (24): 452-481
    Zhao H, Arnold F H. Functional and non-functional mutations distinguished byrandom recombination of homologous genes. Proc Natl Acad Sci, 1997, (94):7997-8000