提高酵母细胞不对称氧化还原制备手性醇效率的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学活性仲醇是重要的医药和精细化学品中间体,光学纯苯基乙二醇(PED)是其中的重要代表,广泛用于手性药物、农药和液晶材料的合成。与化学合成法合成手性化合物相比,生物催化剂在位置、化学和立体选择性上具有独特优势。其中,微生物去消旋和不对称还原法由于其理论最大得率100%和操作简便已经成为当今生物催化中前沿领域和热点内容。但这两类反经常遇到的几个共性问题是底物浓度低,辅酶循环效率低和催化剂不稳定。本论文以酵母细胞催化不对称氧化还原反应高效合成光学纯苯基乙二醇为目标,针对近平滑假丝酵母(Candida parapsilosis)催化PED去消旋和酿酒酵母(Saccharomyces cerevisiae)不对称还原α-羟基苯乙酮反应的瓶颈,采取过程控制和介质工程手段明显提高了其反应效率。此外,还揭示了C. parapsilosis细胞代谢D-木糖(戊糖)偶联去消旋苯基乙二醇过程的作用机理。这些发现不仅进一步丰富了还原酶手性生物催化理论,而且有助于合成其他精细化学品。主要结果如下:
     (1)以C. parapsilosis细胞催化PED去消旋为模式反应,对可能限制细胞催化活性的因素进行了系统考察。结果发现底物浓度高于25 g/l或产物浓度高于17.5 g/l对该反应产生强烈的抑制作用。较高的底物或产物浓度(如超过30 g/1)导致细胞死亡率大于18.3%。此外,在高底物浓度下(如30 g/1)NADPH再生也是限制该反应效率的因素之一。
     (2)运用树脂原位底物补料和产物移除“二合一”策略提高去消旋反应的效率。大孔树脂H103由于吸附容量高和对反应促进最明显被选作吸附材料。最佳反应条件如下:pH 8,温度30℃,细胞120 g/l,树脂72 g/l,转速150 r/min。在该条件下30g/l PED反应48 h后,产物(S)-PED光学纯度和得率分别达到99.2%和93.6%。基于通过异构反应实现生物催化去消旋的特点,提出一种合理运用树脂原位底物补料和产物移除“二合一”策略的方法。该新方法可使C. parapsilosis催化50g/l底物反应90 h后,产物e.e值和得率分别高达99.3%和92.0%。
     (3)C. parapsilosis催化苯基乙二醇去消旋分批连续反应中,添加D-木糖有利于细胞代谢活性的恢复,但对催化去消旋关键反应的(S)-羰基还原酶活力无影响。在证实细胞内存在木糖还原酶和木糖醇脱氢酶的基础上,通过磷酸戊糖途径抑制试验和直接测定胞内NADPH含量相结合的方法,揭示了C. parapsilosis细胞代谢D-木糖偶联去消旋苯基乙二醇过程的作用机理:D-木糖先后经过木糖还原酶和木糖醇脱氢酶的还原和氧化反应生成木酮糖,再经木酮糖激酶生成5-磷酸木酮糖并由此进入磷酸戊糖途径。通过磷酸戊糖途径中间代谢产物6-磷酸葡萄糖、6-磷酸葡萄糖酸的两步脱氢反应产生大量NADPH用于去消旋PED,提高反应效率和催化系统的稳定性。此外,萃取转化(树脂/缓冲液体系)和辅酶再生(添加D-木糖)相结合的策略,不但可以解除底物/产物抑制,还能提高生物催化剂的可持续性。
     (4)通过靶向反应定向筛选成功获得一株高立体选择性(e.e>99.9%)不对称还原α-羟基苯乙酮合成(R)-PED的酵母S. cerevisiae JUC15。当底物浓度为2g/l时游离细胞重复使用40次,产物得率和光学纯度无明显降低。该催化剂使用廉价的蔗糖作为辅助底物用于辅酶再生,可在相当宽的pH范围内(4-9)催化α-羟基苯乙酮。在所有考察条件下,产物e.e值始终保持大于99.9%。当α-羟基苯乙酮浓度低于其溶解度(11.4g/1)时,产物抑制是不对称还原反应的主要瓶颈。当底物浓度高于其溶解度,尤其是超过20g/l,产物抑制和催化剂失活是引起(R)-苯基乙二醇得率降低的主要原因。此外,S.cerevisiae细胞催化部分产物降解。为克服这些缺点,采取缓冲液和水不溶性有机溶剂组成的原位分离的策略。通过测定不同有机溶剂对底物/产物分配系数和对不对称还原反应的影响,筛选出对此反应具有较好促进作用的有机溶剂邻苯二甲酸二丁酯。在合适的相比例下,产物浓度达到20.7 g/l,明显高于目前已报道的其他生物法水平。
Optically active secondary alcohols are important intermediates of pharmaceuticals and fine chemicals, and enantiomerically pure phenyl-1,2-ethanediol (PED) is an important representative for optically active secondary alcohols, which is a versatile chiral building block for the synthesis of pharmaceuticals, agrochemicals, pheromones, and liquid crystals. Compared with chemical synthetic methods, biocatalysts offer distinct advantages in terms of of regio-, chemo- and enantioselectivity under benign conditions. Amonies, microbial deracemization and asymmetric reduction have been the front and topic research of present biocatalysis thanks to the maximum theroretical yield of 100% and easy-to-handle conditions. Nevertheless, some weaknesses frequently met in both microbial deracemization and asymmetric reduction are small substrate concentrations, the inefficient regeneration of cofactors and the poor stability of biocatalysts. In order to achieve highly effective synthesis of chiral PED by yeast-mediated asymmetric oxidoreduction, the bottleneck of Candida parapsilosis-catalyzed deracemization of PED to (S)-PED and S. cerevisiae-mediated asymmetric reduction of 2-hydroxyacetophenone to (R)-PED were investigated. The efficiency of above-mentioned reactions was significantly enhanced by process engineering and media engineering. Furthermore, the mechanism of coupling involving D-xylose metabolism and C. parapsilosis-catalyzed deracemization of PED was also uncovered. Those findings not only further enriched the theory of oxidoreductase-catalyzed biocatalysis, but also helped to systhesis of other fine chemicals.The main results were shown as follows:
     (1) C. parapsilosis catalyzing deracemization of PED was used as a model reaction to systemically investigate the factors that might limit the reactivity of such cells. It was found that there was a marked inhibition of reaction when the substrate and product concentration exceeded 25 g/1 and 17.5 g/1, respectively. Besides, excessive substrate or product concentration (such as>30 g/1) led to a high cell mortality rate of more thanl8.3%. Furthermore, NADPH regeneration was one of the factors limiting the reaction efficiency under higher substrate concentration (such as 30 g/1).
     (2) A highly efficient process for C. parapsilosis-mediated deracemization of PED was described, based on a "two-in-one" resin-based in situ substrate feeding and product removal methodology. The macroporous resin H103 was selected as the adsorbent material thanks to its high adsorbent capacity and greatest promoting effect on the reaction. The optimal conditions were selected as follows:pH 8,30℃,120 g/1 cells,72 g/1 resin H103 and 150 r/min. Under the optimal conditions,30 g/1 of racemic substrate was converted to (5)-PED with 99.2% enantiomeric excess (e.e) in 93.6% yield after 48 h. Based on the characteristic of biocatalytic deracemization by stereoinversion, a more rational method was proposed to make use of a "two-in-one" resin-based in situ substrate feeding and product removal strategy. Using this new method, when substrate concentration was 50 g/1, a reaction yield of 92.0% and e.e of 99.3% were obtained for (S)-PED within 90 h.
     (3) D-xylose added to multi-batch reactions had no influence on the activity of (S)-carbonyl reductase catalyzing the key step in deracemization, but performed a promoting effect on the recovery of the metabolic activity of the cells in each batch. Based on the fact that the activities of xylose reductase and xylitol dehydrogenase from cell-free extract of C. parapsilosis were detected, the depression of the pentose phosphate pathway (PPP) and the investigation of the cofactor pool were performed to uncover the mechanism of coupling between D-xylose metabolism and the deracemization of PED. The proposed mechanism was as follows:D-xylose was converted to xylulose via a two-step reduction and oxidation mediated by xylose reductase and xylitol dehydrogenase, respectively. Xylulose was phosphorylated to xylulose 5-phosphate, which then enters into PPP. When glucose-6-phosphate and 6-phpspho-gluconate, the intermediate metabolites of PPP, were catalyzed by glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, respectively, they can afford more NADPH for deracemization of PED to enhance the reaction efficiency and the stability of biocatalytic system. Furthermore, a strategy involving extractive biocatalysis (resin/buffer system) coupled with cofactor regeneration (adding D-xylose) not only alleviated the substrate/product inhibition, but also enhanced the sustainability of the biocatalyst.
     (4) S. cerevisiae JUC15 was successfully obtained by target reaction-oriented screening, which asymmetrically reduced 2-hydroxyacetophenone to (R)-PED of excellent e.e (>99.9%). There was no significant decrease in the yield and optical purity of (R)-PED when the free cells were reused for 40 repeated cycles at 2 g/1 substrate concentration. The biocatalyst used cheap sucrose for cofactor regeneration and worked over a considerably wider range of pH (4-9). The product e.e. kept above 99.9% in all examined conditions. When 2-hydroxyacetophenone concentration was below solubility limit (11.4 g/1), product inhibition was the primary bottleneck of the asymmetric reduction. However, when the substrate concentration exceeded its solubility, especially more than 20 g/1, the observed decrease in the yield of (R)-PED can be mainly attributed to a combination of product inhibition and the inactivation of the biocatalyst. Moreover, the catalytic decomposition of partial product by S. cerevisiae occurred. Biphasic systems consisting of buffer and a water-immiscible organic solvent were applied to circumvent those limitations. Dibutyl phthalate was selected as the suitable organic solvent thanks to its higher organic phase-buffer partition coefficent for the substrate and product, and the largest promoting effect on the reduction. Use the appropriate volume ratio could make the product concentration reach 20.7 g/1, which was remarked higher than that of other bio-methods reported so far.
引文
1. Faber K. Non-sequential processes for the transformation of a racemate into a single stereoisomeric product:Proposal for stereochemical classification [J]. Chemistry-A European Journal,2001,7(23):5004-5010.
    2. Turner N J. Deracemisation methods [J]. Current Opinion in Chemical Biology,2010, 14(2):115-121.
    3. Gruber C C, Lavandera I, Faber K, et al. From a racemate to a single enantiomer: Deracemization by stereoinversion [J]. Advanced Synthesis & Catalysis,2006,348(14): 1789-1805.
    4. Chen L S, Mantovani S M, de Oliveira L G, et al.1,2-octanediol deracemization by stereoinversion using whole cells [J]. Journal of Molecular Catalysis B:Enzymatic,2008, 54(1-2):50-54.
    5. Li Y L, Xu J H, Xu Y. Deracemization of aryl secondary alcohols via enantioselective oxidation and stereo selective reduction with tandem whole-cell biocatalysts [J]. Journal of Molecular Catalysis B:Enzymatic,2010,64(1-2):48-52.
    6. Voss C V, Gruber C C, Faber K, et al. Orchestration of concurrent oxidation and reduction cycles for stereoinversion and deracemisation of sec-alcohols [J]. Journal of the American Chemical Society,2008,130(42):13969-13972.
    7. Voss C V, Gruber C C, Kroutil W. Deracemization of secondary alcohols through a concurrent tandem biocatalytic oxidation and reduction [J]. Angewandte Chemie-International Edition English,2008,47(4):741-745.
    8. Kato D, Mitsuda S, Ohta H. Microbial deracemization of a-substituted carboxylic acids: Substrate specificity and mechanistic investigation [J]. Journal of Organic Chemistry, 2003,68(19):7234-7242.
    9. Kato D, Mitsuda S, Ohta H. Microbial deracemization of a-substituted carboxylic acids [J]. Organic Letters,2002,4(3):371-373.
    10. Wohlgemuth R. Asymmetric biocatalysis with microbial enzymes and cells [J]. Current Opinion in Microbiology,2010,13(3):283-292.
    11. Stecher H, Faber K. Biocatalytic deracemization techniques:Dynamic resolutions and stereoinversions [J]. Synthesis-Stuttgart,1997, (1):1-16.
    12. Carnell A J. Stereoinversions using microbial redox-reactions [J]. Advances in Biochemical Engineering Biotechnology,1999,63:57-72.
    13. Fessner W-D, Anthonsen T. Modern biocatalysis:Stereoselective and environmentally friendly reactions [M]. Weinheim:Wiley-VCH,2009.
    14. Liese A, Seelbach K, Wandrey C. Industrial biotransformations [M]. Weinheim:Wiley-VCH,2006.
    15. Tao J H, Lin G Q, Liese A. Biocatalysis for the pharmaceutical industry:discovery, development, and manufacturing [M]. Singapore:John Wiley & Sons (Asia) Pte Ltd., 2009.
    16. Tufvesson P, Fu W J, Jensen J S, et al. Process considerations for the scale-up and implementation of biocatalysis [J]. Food and Bioproducts Processing,2010,88(C1): 3-11.
    17. Burton S G, Cowan D A, Woodley J M. The search for the ideal biocatalyst [J]. Nature Biotechnology,2002,20(1):37-45.
    18. Leresche J E, Meyer H P. Chemocatalysis and biocatalysis (biotransformation):Some thoughts of a chemist and of a biotechnologist [J]. Organic Process Research & Development,2006,10(3):572-580.
    19. Goldberg K, Schroer K, Lutz S, et al. Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols-part II:whole-cell reductions [J]. Appllied Microbiology and Biotechnology,2007,76(2):249-255.
    20. Ishige T, Honda K, Shimizu S. Whole organism biocatalysis [J]. Current Opinion in Chemical Biology,2005,9(2):174-180.
    21.孙志浩主编.生物催化工艺学[M].北京:化学工业出版社,2004.
    22. Straathof A J J, Adlercreutz P. Applied Biocatalysis [M]. Newark:Harwood academic publishers,2000.
    23. Nakamura K, Matsuda T. Biocatalytic reduction of carbonyl groups [J]. Current Organic Chemistry,2006,10(11):1217-1246.
    24. Bommarius A S, Riebel B R. Practical methods for biocatalysis:Fundamentals and applications [M]. Weinheim:Wiley-VCH,2004.
    25. Lagos F M, Carballeira J D, Bermudez J L, et al. Highly stereoselective reduction of haloketones using three new yeasts:application to the synthesis of (S)-adrenergic β-blockers related to propranolol [J]. Tetrahedron:Asymmetry,2004,15(5):763-770.
    26. Xie Y, Xu J H, Xu Y. Isolation of a Bacillus strain producing ketone reductase with high substrate tolerance [J]. Bioresource Technology,2010,101(3):1054-1059.
    27. Shimizu S, Hattori S, Hata H, et al. One-step microbial conversion of a racemic-mixture of pantoyl lactone to optically-active D-(-)-pantoyl lactone [J]. Applied and Environmental Microbiology,1987,53(3):519-522.
    28. Xiao M T, Huang Y Y, Shi X A, et al. Bioreduction of phenylglyoxylic acid to R-(-)-mandelic acid by Saccharomyces cerevisiae FD11b [J]. Enzyme and Microbial Technology,2005,37(6):589-596.
    29. Carballeira J D, Quezada M A, Hoyos P, et al. Microbial cells as catalysts for stereoselective red-ox reactions [J]. Biotechnology Advances,2009,27(6):686-714.
    30. Erdelyi B, Szabo A, Seres G, et al. Stereoselective production of (S)-1-aralkyl-and 1-arylethanols by freshly harvested and lyophilized yeast cells [J]. Tetrahedron: Asymmetry,2006,17(2):268-274.
    31. Yu M A, Zhu X B, Qi W, et al. Biocatalytic synthesis of ethyl (S)(+)-3-hydroxybutanoate by CTAB-permeabilized baker's yeast cells [J]. Chinese Journal of Catalysis,2005,26(7):609-613.
    32. Nakamura K, Yamanaka R, Matsuda T, et al. Recent developments in asymmetric reduction of ketones with biocatalysts [J]. Tetrahedron:Asymmetry,2003,14(18): 2659-2681.
    33. Groger H, Chamouleau F, Orologas N, et al. Enantioselective reduction of ketones with "Designer cells" at high substrate concentrations:Highly efficient access to functionalized optically active alcohols [J]. Angewandte Chemie-International Edition, 2006,45(34):5677-5681.
    34. Simpson H D, Alphand V, Furstoss R. Microbiological transformations 49. Asymmetric biocatalysed Baeyer-Villiger oxidation:improvement using a recombinant Escherichia coli whole cell biocatalyst in the presence of an adsorbent resin [J]. Journal of Molecular Catalysis B:Enzymatic,2001,16(2):101-108.
    35.平丽英,柳志强,薛亚平,等.酶的分子定向进化及其应用[J].基因组学与应用生物学,2009,28(5):1020-1025.
    36. Allen S J, Holbrook J J. Production of an activated form of Bacillus stearothermophilus L-2-hydroxyacid dehydrogenase by directed evolution [J]. Protein Engineering,2000, 13(1):5-7.
    37. Matsuda T, Yamanaka R, Nakamura K. Recent progress in biocatalysis for asymmetric oxidation and reduction [J]. Tetrahedron:Asymmetry,2009,20(5):513-557.
    38. Whittall J, Sutton P. Practical methods for biocatalysis and biotransformation [M]. Wiltshire:John Wiley and Sons, Ltd.,2010.
    39. Fessner W-D. Biocatalysis:From discovery to application [M]. Heidelberg:Springer-Verlag,1999.
    40. Voss C V, Gruber C C, Kroutil W. Deracemisation of secondary alcohols via biocatalytic stereoinversion [J]. Synlett,2010, (7):991-998.
    41. Van der Donk W A, Zhao H M. Recent developments in pyridine nucleotide regeneration [J]. Current Opinion in Biotechnology,2003,14(4):421-426.
    42. Zhao H M, van der Donk W A. Regeneration of cofactors for use in biocatallysis [J]. Current Opinion in Biotechnology,2003,14(6):583-589.
    43. Chenault H K, Whitesides G M. Regeneration of nicotinamide cofactors for use in organic synthesis [J]. Applied Biochemistry and Biotechnology,1987,14(2):147-197.
    44. Moore J C, Pollard D J, Kosjek B, et al. Advances in the enzymatic reduction of ketones [J]. Accounts of Chemical Research,2007,40(12):1412-1419.
    45. Kroutil W, Mang H, Edegger K, et al. Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols [J]. Current Opinion in Chemical Biology,2004, 8(2):120-126.
    46. Wallner S R, Lavandera I, Mayer S F, et al. Stereoselective anti-Prelog reduction of ketones by whole cells of Comamonas testosteroni in a "substrate-coupled" approach [J]. Journal of Molecular Catalysis B:Enzymatic,2008,55(3-4):126-129.
    47. Hildebrandt P, Riermeier T, Altenbuchner J, et al. Efficient resolution of prostereogenic arylaliphatic ketones using a recombinant alcohol dehydrogenase from Pseudomonas fluorescens [J]. Tetrahedron:Asymmetry,2001,12(8):1207-1210.
    48. Kosjek B, Stampfer W, Pogorevc M, et al. Purification and characterization of a chemotolerant alcohol dehydrogenase applicable to coupled redox reactions [J]. Biotechnology and Bioengineering,2004,86(1):55-62.
    49. Bommarius A S, Schwarm M, Stingl K, et al. Synthesis and use of enantiomerically pure tert-leucine [J]. Tetrahedron:Asymmetry,1995,6(12):2851-2888.
    50. Slusarczyk H, Felber S, Kula M R, et al. Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues [J]. European Journal of Biochemistry,2000,267(5):1280-1289.
    51. Betancor L, Berne C, Luckarift H R, et al. Coimmobilization of a redox enzyme and a cofactor regeneration system [J]. Chemical Communications,2006, (34):3640-3642.
    52. Wong C H, Gordon J, Cooney C L, et al. Regeneration of NAD(P)H using glucose-6-sulfate and glucose-6-phosphate dehydrogenase [J]. The Journal of Organic Chemistry, 1981,46(23):4676-4679.
    53. Ishihara K, Higashi Y, Nakajima N, et al. Enzymatic production of (S)-1-acetoxy-2-alkanol with bakers' yeast cell-free extract in a membrane reactor [J]. Journal of Fermentation and Bioengineering,1996,81(3):266-268.
    54. Yang W, Xu J H, Pan J, et al. Efficient reduction of aromatic ketones with NADPH regeneration by using crude enzyme from Rhodotorula cells and mannitol as cosubstrate [J]. Biochemical Engineering Journal,2008,42(1):1-5.
    55. Straathof A J J, Panke S, Schmid A. The production of fine chemicals by biotransformations [J]. Current Opinion in Biotechnology,2002,13(6):548-556.
    56. Nanduri V B, Hanson R L, Goswami A, et al. Biochemical approaches to the synthesis of ethyl 5-(S)-hydroxyhexanoate and (S)-hydroxyhexanenitrile [J]. Enzyme and Microbial Technology,2001,28(7-8):632-636.
    57. Miya H, Kawada M, Sugiyama Y. Stereoselective reduction of ethyl 2-methyl-3-oxobutanoate by bacteria [J]. Bioscience Biotechnology and Biochemistry,1996,60(1): 95-98.
    58. Kaluzna I A, Matsuda T, Sewell A K, et al. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions [J]. Journal of the American Chemical Society,2004,126(40):12827-12832.
    59. Kim P Y, Pollard D J, Woodley J M. Substrate supply for effective biocatalysis [J]. Biotechnology Progress,2007,23(1):74-82.
    60. Katz M, Frejd T, Hahn-Hagerdal B, et al. Efficient anaerobic whole cell stereoselective bioreduction with recombinant Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering,2003,84(5):573-582.
    61. Woodley J M. Microbial biocatalytic processes and their development [J]. Advances in Applied Microbiology,2006,60:1-15.
    62. Woodley J M. Choice of biocatalyst form for scalable processes [J]. Biochemical Society Transactions,2006,34:301-303.
    63. Perles C E, Moran P J S, Volpe P L O. Bioreduction of ethyl 3-oxobutyrate by Saccharomyces cerevisiae:A metabolic in vivo study [J]. Journal of Molecular Catalysis B:Enzymatic,2008,52-53:82-87.
    64. Kratzer R, Egger S, Nidetzky B. Integration of enzyme, strain and reaction engineering to overcome limitations of baker's yeast in the asymmetric reduction of α-keto esters [J]. Biotechnology and Bioengineering,2008,101(5):1094-1101.
    65. Wimmer Z, Vanek T, Macek T, et al. Reduction of 2-substituted cyclohexanones by Saccharomyces cerevisiae under aerobic and anaerobic conditions [J]. Enzyme and Microbial Technology,1992,14(3):197-202.
    66. Hilker I, Gutierrez M C, Furstoss R, et al. Preparative scale Baeyer-Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process [J]. Nature Protocols,2008,3(3):546-554.
    67. Kizaki N, Yasohara Y, Hasegawa J, et al. Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes [J]. Applied Microbiology and Biotechnology,2001,55(5):590-595.
    68. Lou W Y, Chen L, Zhang B B, et al. Using a water-immiscible ionic liquid to improve asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one catalyzed by immobilized Candida parapsilosis CCTCC M203011 cells [J]. BMC Biotechnology,2009,9.
    69. Lye G J, Woodley J M. Application of in situ product-removal techniques to biocatalytic processes [J]. Trends in Biotechnology,1999,17(10):395-402.
    70. Stark D, von Stockar U. In situ product removal (ISPR) in whole cell biotechnology during the last twenty years [J]. Process integration in biochemical engineering,2003: 149-175.
    71. Wang Z L. The potential of cloud point system as a novel two-phase partitioning system for biotransformation [J]. Applied Microbiology and Biotechnology,2007,75(1):1-10.
    72. Li Y N, Shi X A, Zong M H, et al. Asymmetric reduction of 2-octanone in water/organic solvent biphasic system with baker's yeast FD-12 [J]. Enzyme and Microbial Technology, 2007,40(5):1305-1311.
    73. Hua D L, Ma C Q, Song L F, et al. Enhanced vanillin production from ferulic acid using adsorbent resin [J]. Applied Microbiology and Biotechnology,2007,74(4):783-790.
    74. Yang Z H, Zeng R, Chang X, et al. Toxicity of aromatic ketone to yeast cell and improvement of the asymmetric reduction of aromatic ketone catalyzed by yeast cell with the introduction of resin adsorption [J]. Food Technology and Biotechnology,2008, 46(3):322-327.
    75. Wang W, Zong M H, Lou W Y. Use of an ionic liquid to improve asymmetric reduction of 4'-methoxyacetophenone catalyzed by immobilized Rhodotorula sp. AS2.2241 cells [J]. Journal of Molecular Catalysis B:Enzymatic,2009,56(1):70-76.
    76. Wang Z L, Xu J H, Wang L, et al. Improvement the tolerance of baker's yeast to toxic substrate/product with cloud point system during the whole cell microbial transformation [J]. Enzyme and Microbial Technology,2007,41(3):296-301.
    77. Xu M W, Mu X Q, Xu Y. Enhancement of substrate concentration in microbial stereoinversion through one-pot oxidation and reduction by aqueous two-phase system [J]. Bioprocess and Biosystems Engineering,2010,33(3):367-373.
    78. Brown J M, Murrer B A. The mechanism of asymmetric hydrogenation:chiral bis(diphenylphosphino)-a-phenylalkan complexes in catalytic and structural studies [J]. Journal of the Chemical Society-Perkin Transactions 2,1982:489-497.
    79. Leborgne A, Spassky N, Sigwalt P. Preparation of optically active poly β-propiolactones [J]. Polymer Bulletin,1979,1(12):825-832.
    80. Kumar P, Upadhyay R K, Pandey R K. Asymmetric dihydroxylation route to (R)-isoprenaline, (R)-norfluoxetine and (R)-fluoxetine [J]. Tetrahedron:Asymmetry,2004, 15(24):3955-3959.
    81. Yamazaki N, Atobe M, Kibayashi C. Nucleophilic addition of methyllithium to chiral oxime ethers:asymmetric preparation of 1-(aryl)ethylamines and application to a synthesis of calcimimetics (+)-NPS R-568 and its thio analogue [J]. Tetrahedron Letters, 2001,42(30):5029-5032.
    82. Oda S, Kikuchi Y, Nanishi Y. Synthesis of optically-active mandelic acid via microbial oxidation of racemic 1-phenyl-1,2-ethanediol [J]. Bioscience Biotechnology and Biochemistry,1992,56(8):1216-1220.
    83. Groger H. Enzymatic routes to enantiomerically pure aromatic a-hydroxy carboxylic acids:A further example for the diversity of biocatalysis [J]. Advanced Synthesis & Catalysis,2001,343(6-7):547-558.
    84. Hasegawa J, Ogura M, Tsuda S, et al. High-yield production of optically active 1,2-diols from the corresponding racemates by microbial stereoinversion [J]. Agricultural and Biological Chemistry,1990,54(7):1819-1827.
    85. Nie Y, Xu Y, Mu X Q. Highly enantioselective conversion of racemic 1-phenyl-1,2-ethanediol by stereoinversion involving a novel cofactor-dependent oxidoreduction system of Candida parapsilosis CCTCC M203011 [J]. Organic Process Research & Development,2004,8(2):246-251.
    86. Mu X Q, Xu Y, Nie Y, et al. Candida parapsilosis CCTCC M203011 and the optimization of fermentation medium for stereoinversion of (S)-1-phenyl-1,2-ethanediol [J]. Process Biochemistry,2005,40(7):2345-2350.
    87. Nie Y, Xu Y, Lv T F, et al. Enhancement of Candida parapsilosis catalyzing deracemization of (R,S)-1-phenyl-1,2-ethanediol:agitation speed control during cell cultivation [J]. Journal of Chemical Technology and Biotechnology,2009,84(3): 468-472.
    88. Lv T F, Xu Y, Mu X Q, et al. Promotion effect of xylose co-substrate on stability of catalytic system for asymmetric redox of (R,S)-1-phenyl-1,2-ethanediol to its (S)-enantiomer by Candida parapsilosis [J]. Chinese Journal of Catalysis,2007,28(5): 446-450.
    89. Nie Y, Xu Y, Yang M, et al. A novel NADH-dependent carbonyl reductase with unusual stereoselectivity for (R)-specific reduction from an (S)-1-phenyl-1,2-ethanediol -producing microorganism:purification and characterization [J]. Letters in Applied Microbiology,2007,44(5):555-562.
    90. Nie Y, Xu Y, Mu X Q, et al. Purification, characterization, gene cloning, and expression of a novel alcohol dehydrogenase with anti-Prelog stereospecificity from Candida parapsilosis [J]. Applied and Environmental Microbiology,2007,73(11):3759-3764.
    91. Mu X Q, Xu Y, Yang M, et al. Steady-state kinetics of the oxidation of (S)-1-phenyl-.l,2-ethanediol catalyzed by alcohol dehydrogenase from Candida parapsilosis CCTCC M203011 [J]. Journal of Molecular Catalysis B:Enzymatic,2006,43(1-4):23-28.
    92. Mu X Q, Xu Y, Yang M, et al. New kinetic and thermodynamic approach of one-pot synthesis of chiral alcohol by oxidoreductase from Candida parapsilosis [J]. Process Biochemistry, DOI:10.1016/j.procbio.2010.08.012.
    93. Zhang R Z, Xu Y, Sun Y, et al. Construction of an enzyme-coupled system consisting of (R)-and (S)-specific carbonyl reductases for one-step preparation of (S)-1-phenyl-1,2-ethanediol [J]. Acta Microbiologica Sinica,2009,49(2):204-209.
    94. Zhang R Z, Xu Y, Sun Y, et al. Crystallization and preliminary X-ray crystallographic analysis of a carbonyl reductase from Candida parapsilosis [J]. Acta Crystallographica Section F-Structural Biology and Crystallization Communications,2008,64:252-254.
    95. Zhang R Z, Zhu G Y, Zhang W C, et al. Crystal structure of a carbonyl reductase from Candida parapsilosis with anti-Prelog stereospecificity [J]. Protein Science,2008,17(8): 1412-1423.
    96. Ridley D D, Stralow M. Stereospecific asymmetric reduction of functionalized ketones [J]. Journal of the Chemical Society-Chemical Communications,1975, (10):400-400.
    97. Manzocchi A, Fiecchi A, Santaniello E. Stereochemical control of bakers-yeast mediated reduction of a protected 2-hydroxy ketone [J]. Journal of Organic Chemistry,1988, 53(18):4405-4407.
    98. Sun Y, Zhang R Z, Xu Y. Co-expression of formate dehydrogenase from Candida boidinii and (R)-specific carbonyl reductase from Candida parapsilosis CCTCC M203011 in Escherichia coli [J]. Acta Microbiologica Sinica,2008,48(12):1629-1633.
    99. Zhang R Z, Xu Y, Geng Y W, et al. Improved production of (R)-1-phenyl-1,2-ethanediol by a codon-optimized R-specific carbonyl reductase from Candida parapsilosis in Escherichia coli [J]. Applied Biochemistry and Biotechnology,2010,160(3):868-878.
    100. Nie Y, Xu Y, Wang H Y, et al. Complementary selectivity to (S)-1-phenyl-1,2-ethanediol-forming Candida parapsilosis by expressing its carbonyl reductase in Escherichia coli for (R)-specific reduction of 2-hydroxyacetophenone [J]. Biocatalysis and Biotransformation,2008,26(3):210-219.
    101. Wang S S, Zhang R Z, Geng Y W, et al. Improved expression and catalytic efficiency of (R)-carbonyl reductase in Escherichia coli by secondary structure optimization of mRNA translation initiation region [J]. Chinese Journal of Biotechnology,2009,25(12):1907-1913.
    102. Wei Z L, Li Z Y, Lin G Q. Anti-Prelog microbial reduction of aryl a-halomethyl or α-hydroxymethyl ketones with Geotrichum sp.38 [J]. Tetrahedron,1998,54(43):13059-13072.
    103. Wei Z L, Lin G Q, Li Z Y. Microbial transformati on of 2-hydroxy and 2-acetoxy ketones with Geotrichum sp. [J]. Bioorganic & Medicinal Chemistry,2000,8(5):1129-1137.
    104. Tsujigami T, Sugai T, Ohta H. Microbial asymmetric reduction of α-hydroxyketones in the anti-Prelog selectivity [J]. Tetrahedron:Asymmetry,2001,12(18):2543-2549.
    105. Geng Y W, Zhang R Z, Wang S S, et al. Gene cloning and expression of a novel (S)-specific carbonyl reductase [J]. Acta Microbiologica Sinica,2010,50(1):60-66.
    106. Walton A Z, Stewart J D. Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells [J]. Biotechnology Progress,2004,20(2):403-411.
    107. Oda S, Kikuchi Y, Nanishi Y. Synthesis of optically active mandelic acid via microbial oxidation of racemic 1-phenyl-1,2-ethanediol [J]. Bioscience Biotechnology and Biochemistry,1992,56(8):1216-1220.
    108. Griffin D R, Gainer J L, Carta G. Asymmetric ketone reduction with immobilized yeast in hexane:Biocatalyst deactivation and regeneration [J]. Biotechnology Progress,2001, 17(2):304-310.
    109. Kurbanoglu E B, Zilbeyaz K, Ozdal M, et al. Asymmetric reduction of substituted acetophenones using once Rhodotorula glutinis cells immobilized [J]. Bioresource Technology,2010,101(11):3825-3829.
    110. Nakamura K, Fujii M, Ida Y. Stereoinversion of arylethanols by Geotrichum candidum [J]. Tetrahedron:Asymmetry,2001,12(22):3147-3153.
    111. Cardus G J, Carnell A J, Trauthwein H, et al. Microbial deracemisation of N-(1-hydroxy-1-phenylethyl)benzamide [J]. Tetrahedron:Asymmetry,2004,15(2):239-243.
    112. Hilker I, Gutierrez M C, Alphand V, et al. Microbiolooical transformations 57. Facile and efficient resin-based in situ SFPR preparative-scale synthesis of an enantiopure "unexpected" lactone regioisomer via a Baeyer-Villiger oxidation process [J]. Organic Letters,2004,6(12):1955-1958.
    113. Zambianchi F, Raimondi S, Pasta P, et al. Comparison of cyclohexanone monooxygenase as an isolated enzyme and whole cell biocatalyst for the enantio selective oxidation of 1,3-dithiane [J]. Journal of Molecular Catalysis B:Enzymatic,2004,31(4-6):165-171.
    114. Conceicao G J A, Moran P J S, Rodrigues J A R. Highly efficient extractive biocatalysis in the asymmetric reduction of an acyclic enone by the yeast Pichia stipitis [J]. Tetrahedron:Asymmetry,2003,14(1):43-45.
    115. Vicenzi J T, Zmijewski M J, Reinhard M R, et al. Large-scale stereoselective enzymatic ketone reduction with in situ product removal via polymeric adsorbent resins [J]. Enzyme and Microbial Technology,1997,20(7):494-499.
    116. Mei J F, Min H, Lv Z M. Enhanced biotransformation of 1-phenylalanine to 2-phenylethanol using an in situ product adsorption technique [J]. Process Biochemistry, 2009,44(8):886-890.
    117. Roy A, Bhattacharyya M S, Kumar L R, et al. Microbial reduction of 1-acetonapthone:a highly efficient process for multigram synthesis of S(-)-1-(1'-napthyl) ethanol [J]. Enzyme and Microbial Technology,2003,33(5):576-580.
    118. Houng J Y, Liau J S. Applying slow-release biocatalysis to the asymmetric reduction of ethyl 4-chloroacetoacetate [J]. Biotechnology Letters,2003,25(1):17-21.
    119. Hilker I, Alphand V, Wohlgemuth R, et al. Microbial transformations,56. Preparative scale asymmetric Baeyer-Villiger oxidation using a highly productive "two-in-One" resin-based in situ SFPR concept [J]. Advanced Synthesis & Catalysis,2004,346(2-3): 203-214.
    120. Kataoka M, Nomura Y, Shimizu S, et al. Enzymes involved in the NADPH regeneration system coupled with asymmetric reduction of carbonyl-compounds in microorganisms [J]. Bioscience Biotechnology and Biochemistry,1992,56(5):820-821.
    121. Schmid A, Dordick J S, Hauer B, et al. Industrial biocatalysis today and tomorrow [J]. Nature,2001,409(6817):258-268.
    122. Hata H, Shimizu S, Yamada H. Enzymatic production of D-(-)-pantoyl lactone from ketopantoyl lactone [J]. Agricultural and Biological Chemistry,1987,51(11):3011-3016.
    123. Lee K, Gibson D T. Stereospecific dihydroxylation of the styrene vinyl group by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 [J]. Journal of Bacteriology,1996,178(11):3353-3356.
    124. Janssen A J M, Klunder A J H, Zwanenburg B. PPL-catalyzed resolution of 1,2-and 1,3-diols in methyl propionate as solvent. An application of the tandem use of enzymes [J]. Tetrahedron,1991,47(35):7409-7416.
    125. Cao L, Lee J T, Chen W, et al. Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum and an evolved Agrobacterium radiobacter AD1 epoxide hydrolases [J]. Biotechnology and Bioengineering,2006,94(3):522-529.
    126. Hwang S, Choi C Y, Lee E Y. One-pot biotransformation of racemic styrene oxide into (R)-1,2-phenylethandiol by two recombinant microbial epoxide hydrolases [J]. Biotechnology and Bioprocess Engineering,2008,13(4):453-457.
    127. Kim H S, Lee O K, Hwang S, et al. Biosynthesis of (R)-phenyl-1,2-ethanediol from racemic styrene oxide by using bacterial and marine fish epoxide hydrolases [J]. Biotechnology Letters,2008,30:127-133.
    128. Lee O K, Kim H S. Optimization of the reaction conditions for (R)-phenyl-1,2-ethanediol preparation by recombinant epoxide hydrolase from Caulobacter crescentus [J]. Korean Journal of Microbiology and Biotechnology,2007,35(4):285-291.
    129. Pollard D J, Woodley J M. Biocatalysis for pharmaceutical intermediates:the future is now [J]. Trends in Biotechnology,2007,25(2):66-73.
    130. Schoemaker H E, Mink D, Wubbolts M G. Dispelling the myths-Biocatalysis in industrial synthesis [J]. Science,2003,299(5613):1694-1697.
    131. Patel R N. Stereoselective biocatalysis [M]. New York:CRC Press,2000.
    132. Bosetti A, Bianchi D, Cesti P, et al. Enzymatic resolution of 1,2-diols:comparison between hydrolysis and transesterification reactions [J]. Journal of the Chemical Society-Perkin Transactions 1,1992, (18):2395-2398.
    133. Woodley J M, Bisschops M, Straathof A J J, et al. Future directions for in situ product removal (ISPR) [J]. Journal of Chemical Technology and Biotechnology,2008,83(2): 121-123.
    134.聂尧.微生物立体选择性转化(S)-苯基乙二醇的研究[D]:硕士学位论文.无锡:江南大学,2003.
    135.任艳秋.近平滑假丝酵母生物立体选择性转化制备(S)-苯基乙二醇的研究[D]:硕士学位论文.无锡:江南大学,2005.
    136.许娜.近平滑假丝酵母(Candida parapsilosis)(R)-专一性羰基还原酶基因的克隆与表达[D]:硕士学位论文.无锡:江南大学,2006.
    137.羊明.近平滑假丝酵母(Candida parapsilosis)立体选择性氧化还原酶酶学性质的研究[D]:硕士学位论文.无锡:江南大学,2006.
    138.聂尧.近平滑假丝酵母立体选择性氧化还原酶基因克隆与表达及其催化特性的研究[D]:博士学位论文.无锡:江南大学,2007.
    139.吕腾飞.提高近平滑假丝酵母整细胞不对称氧化还原制备(S)-苯基乙二醇催化活性及稳定性研究[D]:硕士学位论文.无锡:江南大学,2007.
    140.孙莹.(R)-羟基苯乙酮还原酶与甲酸脱氢酶基因在大肠杆菌中的共表达[D]:硕士学位论文.无锡:江南大学,2008.
    141.张荣珍.近平滑假丝酵母立体选择性还原酶表达、结构解析与改造[D]:博士学位论文.无锡:江南大学,2009.
    142.许敏伟.近平滑假丝酵母(Candida parapsilosis)立体异构生产(S)-PED的反应介质及中试放大的研究[D]:硕士学位论文.无锡:江南大学,2009.
    143. Azerad R, Buisson D. Dynamic resolution and stereoinversion of secondary alcohols by chemo-enzymatic processes [J]. Current Opinion in Biotechnology,2000,11(6):565-571.
    144. Strauss U T, Felfer U, Faber K. Biocatalytic transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomeric excess [J]. Tetrahedron: Asymmetry,1999,10(1):107-117.
    145. Zhang Z Q, Yu J, Stanton R C. A method for determination of pyridine nucleotides using a single extract [J]. Analytical Biochemistry,2000,285(1):163-167.
    146. Sengupta S, Jana M L, Sengupta D, et al. A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent [J]. Applied Microbiology and Biotechnology,2000,53(6):732-735.
    147.Jiang Q, Yao S J, Mei L H. Tolerance of immobilized baker's yeast in organic solvents [J]. Enzyme and Microbial Technology,2002,30(6):721-725.
    148. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976,72(1-2):248-254.
    149. Eliel E L, Wilen S H, Mander L N. Stereochemistry of organic compounds [M]. New York:John-Wiley & Sons, Inc.,1994.
    150. Polizzi K M, Bommarius A S, Broering J M, et al. Stability of biocatalysts [J]. Current Opinion in Chemical Biology,2007,11(2):220-225.
    151. Straathof A J J. Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product [J]. Biotechnology Progress,2003,19(3):755-762.
    152. Chin-Joe I, Straathof A J J, Pronk J T, et al. Influence of the ethanol and glucose supply rate on the rate and enantioselectivity of 3-oxo ester reduction by baker's yeast [J]. Biotechnology and Bioengineering,2001,75(1):29-38.
    153. Zhang B L, Pionnier S. Cofactor recycling mechanism in asymmetric biocatalytic reduction of carbonyl compounds mediated by yeast:Which is the efficient electron donor [J]. Chemistry-A European Journal,2003,9(15):3604-3610.
    154. Park J B, Buehler B, Habicher T, et al. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation [J]. Biotechnology and Bioengineering,2006, 95(3):501-512.
    155. Rogers R S, Hackman J R, Mercer V, et al. Acetophenone tolerance, chemical adaptation, and residual bioreductive capacity of non-fermenting baker's yeast (Saccharomyces cerevisiae) during sequential reactor cycles [J]. Journal of Industrial Microbiology and Biotechnology,1999,22(2):108-114.
    156. Longbottom C J, Carson C F, Hammer K A, et al. Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes [J]. Journal of Antimicrobial Chemotherapy,2004,54(2): 386-392.
    157. Bucciarelli M, Forni A, Moretti I, et al. Asymmetric reduction of trifluoromethyl and methyl ketones by yeast:an improved method [J]. Synthesis-Stuttgart,1983, (11):897-898.
    158. Kometani T, Kitatsuji E, Matsuno R. Baker's yeast mediated bioreduction:practical procedure using EtOH as energy source [J]. Journal of Fermentation and Bioengineering, 1991,71(3):197-199.
    159. Buhler B, Park J B, Blank L M, et al. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain [J]. Applied and Environmental Microbiology,2008,74(5):1436-1446.
    160. Xu Y, Xu J H, Pan J, et al. Biocatalytic resolution of glycidyl aryl ethers by Trichosporon loubierii:cell/substrate ratio influences the optical purity of (R)-epoxides [J]. Biotechnology Letters,2004,26(15):1217-1221.
    161. Schugerl K, Hubbuch J. Integrated bioprocesses [J]. Current Opinion in Microbiology, 2005,8(3):294-300.
    162. Freeman A, Woodley J M, Lilly M D. In situ product removal as a tool for bioprocessing [J]. Nature Biotechnology,1993,11(9):1007-1012.
    163. Ni Y, Xu Y, Yang W, et al. Promoting effect of resin adsorption on asymmetric reduction of acetophenone catalyzed by Rhodotorula sp. cells [J]. Chinese Journal of Organic Chemistry,2008,28(12):2137-2141.
    164. Simpson H D, Alphand V, Furstoss R. Microbiological transformations:49. Asymmetric biocatalysed Baeyer-Villiger oxidation:improvement using a recombinant Escherichia coli whole cell biocatalyst in the presence of an adsorbent resin [J]. Journal of Molecular Catalysis B:Enzymatic,2001,16(2):101-108.
    165. Xiao M T, Ye J, Zhang Y W, et al. Reaction characteristics of asymmetric synthesis of (2S,5S)-2,5-hexanediol catalyzed with baker's yeast number 6 [J]. Chinese Journal of Chemical Engineering,2009,17(3):493-499.
    166. Yeates C A, Smit M S, Botes A L, et al. Optimisation of the biocatalytic resolution of styrene oxide by whole cells of Rhodotorula glutinis [J]. Enzyme and Microbial Technology,2007,40(2):221-227.
    167. Katz M, Sarvary I, Frejd T, et al. An improved stereoselective reduction of a bicyclic diketone by Saccharomyces cerevisiae combining process optimization and strain engineering [J]. Applied Microbiology and Biotechnology,2002,59(6):641-648.
    168. Demir A S, Hamamci H, Sesenoglu O, et al. Fungal deracemization of benzoin [J]. Tetrahedron Letters,2002,43(36):6447-6449.
    169. Gamenara D, de Maria P D. Candida spp. redox machineries:An ample biocatalytic platform for practical applications and academic insights [J]. Biotechnology Advances, 2009,27(3):278-285.
    170. Geng Y W, Zhang R Z, Wang S S, et al. Gene cloning and expression of a novel (S)-specific carbonyl reductase [J]. Acta Microbiologica Sinica,2010,50(1):60-66.
    171. Nakamura K, Kawai Y, Nakajima N, et al. Stereochemical control of microbial reduction. 17. A method for controlling the enantioselectivity of reductions with bakers' yeast [J]. Journal of Organic Chemistry,1991,56(15):4778-4783.
    172. Phillips R S. Temperature modulation of the stereochemistry of enzymatic catalysis: Prospects for exploitation [J]. Trends in Biotechnology,1996,14(1):13-16.
    173. Hilker I, Wohlgemuth R, Alphand V, et al. Microbial transformations 59:First kilogram scale asymmetric microbial Baeyer-Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy [J]. Biotechnology and Bioengineering,2005,92(6): 702-710.
    174. Hilker I, Baldwin C, Alphand W, et al. On the influence of oxygen and cell concentration in an SFPR whole cell biocatalytic Baeyer-Villiger oxidation process [J]. Biotechnology and Bioengineering,2006,93(6):1138-1144.
    175. He J Y, Sun Z H, Ruan W Q, et al. Biocatalytic synthesis of ethyl (S)-4-chloro-3-hydroxy-butanoate in an aqueous-organic solvent biphasic system using Aureobasidium pullulans CGMCC 1244 [J]. Process Biochemistry,2006,41(1):244-249.
    176. Kurbanoglu E B, Taskin M, Zilbeyaz K, et al. Production of (R)-3'-fluorophenylethan-1-ol by Trichothecium roseum isolate in a laboratory scale bioreactor [J]. Journal of Chemical Technology and Biotechnology,2009,84(10):1474-1479.
    177. Baldwin C V F, Wohlgemuth R, Woodley J M. The first 200-L scale asymmetric Baeyer-Villiger oxidation using a whole-cell biocatalyst [J]. Organic Process Research & Development,2008,12(4):660-665.
    178. Garikipati S, McIver A M, Peeples T L. Whole-cell biocatalysis for 1-naphthol production in liquid-liquid biphasic systems [J]. Applied and Environmental Microbiology,2009,75(20):6545-6552.
    179. Liese A, Karutz M, Kamphuis J, et al. Enzymatic resolution of 1-phenyl-1,2-ethanediol by enantioselective oxidation:Overcoming product inhibition by continuous extraction [J]. Biotechnology and Bioengineering,1996,51(5):544-550.
    180. Zhao L Q, Sun Z H, Zheng P, et al. Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8 [J]. Process Biochemistry,2006,41(7):1673-1676.
    181. Schroer K, Zelic B, Oldiges M, et al. Metabolomics for Biotransformations:Intracellular redox cofactor analysis and enzyme kinetics offer insight into whole cell processes [J]. Biotechnology and Bioengineering,2009,104(2):251-260.
    182. Hu R F, Lin L, Liu T J, et al. Reducing sugar content in hemicellulose hydrolysate by DNS method:A revisit [J]. Journal of Biobased Materials and Bioenergy,2008,2(2): 156-161.
    183. Eliasson A, Christensson C, Wahlbom C F, et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKSl in mineral medium chemostat cultures [J]. Applied and Environmental Microbiology,2000,66(8): 3381-3386.
    184. Zhi L F, Jiang Y C, Wang Y S, et al. Effects of additives on the thermostability of chloroperoxidase [J]. Biotechnology Progress,2007,23(3):729-733.
    185. Timasheff S N. The control of protein stability and association by weak interactions with water:how do solvents affect these processes [J]. Annual Review of Biophysics and Biomolecular Structure,1993,22:67-97.
    186. Elbein A D, Pan Y T, Pastuszak I, et al. New insights on trehalose:a multifunctional molecule [J]. Glycobiology,2003,13(4):17-27.
    187. Walton A Z, Stewart J D. An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions [J]. Biotechnology Progress,2002, 18(2):262-268.
    188. Chin-Joe I, Nelisse P M, Straathof A J J, et al. Hydrolytic activity in baker's yeast limits the yield of asymmetric 3-oxo ester reduction [J]. Biotechnology and Bioengineering, 2000,69(4):370-376.
    189. Jeffries T W. Engineering yeasts for xylose metabolism [J]. Current Opinion in Biotechnology,2006,17(3):320-326.
    190. Granstrom T B, Izumori K, Leisola M. A rare sugar xylitol. Part I:the biochemistry and biosynthesis of xylitol [J]. Applied Microbiology and Biotechnology,2007,74(2): 277-281.
    191. Gupte S A, Okada T, McMurtry I F, et al. Role of pentose phosphate pathway-derived NADPH in hypoxic pulmonary vasoconstriction [J]. Pulmonary Pharmacology & Therapeutics,2006,19(4):303-309.
    192. Bruinenberg P M. The NA DP(H) redox couple in yeast metabolism [J]. Antonie Van Leeuwenhoek Journal of Microbiology,1986,52(5):411-429.
    193. Pitkanen J P, Aristidou A, Salusjarvi L, et al. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture [J]. Metabolic Engineering,2003,5(1):16-31.
    194. Oh Y J, Lee T H, Lee S H, et al. Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae [J]. Journal of Molecular Catalysis B:Enzymatic,2007,47(1-2):37-42.
    195.蒋群.有机相微生物活细胞催化羰基还原反应的研究[D]:博士学位论文.杭州:浙江大学,2002.
    196. Prak D J L, O'Sullivan D W. Solubility of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene in seawater [J]. Journal of Chemical and Engineering Data,2006,51(2):448-450.
    197. Ou Z M, Wu J P, Yang L R, et al. Asymmetric reduction of chloroacetophenones to produce chiral alcohols with microorganisms [J]. Korean Journal of Chemical Engineering,2008,25(1):124-128.
    198. Slavik J, Kotyk A. Intracellular pH distribution and transmembrane pH profile of yeast cells [J]. Biochimica Et Biophysica Acta,1984,766(3):679-684.
    199. Amidjojo M, Franco-Lara E, Nowak A, et al. Asymmetric synthesis of tert-butyl (3R,5S) 6-chloro-dihydroxyhexanoate with Lactobacillus kefir [J]. Applied Microbiology and Biotechnology,2005,69(1):9-15.
    200. Kotwal S M, Shankar V. Immobilized invertase [J]. Biotechnology Advances,2009, 27(4):311-322.
    201. Zhang W, Ni Y, Sun Z H, et al. Biocatalytic synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate with Candida krusei SW2026:A practical process for high enantiopurity and product titer [J]. Process Biochemistry,2009,44(11):1270-1275.
    202. Lee D C, Kim H S. Optimization of a heterogeneous reaction system for the production of optically active D-amino acids using thermostable D-hydantoinase [J]. Biotechnology and Bioengineering,1998,60(6):729-738.
    203.张荣珍,徐岩,耿亚维,等.羰基还原酶与甲酸脱氢酶偶联催化制备(R)-苯基乙二醇[J].过程工程学报,2009,9(4):801-805.
    204. Leon R, Fernandes P, Pinheiro H M, et al. Whole-cell biocatalysis in organic media [J]. Enzyme and Microbial Technology,1998,23(7-8):483-500.
    205. Laane C, Boeren S, Vos K, et al. Rules for optimization of biocatalysis in organic solvents [J]. Biotechnology and Bioengineering,1987,30(1):81-87.
    206. Villela M, Stillger T, Muller M, et al. Is log P a convenient criterion to guide the choice of solvents for biphasic enzymatic reactions [J]. Angewandte Chemie-International Edition,2003,42(26):2993-2996.
    207. Bie S T, Lu F P, Du L X, et al. Effect of phase composition on the bioconversion of methyltestosterone in a biphasic system [J]. Journal of Molecular Catalysis B:Enzymatic, 2008,55(1-2):1-5.
    208. Allan G R, Carnell A J. Microbial deracemization of 1-aryl and 1-heteroaryl secondary alcohols [J]. Journal of Organic Chemistry,2001,66(19):6495-6497.
    209. Comasseto J V, Omori A T, Andrade L H, et al. Bioreduction of fluoroacetophenones by the fungi Aspergillus terreus and Rhizopus oryzae [J]. Tetrahedron:Asymmetry,2003, 14(6):711-715.
    210. Comasseto J V, Andrade L H, Omori A T, et al. Deracernization of aryl ethanols and reduction of acetophenones by whole fungal cells of Aspergillus terreus CCT 4083, A. terreus CCT 3320 and Rhizopus oryzae CCT 4964 [J]. Journal of Molecular Catalysis B: Enzymatic,2004,29(1-6):55-61.
    211. Nakamura K, Inoue Y, Matsuda T, et al. Microbial deracemization of 1-arylethanol [J]. Tetrahedron Letters,1995,36(35):6263-6266.
    212. Andrade L H, Utsunomiya R S, Omori A T, et al. Edible catalysts for clean chemical reactions:Bioreduction of aromatic ketones and biooxidation of secondary alcohols using plants [J]. Journal of Molecular Catalysis B:Enzymatic,2006,38(2):84-90.
    213. Takemoto M, Achiwa K. The synthesis of optically active pyridyl alcohols from the corresponding racemates by Catharanthus roseus cell cultures [J]. Tetrahedron: Asymmetry,1995,6(12):2925-2928.
    214. Takemoto M, Yamamoto Y, Achiwa K. Synthesis of optically active α-(p-chlorophenyl) pyridylmethanols with plant cell cultures [J]. Chemical & Pharmaceutical Bulletin,1998, 46(3):419-422.
    215. Xie S X, Ogawa J, Shimizu S. Production of (R)-3-pentyn-2-ol through stereoinversion of racemic 3-pentyn-2-ol by Nocardia fusca AKU 2123 [J]. Applied Microbiology and Biotechnology,1999,52(3):327-331.
    216. Goswami A, Mirfakhrae K D, Patel R N. Deracemization of racemic 1,2-diol by biocatalytic stereoinversion [J]. Tetrahedron:Asymmetry,1999,10(21):4239-4244.
    217. Yamada-Onodera K, Norimoto A, Kawada N, et al. Production of optically active 1,2,4-butanetriol from corresponding racemate by microbial stereoinversion [J]. Journal of Bioscience and Bioengineering,2007,103(5):494-496.
    218. Chadha A, Baskar B. Biocatalytic deracemisation of a-hydroxy esters:high yield preparation of (S)-ethyl 2-hydroxy-4-phenylbutanoate from the racemate [J]. Tetrahedron: Asymmetry,2002,13(14):1461-1464.
    219. Padhi S K, Chadha A. Deracemisation of aromatic β-hydroxy esters using immobilised whole cells of Candida parapsilosis ATCC 7330 and determination of absolute configuration by 1HNMR [J]. Tetrahedron:Asymmetry,2005,16(16):2790-2798.
    220. Baskar B, Pandian N G, Priya K, et al. Deracemisation of aryl substituted a-hydroxy esters using Candida parapsilosis ATCC 7330:effect of substrate structure and mechanism [J]. Tetrahedron,2005,61(52):12296-12306.
    221. Padhi S K, Pandian N G, Chadha A. Microbial deracemisation of aromatic β-hydroxy acid esters [J]. Journal of Molecular Catalysis B:Enzymatic,2004,29(1-6):25-29.