中国大豆主产区大面积种植品种性状演变规律研究及优异等位变异发掘
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北地区和黄淮海流域是我国两大大豆主产区,总产量占全国的3/4以上,迄今育成大豆品种的数量有1000多个,而得到大面积种植的只有100多个,约占10%。本研究于2009、2010和2011年在东北和黄淮海地区选择12个地点种植该区域自20世纪40年代以来大面积种植的89个大豆品种,调查产量构成因子、植株形态性状和生育期等重要性状,测定籽粒品质性状,主要包括粗蛋白、粗脂肪、5种脂肪酸、碳水化合物、维生素E、磷脂、微量元素、类胡萝卜素及异黄酮、皂苷、凝集素和包曼-伯克胰蛋白酶抑制因子等品质成分,对其中的63个品种进行了光、温敏感度鉴定。此外,利用品种的系谱关系,对113份大面积种植品种的祖先亲本进行了分析;选择与产量、株高、生育期及品质等性状相关的SSR标记,对89个品种进行了遗传多样性分析,并结合表型数据进行了关联分析。主要试验结果如下:
     1.农艺性状的演变趋势
     东北和黄淮海地区品种性状演变的整体趋势是:随育成年代推进,大豆品种的生育前期缩短、后期延长,株高降低,有效分枝数减少,抗倒伏能力显著增强,主茎节间缩短,产量显著升高。其中,黑龙江北部品种产量的提高主要依靠单株荚数和粒数增加;黑龙江中南部品种主要依靠荚粒数增多,荚数和百粒重变化不大;吉林-辽宁地区品种主要依靠百粒重的提高,单株荚数和粒数变化很小;黄淮海地区品种依靠百粒重的提高,而单株荚数和粒数随年代推进显著减少。在4个地区中,吉林-辽宁地区大面积种植品种的性状变化最小。
     2.品质性状的演变趋势
     供试品种粗蛋白和总异黄酮含量从北到南递增,东北地区品种的粗脂肪、总维生素E、总类胡萝卜素含量明显高于黄淮海地区品种。黑龙江北部品种亚油酸、亚麻酸、粗淀粉、低聚糖、总异黄酮和凝集素的含量随品种育成年代推进显著增加;黑龙江中南部品种亚油酸、棕榈酸和总异黄酮的含量随品种育成年代推进显著增加;吉林-辽宁地区品种粗淀粉含量随品种育成年代推进显著升高;黄淮海地区品种的油酸、硬脂酸和凝集素的含量随品种育成年代推进显著增加。其他品质性状变化较小。
     3.光温反应性状的演变趋势
     黑龙江北部和黄淮海地区品种在春播和夏播条件下的PS(光周期敏感度)随育成年度推进显著下降,黑龙江中南部品种在夏播条件下的PS显著降低;黑龙江中南部和黄淮海地区品种在短日条件下的TS(温度敏感度)显著下降,而在长日照条件下,黄淮海地区品种TS显著上升;黄淮海地区品种ΔPS(不同温度下的光周期敏感度)、ΔTS(不同光照下的温度敏感度)和PTCS(光温综合敏感度)显著下降。上述地区大面积种植品种的PS、TS及PTCS表现出随纬度降低逐渐增大的趋势,而ΔPS和ΔTS则随着纬度的降低逐渐减小。
     4.大面积种植品种的系谱分析
     通过系谱分析,归纳出大面积种植品种的直接亲本和祖先亲本。结果表明,大面积种植品种比普通品种拥有更多的祖先亲本;新近育成的品种比早期品种拥有更多的祖先亲本;黄淮海流域品种比东北地区品种拥有更多的祖先亲本。作者提出,以大面积种植品种作为“平台亲本”培育的新品种更容易在生产上种植应用,更有希望成为新的大面积种植品种。
     5.大面积种植品种的遗传多样性分析
     利用与大豆产量、品质、抗逆性、适应性等重要性状相关的125对SSR引物对89个大豆品种进行遗传多样性分析。结果表明,自北向南品种SSR标记的多态性呈逐渐升高的趋势,黑龙江北部、黑龙江中南部、吉林-辽宁地区和黄淮海地区品种SSR标记的多态性信息含量(PIC)依次为0.414、0.469、0.522和0.562。除黑龙江北部外,其余3个地区20世纪80年代以来大面积种植品种的多态性信息含量均比80年代以前种植的品种高。根据Nei和Li提出的遗传相似系数对供试品种进行聚类分析,发现除黄淮海北部地区的冀豆12外,东北和黄淮海地区品种各自聚成一类,而在东北地区品种中,黑龙江和吉林-辽宁地区的品种归属不同的亚类。
     6.大面积种植品种优异等位变异发掘
     在本研究检测的SSR位点中,共有141个位点(次)的变异与24个性状的变异关联,其中有39个位点(次)的变异与产量、荚数、粒数和百粒重等6个产量性状的变异关联,有19个位点的变异与株高、抗倒伏性等形态性状和成熟期等发育性状的变异关联,有82个位点(次)的变异与粗蛋白、脂肪酸、低聚糖、类胡萝卜素、胰蛋白酶抑制因子(BBI)、凝集素和总异黄酮含量等品质性状的变异关联。分析标记对性状的表型解释率、增效最大位点和减效最大位点及其典型载体材料,发现表型值大的品种含有更多的增效等位位点,表型值小的品种含有更多的减效等位位点。
The Northeast and Yellow-Huai-Hai Rivers Valley are the top two soybean growing regions inChina. The annual soybean production in the above two regions occupied above three quarters of thetotal output in China. Although over1000soybean varieties were released in the two regions in thepast century, only approximate10percent of these varieties were widely planted. To identify the yieldrelated charcters, plant morphological and growth period traits,89soybean varieties released since1940s were grown in12sites located in Northeast and Yellow-Huai-Hai Rivers Valley during theyears of2009,2010and2011, respectively. In addition,63varieties were selected to evaluate thephoto-thermal responses, and125SSR markers related with yield, plant height, growth period, andquality were selected to identify genetic diversity of89soybean varieties. Furthermore, to combinedata mentioned about with related phenotype data, association mapping were operated to search forthe elite alleles in these varieties. The main results are as follows:
     1. Agronomic traits evolution of widely-planted varieties originated from different regions anddecades.
     The overall trait evolution trends of varieties were summarized as: the days to flowering shortedand the days from flowering to maturity prolonged; the plant height and branche number per plantdeclined; lodging resistance enhanced and yield increased. The yield increasement of varieties fromthe northern Heilongjiang was due to increased numbers of pods and seeds per plant, while that ofvarieties from the middle and south parts of Heilongjiang attributed to increased seed numbers perpod, however, the pod number per plant and100-seed weight changed a little. The yield enhancementof varieties from Jilin-Liaoning province was the result of increased100-seed weight; and that ofvarieties from Yellow-Huai-Hai Rivers Valley was also associated with100-seed weight increament,while pod and seed numbers per plant decreased significantly. The traits of varieties fromJilin-Liaoning provinces changed the least compared with that in other regions.
     2. Quality trait evolution of widely-planted varieties from different regions and decades
     The contents of protein and isoflavones increased as the orignated latitudes of varieties weregetting lower. The content of oil, Vitamine E and carotenoids of vatieties from the northeast weremore than that of varieties from Yellow-Huai-Hai Rivers Valley. The contents of linoleic acid,linolenic adid, statch, oligosaccharide, isoflavone and lectin of varieties from the north part ofHeilongjiang province increased significantly with the released years; the contents of linoleic acid,palmatic acid, total isoflavones of varieties from the middle and south parts of Heilongjiang provinceincreased significantly along with the released decades; the starch content of varieties fromJilin-Liaoning provinces increased with the year of release, the contents of oleic and stearic adids, andlectin of varieties from Yellow-Huai-Hai Rivers Valley increased significantly with the released year.
     3. Changes of photo-thermal response of widely-planted varieties derived from different regions and decades
     The photoperiod sensitivity (PS) under spring and summer sowing of the varieties from the northpart of Heilongjiang province and Yellow-Huai-Hai Rivers Valley decreased with the decades ofrelease, while the same index of varieties from middle and south parts of Heilongjiang provincedeclined under summer sowing. The temperature sensitivity (TS) under short day of varieties from themiddle and south parts of Heilongjiang province and Yellow-Huai-Hai Rivers Valley decreased withthe released year, while that under long day of varieties from Yellow-Huai-Hai Rivers Valleyincreased with decades of release. The ΔPS(PS difference of under different temperature), ΔTS(TSdifference under different photoperiod) and PTCS (photothermal comprehensive sensitivity) ofvarieties from Yellow-Huai-Hai Rivers Valley decreased. The PS, TS and PTCS of widely-plantedvarieties increased gradually with the decreasing of their original latitude, while ΔPSand ΔTSattainedopposite trends compared with the former ones. It showed that the PS, TS and PTCS of varieties fromsouth are more sensitive than that from the north of China, but the photothermal interactive responsesof varieties were opposite.
     4. The pedigree analysis of widely-planted varieties
     Based on the collected pedigree data of the113soybean varieties, the end ancestors and directparents of the widely-planted varieties were traced. Compared to the data of the varieties reportedbefore, the number of end ancestors of widely-planted varieties was higher than the ordinary varieties,and their genetic bases were broader. Newly-bred widely-planted varieties have richer geneticbackground than the previous widely-planted varieties. Genetic basis of widely-planted soybeanvarieties from Yellow-Huai-Hai Rivers Valley are broader than that of ones from the northeast China.
     5. The genetic diversity of widely-planted soybean varieties from different regions and decades
     The average polymorphism information content of the varieties from the north part ofHeilongjiang province, south and middle parts of Heilongjiang province, Jilin-Liaoning province andYellow-Huai-Hai Rivers Valley were0.414,0.469,0.522and0.562, respectively. Except for thevarieties from the north part of Heilongjiang province, the varieties released after1980in the otherthree regions had higher PIC values than that of varieties released before1980. UPGMA-based clusteranalysis classified the tested varieties into three major groups, corresponding with the original placesof the varieties. The varieties from the northeast and Yellow-Huai-Hai Rivers Valley were classifiedinto two major groups respectively, except for Jidou12, a variety from the northern Yellow-Huai-HaiRivers Valley, which was classified into an independent group. In the northeast China, varieties ofHeilongjiang province were classified into one subgroup and the varieties from Jilin and Liaoningprovinces were into another subgroup, indicating that the widely-planted varieties from the sameregion were apparently homogenized.
     6. The exploitation of elite alleles of varieties from different regions and decades
     Among the SSR markers identified in this study, there were141loci associated with the24traits,39loci associated with the yield traits including yield, pods and seeds per plant and100-seed weight19loci associated with plant height, lodging index, the days to flowering and maturity, and82loci associated with the quality traits including protein, oil and isoflavones. The analysis on marker effectsand the identification of positive and negative loci and carriering materials showed that the extremeaccessions possessed the alleles with larger effects.
引文
1.陈庆山,张忠臣,刘春燕,等.大豆主要农艺性状的QTL分析.中国农业科学,2007,40(1):41-47.
    2.崔章林,盖鈞镒,邱家驯,等.中国大豆育成品种及其系谱分析.北京:中国农业出版社,1998.
    3.杜维广,张桂茹,满为群.光周期对春夏大豆品种生育阶段的影响.大豆科学,1994,13(2):133-138.
    4.费志宏,谢甫娣,朱洪德,等.黑龙江省中熟大豆品种主要农艺性状演变趋势分析.中国农学通报,2005,11(21):106-109.
    5.费志宏,谢甫绨,朱洪德,等.黑龙江省早熟大豆品种主要农艺性状演变趋势.中国油料作物学报.2006,28(1):21-24.
    6.费志宏,贾贞,冷建田,等.不同生态类型大豆品种光周期反应的鉴定.2009,作物杂志,(4):46-49.
    7.费志宏,吴存祥,孙洪波,等.以光周期处理与分期播种试验综合鉴定大豆品种的光温反应.作物学报,2009,35(8):1525-1531.
    8.冯其虎,张复宁.江苏淮北地区夏大豆品种更替中产量及有关性状的改良和展望.大豆科学,1991,(10):172-197.
    9.盖钧镒,崔章林.中国育成大豆的祖先亲本分析.南京农业大学学报,1994,17(3):19-23.
    10.盖钧镒,赵团结,崔章林,等.中国1923~1995年育成的651个大豆品种的遗传基础.中国油料作物学报,1998,20(1):17-23.
    11.盖钧镒,赵团结,崔章林,等.中国大豆育成品种中不同地理来源种质的遗传贡献.中国农业科学,1998,31(5):35-43.
    12.高运来,姚丙晨,刘春燕,等.黑龙江省主栽大豆品种遗传多样性的SSR分析.植物学报,2009,44(5):556-561.
    13.葛一楠,孙君明,韩粉霞,等.代表性大豆种质异黄酮主要组分含量鉴定.植物遗传资源学报,2011,12(6):921-927.
    14.国家大豆产业技术体系.2011年度大豆产业技术发展报告.农业部科技教育司,财政部教科文司.
    15.国家大豆产业技术体系.2012年度大豆产业技术发展报告.农业部科技教育司,财政部教科文司.
    16.中国农业产业技术发展报告(2012年度).北京:中国农业出版社.2013(出版中).
    17.韩天富,王金陵.大豆开花后光周期反应的研究.植物学报,1995,37(11):863-869.
    18.韩天富,王金陵.中国大豆不同生态类型开花至成熟期对光周期的反应.作物学报,1996,2(1):20-26.
    19.韩天富,王金陵,范彬彬.开花后光照长度对大豆农艺性状的影响.应用生态学报,1996,7(2):169-173.
    20.韩天富,王金陵,杨庆凯,等.开花后光照长度对大豆化学品质的影响.中国农业科学,1997,30(2):47-53.
    21.韩天富,盖钧镒,邱家驯.中国大豆不同生态类型代表品种开花前、开花后光周期反应的比较研究.大豆科学,1998,17(2):129-134.
    22.郝欣先,蒋惠兰,吴建军.山东夏大豆品种农艺性状演进和遗传型特征分析.山东农业科学,2000,(2):4-7.
    23.何言章,何元农.大豆光周期特性研究I.缩短光照对大豆生育的影响.贵州农业科学,1992,(1):15-20.
    24.胡国华.从加拿大大豆系谱分析谈大豆产量育种.大豆科学,1990,9(2):168-176.
    25.胡明祥.我国大豆育种的成就和展望.大豆通报,1993,5(6):23-24.
    26.黄中文,赵团结,喻德跃,等.大豆抗倒伏性的评价指标及其QTL分析.作物学报,2008,34(4):605-611.
    27.李福山.中国野生大豆熟期类型及光周期区划.作物品种资源,1997,(4):17-19.
    28.李卫东,梁慧珍,卢为国,等.河南省夏大豆主要农艺性状演变趋势分析.中国油料作物学报,1999,21(2):17-20.
    29.李卫东,张孟臣主编.黄淮海夏大豆及品种参数.北京:中国农业科学技术出版社,2006.
    30.李金玉.不同生态类型大豆品种光、温反应特性的解析及SSR关联分祈[硕士学位论文].北京:中国农业科学院研究生院,2011.
    31.廖林,刘玉芝,卢亦军,等.吉林省大豆新品种(系)血缘组成分析.吉林农业科学,1997,(2):1-6.
    32.刘永建,张莉萍,潘光堂,等. CIMMYT玉m种质群体主要农艺性状的遗传变异和光周期敏感性.西南农业学报,1999,12(3):30-34.
    33.刘忠堂.世界大豆生产走势和我们的对策.大豆通报,2004,(6):2-3.
    34.刘传光,张桂权,周汉钦,等.华南地区常规籼稻品种产量和株型性状的遗传改良.中国农业科学,2010,43(19):3901-3911.
    35.栾维江,刘章雄,关荣霞,等.东北春大豆样本的代表性SSR位点的遗传多样性分析.应用生态学报,2005,16(8):1469-1476.
    36.裴东红,田冰,谢甫绨,等辽宁省杂交育成大豆品种主要农艺性状的遗传改进.大豆科学,1997,16(1):1-5.
    37.吴宗璞,高凤兰,康宗宝.大豆超早熟育种问题的研究.东北农学院学报,1988,19(2):127-134.
    38.武志海,徐克章,赵颖君,等.吉林省47年来粳稻品种遗传改良过程中某些农艺性状的变化.中国水稻科学,2007,21(5):507-512.
    39.齐宁.东北春大豆推广品种蛋白质脂肪含量变化分析.大豆科学,2001,2(1):45-48.
    40.全国农业技术推广服务中心.2006年全国农作物主要品种面积推广情况统计汇编.1985-2010.中华人民共和国农业部.农业主导品种和主推技术.北京:中国农业出版社,2007:50.
    41.任全兴,盖钧镒,马育华.我国大豆品种生育期生态特性研究.中国农业科学,1987,20(5):23-28.
    42.宋启建.大豆SSR分子标记的创制及其应用.大豆科学,1999,16(3):248-254.
    43.孙贵荒,宋书宏,刘晓丽,等辽宁省大豆更替品种主要农艺性状的改进与变化.大豆科学,2001,20(1):30-34.
    44.孙志强,田佩占,王继安.东北地区大豆品种血缘组成分析.大豆科学,1990,9(2):112-120.
    45.隋德志,王连铮,王培英.黑龙江省大豆品种遗传改进的初步探讨.大豆科学,1986,5(1):11-16.
    46.王金陵,武镛祥,吴和礼.中国南北地区大豆光照生态类型的分析.农业学报,1956,7(2):169-180.
    47.王金陵.中国主产区主要推广品种株型变化的回顾.东北农学院学报,1993,24(3):209-213.
    48.王振民,康波,邓劲华,等.吉林省不同年份主推大豆品种性状演变规律的初步分析.1993,1(4):92-95.
    49.王振民,康波,邓劭华.吉林省育成大豆品种的亲缘关系及其育种体会.农业与技术,1995,(1):4-5.
    50.王大秋,王维田,项淑华.美国大豆品种在杂交育种中的应用分析.大豆通报,1995,(5):3-5.
    51.王金陵.东北地区大豆株型的演变.大豆通报,1996,(1):5-7.
    52.王连铮,叶兴国,刘国强,等.黑龙江省及黄淮海地区大豆品种的遗传改进.中国油料作物学报,1998,20(4):20-24.
    53.汪越胜,王晋华.大豆开花期光温综合反应与短光照反应间关系研究.安徽农学通报,1999,5(3):25-26.
    54.汪越胜,马宏惠.中国大豆地理生态型生育前期光温综合反应.安徽师范大学学报(自然科学版),2000,23(1):40-46.
    55.汪越胜,盖钧镒.中国大豆品种光温综合反应与短日照反应的关系.中国油料作物学报,2001,23(2):40-44.
    56.王晓慧,徐克章,张治安,等.不同年代大豆品种苗期叶片保护酶活性及膜脂过氧化作用.中国油料作物学报,2006,28(4):417-420.
    57.王连铮.国内外大豆生产的现状和大豆品种创新问题.中国食物与营养,2006,(7):6-9.
    58.王连铮,王岚,赵荣娟.大豆育种研究进展.大豆科技与产业化,2006,1(1):4-18.
    59.王江春,于波,王荣,等.山东省小麦品种演变及产量性状的遗传分析.山东农业科学,2007,(2):5-9.
    60.王彩洁,孙石,吴宝美,等.20世纪40年代以来中国大面积种植大豆品种的系谱分析.中国油料作物学报,2013,35(?):待发表
    61.文自翔,赵团结,郑永战,等.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析I.群体结构及关联标记.作物学报,2008,34(7):1169-1178.
    62.文自翔,赵团结,郑永战,等.中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析Ⅱ.优异等位变异的发掘.作物学报,2008,34(8):1339-1349.
    63.谢传晓,王振华,李明顺,等.160个玉m自交系光周期敏感性鉴定.玉m科学,2008,16(3):15-18.
    64.熊东金,赵团结,盖鈞镒.中国大豆育成品种亲本分析.中国农业科学,2008,41(9):2589-2598.
    65.熊冬金,赵团结,盖钧镒.1923-2005年中国大豆育成品种种质的地理来源及其遗传贡献.作物学报,2008,34(2):175-183.
    66.熊冬金,赵团结,盖钧镒.1923-2005年中国大豆育成品种的核心祖先亲本分析.大豆科学,2007,26(5):641-647.
    67.徐豹,路琴华.大豆生态研究:中国不同纬度野生大豆的光温生态分析.大豆科学,1983,2(3):155-168.
    68.徐六康,钟金传,刘汉中.光长对大豆生育的后效应及对植株性状的影响.中国农业气象,1990,11(1):22-28.
    69.薛恩玉,李文华,姜妍.黑龙江省大豆育成品种农艺性状演化趋势.大豆科学,2006,25(4):445-449.
    70.杨志攀,周新安.大豆光周期遗传育种研究进展.中国油料作物学报,1999,21(1):85-90.
    71.杨志攀,张晓娟,蔡淑平,等.大豆“短青春期”品种的光(温)反应研究: I播季反应.中国油料作物学报,2000,22(3):35-38.
    72.杨志攀,张晓娟,蔡淑平,等.大豆“短青春期”品种的光(温)反应研究:Ⅱ对短日照的反应.中国油料作物学报,2001,23(2):35-39.
    73.杨志攀,张晓娟,蔡淑平,等.大豆“短青春期”品种的光(温)反应研究: Ⅲ对长日照的反应.大豆科学,2001,20(3):191-196.
    74.杨加银,冯其虎,张复宁.江苏省主要大豆品种系谱分析.作物品种资源,1993,(2):17-18.
    75.杨加银,冯其虎,张复宁.江苏淮北地区大豆品种遗传改进.作物品种资源,1998,(4):19-21.
    76.杨秀红,吴宗璞,张国栋.不同年代大豆品种根系性状演化的研究中国农业科学,2001,34(3):292-295.
    77.叶兴国,王连铮,刘国强.黄淮海地区大豆品种遗传改进.大豆科学,1996,15(1):1-10.
    78.张国栋.黑龙江省大豆品种系谱分析.大豆科学,1983,2(3):184-193.
    79.张桂茹.光周期对大豆品种生育进程及农艺性状的影响.中国油料,1997,19(4):37-41.
    80.张桂茹.黑农号大豆品种的基因源及农艺性状的遗传改进.大豆科学,1998,17(4):347-352.
    81.张保亮,何延成,赵洁.花生科技.1999,增刊,222-224.
    82.张军,赵团结,盖钧镒.大豆育成品种农艺性状QTL与SSR标记的关联分析.作物学报,2008,34(12):2059-2069.
    83.赵存,张性坦,柏惠侠,等.短日照处理大豆营养期各阶段的效应.大豆科学,1997,16(1):66-69.
    84.赵洪锟,王玉民,李启云,等.中国不同纬度野生大豆和栽培大豆SSR分析.大豆科学,2001,20(3):172-176
    85.赵国栋,涂建,卢义宣,等.光温敏核不育系水稻的光温特性研究.西南农业学报,2006,(19):8-12.
    86.赵团结,盖钧镒,李海旺,等.超高产大豆育种研究的进展与讨论.中国农业科学,2006,39(1):29-37.
    87.赵洪祥,徐克章,杨光宇,等.吉林省82年来育成大豆品种的产量和叶片部分生理特性变化及其相互关系.作物学报,2008,34(7):1259-1265.
    88.赵国臣,姜楠,徐克章,等.吉林省1958-2005年间育成推广水稻品种部分叶片特征的变化.2011,作物学报,37(6):1101-1108.
    89.郑洪兵,刘武仁,郑金玉,等.大豆在遗传改良过程中某些农艺性状演化的研究进展.吉林农业科学,2008,33(2):13-16.
    90.中国农业科学院作物科学研究所,吉林省农业科学院大豆研究中心.中国大豆品种志(1993-2004).北京:中国农业出版社,2007.
    91.周有耀.五十年来我国棉花品种改良工作的进展.江西棉花,2003,25(4):3-9.
    92. Abeledo L G, Calderini D F, Slafer G A. Genetic improvement of barley yield potentials and itsphysiological determinants in Argentina. Euphytica,2003,130:325-334.
    93. Blaine L B, Donald G B. Orientation and distribution of leaves within soybean canopies.Agronomic Journal,1972,64:26-29.
    94. Breseghello F, Sorrells M S. Association mapping of kernel size and milling quality in wheat(Triticum aestivum L.) cultivars. Genetics,2006,172:1165-1177.
    95. Chen Y, Wang D, Arelli P, et al. Molecular marker diversity of SCN-resistant sources in soybean.Genome,2006,49:938-949.
    96. Cober E R, Stewart D W, Voldeng H D. Photoperiod and temperature responses inearly-maturing near-isogenic soybean lines. Crop Science,2001,41:721-727.
    97. Collinson S T, Ellis R H, Summerfield R J, et al. Durations of the photoperiod-sensitive andphotoperiod-insensitive phases of development to flowering in four cultivars of rice (Oryzasativa L.). Annals of botany,1992,70(4):339-346.
    98. Craufurd P Q, Aiming Qi. Photothermal adaptation of sorghum (Sorghum bicolour) in Nigeria.Agricultural and Forest Meteorology,2001,108:199-211.
    99. Cregan P, Randall N, Youlin Z. Sequence variation, haplotype diversity and linkagedisequilibrium in cultivated and wild soybean. In: Proceedings of the First InternationalConference on Legume Genomics and Genetics: Translation to Crop Improvement.2-6,Minneapolis-St. Paul, MN,2000.
    100. Criswell J G, Hume D J. Variation in sensitivity to photoperiod among early maturing soybeanstrains. Crop Science,1972,12:657-660.
    101. Dakin E E, Avise J C. Microsatellite null alleles in parentage analysis. Heredity,2004,93:504-509.
    102. Diwan N, Cregan P B. Automated sizing of fluorescent labeled simple sequence repeat (SSR)markers to assay genetic variation in soybean. Theoretical Applied Genetics,1997,95:723-733.
    103. Dong Y S, Zhuang B C, Zhao L M, et al. The genetie diversity of annual wild soybeans grownin China. Theoretical Applied Genetics,2001,103:98-103.
    104. Doyle J J, Doyle J I. Isolation of plant DNA from fresh tissue. Focus,1990,12:149-151.
    105. Ellis R H, Collinson S T, Hudson D, et al. The analysis of reciprocal transferexperiments toestimate the duration of the photoperiod-sensitive and photoperiod insensitive phases of plantdevelopment:An example in soybean. Annals of botany,1992,70:87-92.
    106. Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocusgenotype data: linked loci and correlated allele frequencies. Genetics,2003,164:1567-158.
    107. Fasoula V A, Harris D K, Boerma H R. Validation and designation of quantitative trait loci forseed protein, seed oil, and seed weight from two soybean populations. Crop Science,2004,44:1218-1225.
    108. Fehr W R, Caviness C E, Burmood D T. Stage of development descriptions for soybean,Glycine max (L.) Merill. Crop Science,1971,34:1143-1151.
    109. Fernanda G. Gonzales,Gustavo A. Slafer, Daniel J. Miralles. Grain and floret number inresponse to photoperiod during stem elongation in fully and slightly vernalized wheats. Fieldcrops research,2003,81:17-27.
    110. Flint G S, Thuillet A, Yu J, et al. Maize association population: A high resolution platform forQTL dissection. Plant Journal,2005,44:10541064.
    111. Garner W W, Allard H A. Effect of the relative length of day and night and other factors of theenvironment on growth and reproduction in plants. Journal of Agricultural Research,1920,18:553-606.
    112. Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants:Present status and future prospects. Plant Molecular Biology,2005,57:61485.
    113. Han T F, Wu C X, Tong Z, et al. Post-flowering photoperiod regulates vegetative growth andreproductive development of soybean. Environmental and Experimental Botany,2006,55(1):120-129.
    114. Hao N B, Du W G, Ge Q Y, et al. Progress in the breeding of soybean for highphotosyntheticficiency. Acta Botanica Sinica,2002,44(3):253-258.
    115. Hwang T Y, Nakamoto Y, Kono I, et al. Genetic diversity of cultivated and wild soybeansincluding Japanese elite varieties as revealed by length polymorphism of SSR markers.Breeding Science,2008,58:315-323.
    116. Hyten D L, I Y Choi, Song Q J, et al. Highly variable patterns of linkage disequilibrium inmultiple soybean populations. Genetics,2007,175(4):1937-1944.
    117. Iquira E, Gagnon E, Belzile F. Comparison of genetic diversity between Canadian adaptedgenotypes and exotic germplasm of soybean. Genome,2010,53:337-345.
    118. Josie J, Alcivar A, Rainho J, et al. Genomic regions containing QTL for plant height, internodeslength, and flower color in soybean [Glycine max (L.) Merr.]. BIOS,2007,78(4):119-126.
    119. Jun T H, Van K, Moon Y K, et al. Association analysis using SSR markers to find QTL for seedprotein content in soybean. Euphytica,2008,162:179-191.
    120. Kantolic A G, Slafer G A. Photoperiod sensitivity after flowering and seed numberdetermination in indeterminate soybean cultivars. Field Crops Research,2001,72(2):109-118.
    121. Kantolic A G, Slafer G A. Reproductive development and yield components inindeterminatesoybean as affected by post-flowering photoperiod. Field Crops Research,2005,93(2-3):212-222.
    122. Kantolic A G, Slafer G A. Development and seed number in indeterminate soybeanaffected bytiming and duration of exposure to long photoperiods after flowering. Annals of botany,2007,99:925-933.
    123. Karmaar P G, Bhatnagar P S. Genetic improvement of soybean varieties released in India from1969to1993. Euphytica,1996,90:95-103.
    124. Kong F, Liu B, Xia Z, et al. Two coordinately regulated homologs of FLOWERING LOCUS Tare involved in the control of photoperiodic flowering in soybean. Plant Physiology,2010,154(3):1220-1231.
    125. Kumudini S, Hume D J, Chu G. Genetic improvement in short season soybeans: I. Dry matteraccumulation, partitioning, and leaf area duration. Crop Science,2001,41:391-398.
    126. Li D D, Pfeifer T W, Cornelius P L. Soybean QTL for yield and yield components associatedwith Glycine soja alleles. Crop Science,2008,48:571-581.
    127. Li Y H, Li W, Zhang C,et al. Genetic diversity in domesticated soybean (Glycine max) and itswild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism.New Phytologist,2010,188:242-253.
    128. Liu B, Kanazawa A, Matsumura H, et al. Genetic redundancy in soybean photoresponsesassociated with duplication of the phytochrome A gene. Genetics,2008,180:995-1007.
    129. Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Plant Science,2007,12:57-63.
    130. Mamidi S, Chikara S, Goos R J, et al. Genome-wide association analysis identifies candidategenes associated with iron deficiency chlorosis in soybean. Plant genome,2011,4(3):154-164.
    131. Mikel M A, Diers B W, Nelson R L, et al. Genetic diversity and agronomic improvement ofNorth American soybean germplasm. Crop Science,2010,50:1219-1229.
    132. Morrison M J, Voldeng H D, Cober E R. Physiological changes from58years of geneticimprovement of short-season soybean cultivars in Canada. Agronomic Journal,1999,91:685-689.
    133. Morrison M J, Voldeng H D, Cober E R. Agronomic changes from58years of geneticimprovement of short-season soybean cultivars in Canada. Agronomic Journal,2000,92:780-784.
    134. Nei M, Li W. Mathematical model for studying genetic variation in terms of restrictionendonuleases. Proceedings of the National Academy of Sciences USA,1979,76:5269-5273.
    135. Panthee D R, Pantalone V R, Saxton A M, et al. Genomic regions associated with amino acidcomposition in soybean. Molecular Breeding,2006,17:79-89.
    136. Piper E L, Smit M A, Boote K J, et al. The role of daily minimum temperature in modulatingthe development rate to flowering in soybean. Field Crops Reseach,1996,47:211-220.
    137. Peng S, Khush G S. Four decades of breeding for varietal improvement of irrigated lowland ricein the International Rice Research Institute. Plant Production Science,2003,6:157-164.
    138. Qin J, Chen W, Guan R, et al. Genetic contribution of foreign germplasm to elite Chinese soybean(Glycine max) cultivars revealed by SSR markers. Chinese Science Bulletin,2006,51(9):1078-1084.
    139. Rahman M M, Hampton J G, Hill M J. Soybean development under the cool temperateenvironment of Canterbury, New Zealand. Journal of New Seeds,2006,7:17-36.
    140. Reyna N, Sneller C H. Evaluation of marker-assisted introgression of yield QTL alleles intoadapted soybean. Crop Science,2001,41:1317-1321.
    141. Roberts R H. Further studies of the effects of temperature and other environmental factors uponthe photoperiodic responses of plant. Journal of Agricultural Research,1939,59:699-709.
    142. Roberts E H, Ellis R H, Summerfield R J, et al. use of field observations to characterize genotypicflowering responses to photoperiod and temperature-a soybean examplar. Theoretical AppliedGenetics,1996,93(4):19-53.
    143. Rohlf F J. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System, version2.1.Exeter Software, NY.2000.
    144. Kumudini S V, Pallikonda P K, Steele C. Photoperiod and E-genes influence the duration of thereproductive phase in soybean. Crop Science,2007,47(4):1510-1517.
    145. Summerfield R J, Ellis R H, Craufurd P Q. Phenological adaptation to croppingenvironment-from evaluation descriptors of times to flowering to the genetic characterisation offlowering responses to photoperiod and temperature. Euphytica,1996,92(1):281-286.
    146. Sun H, Jia Z, Cao D, et al. GmFT2a, a soybean homolog of FLOWERING LOCUS T, isinvolved in flowering transition and maintenance. PLoS ONE,2011,6(12):e29238.
    147. Tabien R E, Samonte P B, Anna M. Forty-eight years of rice improvement in Texas since therelease of cultivar Bluebonnet in1944. Crop Science,2008,48(6):2097-2106.
    148. Tasma M I, Lorenzen L, Green D E, et al. Mapping genetic loci for flowering times, maturityand photoperiod insensitivity in soybean. Molecular Breeding,2001,8:25-35.
    149. Tasma M I, Shoemaker R C. Mapping flowering time gene homolos in soybean and theirassociation with maturity (E) loci. Crop Science,2003,43:319-328.
    150. upadhyay A P, Ellis R H, Summerfield R J, et al. Characterization of photothermal floweringresponses in maturity isolines of soybean (Glycine max) cv. Clark. Annals of botany,1994,74:87-96.
    151. Ustun A, Allen F L, English B C. Genetic progress in soybean of the U.S.Midsouth. CropScience,2001,41:993-998.
    152. Voldeng H D, Cober E R, Hume D J. Fifty-eight years of genetic improvement of short-seasonsoybean cultivars in Canada. Crop Science,1997,37:4282-4311.
    153. Wang G L, Graef A M, Procopiuk B W. Identification of putative QTL that underlie yield ininterspecific soybean backcross populations. Theoretical Applied Genetics,2004,108:458-467.
    154. Wang L X, Guan R X, Liu Z X, et al. Genetic diversity of Chinese cultivated soybean revealedby SSR markers. Crop Science,2006,46:1032-1038.
    155. Wang M, Li R Z, Yang W M, et al. Assessing the genetic diversity of varieties and wildsoybeans using SSR markers. African Journal of Biotechnology,2010,9(31):4857-4866.
    156. Watanabe S, Hideshima R, Xia Z, et al Map-based cloning of the gene associated with thesoybean maturity locus E3. Genetics,2009,182:1251-1262.
    157. Watanabe S, Xia Z, Hideshima R, et al. A map-based cloning strategy employing a residualheterozygous line reveals that the GIGANTEA gene is involved in soybean maturity andflowering. Genetics,2011,188:260-395.
    158. Wilcox J R, Schapaugh W T, Bernard R L, et al. Genetic improvement of soybeans in theMidwest. Crop Science,1979,19:803-805.
    159. Wilcox J R. Sixty years of improvement in publicly developed elite soybean lines. Crop Science,2001,49:1711-1716.
    160. Wu C X, Ma Q B, Yam K M, et al. Insitu expression of the GmNMH7gene isphotoperiod-dependent in a unique soybean [Glycine max(L).Merr.] flowering reversion system.Planta,2006,223:725-735.
    161. Wu L C, Wang T G, Ku L X. Determination of the photoperiod-sensitive inductive phase inmaize with leaf numbers and morphologies of stem apical meristem. Agricultural science inChina.2008,7(5):554-560.
    162. Wang Z C, Reddy V I, Acock M C. Testing for early photoperiod insensitivity in soybean.Agronomical Journal,1998,90:389-392.
    163. Xia Z, Watanabe S, Yamada T, et al. Positional cloning and characterization reveal themolecular basis for soybean maturity locus E1that regulates photoperiodic flowering.Proceedings of the National Academy of Sciences USA,2012,109:E2155-E2164.
    164. Yu J, Edward S B. Genetic association mapping and genome organization of maize. CurrentOpinion Biotechnology,2006,17:155-160.