含碳化物奥铁体球墨铸铁磨球新型热处理工艺及磨球失效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含碳化物奥铁体球墨铸铁(Carbidic Austempered Ductile Iron,简称CADI)是近些年由等温淬火球墨铸铁发展而来的新型耐磨材料,在冶金矿山等行业中有很好的应用前景。本文对CADI磨球的新型热处理工艺及磨球的失效机理进行了系统研究,主要内容包括:1)硝盐淬火介质冷却能力的研究;2) CADI材质与硝盐淬火介质间表面综合换热系数的测定;3) CADI磨球新型热处理工艺的试验研究;4) CADI磨球落球疲劳试验中的应力数值模拟;5) CADI磨球的失效机理研究等。
     研究表明:1)在试验范围内(0~2%)随熔盐中含水量的增加,相同温度下盐浴冷却能力不断增强;在试验范围内(250℃~350℃)随盐浴淬火温度的提高,相同温度下盐浴冷却能力有降低的趋势;2)淬火介质的冷却特性曲线不代表热探头表面的淬火信息,淬火介质的冷却特性曲线有其特定的用途;3)在一维传热模型条件下,采用ANSYS软件求得了CADI热探头与淬火盐之间的表面综合换热系数,并验证了结果的可靠性;4)采用ANSYS软件模拟了CADI磨球淬火过程温度场,得出了磨球内外温度均匀所需时间;5)在试验范围内(4min~150min)随着盐浴淬火时间的延长,CADI磨球淬透性增强;磨球的硬度和冲击韧性均随盐浴淬火时间的延长而提高,6)在新型热处理工艺中,盐浴淬火480s时,φ100mmCADI磨球的体积硬度为HRC54.1,冲击韧性8.5J/cm2,排除试验误差的影响,可以认定新型热处理工艺已基本达到等温淬火工艺的水平;7)在试验范围内(1%~3%)随着熔盐中加水量的增加,磨球不同深度层硬度有上升的趋势,而磨球的冲击韧性有所降低;8) CADI磨球在单次落球试验冲击过程中,碰撞接触界面剪应力峰值出现在皮下略偏离接触界面中心位置,等效应力峰值出现在接触界面表层中心位置;残余等效应力峰值和残余剪应力峰值均出现在撞击部位周围挤压区。9) CADI磨球亚表层二次夹渣及一次夹渣的存在是导致其在球磨机中失圆失效的主要内因。
     根据本文研究结果,采用“盐浴淬火+电阻炉保温”的新型热处理工艺来代替传统等温淬火工艺是切实可行的,该工艺在保证磨球热处理质量的同时极大提高了劳动生产率。CADI磨球在落球冲击过程中残余应力的累积、应力诱发马氏体相变和加工硬化等因素综合引起的材料疲劳损伤导致了磨球的表层剥落失效;磨球材质及其冶金质量也对磨球的剥落失效有重要影响;磨球亚表层夹渣物的存在是引发其剥落失效和失圆失效的主要内因。
Carbidic austempered ductile iron,so-called CADI,is a new kind of wear resistant material that derived from ADI in recent years.It has a good application and prospect in Metallugical and Mine Industries.This work focuses on the research of new-heat treatment technology and failure mechanism of CADI grinding ball. It mainly includes: 1) Research on cooling capacity of salt-bath quenching medium; 2) Determination of the heat-transfer coefficient between the CADI thermal probe and the salt; 3) Experimental investigation of the new heat-treatment technology on CADI grinding ball; 4) Stress numerical simulation of CADI grinding ball during the falling sphere test;5) Research on failure mechanism of CADI grinding ball.
     The result showed: 1) In the test range(0~2%),as water in the salt-bath increased,the cooling capacity of the salt was intensified at the same temperature ; In the test range(250℃~350℃),the cooling capacity of the salt weakened at the same temperature as the austempering temperature enhanced; 2) The cooling curves of the quenching medium can not display the surface information of the thermal probe,but it has special uses; 3) The heat-transfer coefficient between the CADI thermal probe and the salt was determined under the one-dimensional heat transfer model by ANSYS program and the result was reliable; 4) The temperature field of the CADI grinding ball during the austempering was simulated by ANSYS program and the necessary time for the balance of the temperature field was derived; 5) In the test range(4min~150min),as the salt-bath austempering time increased,the hardenability of the CADI grinding ball enhanced while the hardness and impact toughness of the ball showed the same trend;6)In the new heat-treatment test,the mechanical properties of theφ100mm CADI grinding ball with the salt-bath austempering time of 480s were: AVH 54.1HRC, impact toughness 8.5J/cm2. It can be inferred that the new heat-treatment technic reached the level of the austempering technic excluding the impact of experimental error. 7) In the test range(1%~3%), as water in the salt-bath increased, the hardness at different depth of the grinding ball enhanced while the impact toughness of the ball decreased; 8) During the single drop in the falling sphere, the peak value of shear stress appeared in the area slightly deviated from the center of the contact interface while the maximum of equivalent stress just at the center of the contact interface.The peak of residual equivalent stress and residual shear stress both appeared in the neighboring extrusion zone of collision.9) The existence of slag in the subsurface of the ball was the real reason that caused the failure of the grinding ball in the ball mill.
     According to the research, it is practical to replace the austempering technology with the new technique of“salt-bath and electrical resistance furnace quenching”, and the labour productivity was enhanced significantly while guaranteeing the heat-treatment quality.The auther believed that surface spalling failure of the CADI grinding ball resulted from the fatigue damage of the material that caused by the accumulation of the residual stress,stress-induced martensitic transformation,etc.At the same time, material and metallurgical quality really had effect on the spalling failure of the grinding ball.The existence of slag in the subsurface of the ball was the real reason that caused the spalling and the roundless failure of the CADI grinding ball.
引文
1.刘金海,叶学贤,张会友,等. ADI和CADI在冶金矿山行业中的应用及前景[J].现代铸铁,2008,(4):26-30.
    2. Kovacs B V.On the terminology and structure of ADI.AFS Trans,1994,(102):417-420.
    3. Elliott R.The role of research in promoting austempered ductile iron[J].Heat treatment of Metals,1997,(3):55-59.
    4.刘光华.等温淬火球铁(ADI)基本知识[J].中国铸造装备与技术,2007,(6):65-67.
    5. R John Keough PEng.等温淬火球铁-增强经济和工程机会的手段[C].第四届全国等温淬火球铁(ADI)技术研讨会论文集,苏州, 2007.12: 123-131.
    6.王怀林. CADI在农机犁铧上的应用[C].第四届全国等温淬火球铁(ADI)技术研讨会论文集, 2007.12,苏州: 30-32.
    7.刘俊友,徐杨,王玉磊,等.抗磨等温淬火球墨铸铁的研究及应用[C].2008全国耐磨材料暨水泥矿山应用技术交流会,2008.4,昆明.
    8.徐杨,施焕儒,简建明等.抗磨贝氏体球磨铸铁的研究和应用[J].材料热处理学报,2008,(4):131-134.
    9.刘金海,刘智,梁春永等.连续冷却淬火球墨铸铁的性能研究[J].现代铸铁. 2003, (5): 6-8.
    10.张明,梁文心.利用余热在介质中连续冷却获奥-贝型球铁[J].铸造设备研究.1999 ,(6):8-13.
    11.林韶华.用于厚大ADI铸件的分级淬火工艺[J].现代铸铁,2009,(4):54-58.
    12. Yang J H, Putatunda S K. Influence of a new two-step austempering process on strain-harding behavior of austempered ductile iron(ADI)[J]. MaterialsScience and Engineering A, 2004,382:265-279.
    13. Yang J H, Putatunda S K. Improvement in strength and toughnessof austempered ductile cast iron by a novel two-step austempering process[J]. Materials and Design, 2004,25: 219-230.
    14. Putatunda S K. Develepment of austempered ductile cast iron with simultaneous high yield strength and fracture toughness by a novel two-step austemperingprocess[J]. Materials Science and Engineering A, 2001,315:70-80.
    15.李先芬,余谨,刘兰俊,等.两步法等温淬火工艺对等温淬火球铁组织和性能的影响[J].材料热处理学报,2008,(4):82-85.
    16.王同珍.淬火过程温度场和组织场的模拟[J].重型机械,2008,(6):31-34.
    17.陈春怀,周敬恩.淬火介质冷却能力的测定和应用[17].金属热处理,2001,(11):28-31.
    18.赖宏,刘天模. 45钢零件淬火过程温度场的ANSYS模拟[J].重庆大学学报,2003,(3):82-84.
    19.梅瑛.球磨机使用条件对磨球磨损的影响[J].煤矿机械,2007,(7):63-65.
    20.张裕新,吕振林,饶启昌,等.湿式磨机磨球的腐蚀磨损[J].铸造,1999,(11):加1-加4.
    21.汪开龙,吕振林,饶启昌,等.磨球失效及其基体组织选择[J].铸造技术,2008, (12) : 1743-1746.
    22.杨业元,黄维刚,方鸿生,等.大型磨机内磨球的磨损分析[J].机械工程材料,1999,(5):30-32.
    23.黄明富,邓世萍,吕振林,等.湿式磨机中低铬铸铁磨球的磨损形貌分析[J].水利电力机械,2003,(2):41-44.
    24.贝氏体钢磨球与我国磨球材料[C].第四届全国等温淬火球铁(ADI)技术研讨会论文集, 2007.12,苏州: 73-76.
    25.苏兴武,顾敏.淬火冷却过程数值模拟的研究现状及展望[J].金属热处理,2008,(6):1-7.
    26.牛山延,赵国群,李辉平,等.淬火过程温度场的三维有限元模拟[J].金属热处理,2008,(6):73-76.
    27.申向东,王正中.材料力学[M].北京:中国农业出版社,2008..4:305.
    28.陈昌麟,田世兴,陈森灿,等.材料科学中的固体力学[M].北京:北京航空航天大学出版社,1994.6:188-191.
    29.何涛,杨竞,金鑫,等.ANSYS10.0/LS-DYNA非线性有限元分析实例指导教程,2007,1:5~8.
    30.王怀林.CADI在农机犁铧上的应用[C].第四届全国等温淬火球铁(ADI)技术研讨会论文集,苏州,2007,(12):30-32.
    31.孙珍宝,朱谱藩,林慧国等.合金钢手册(上)[M].北京:冶金工业出版社,1984:27-41
    32.李言成.ADI曲轴的机械加工[J].内燃机,1994,(1):17-20.
    33.吴岳壹,陆武杰.奥-贝球铁的研究和应用现状[J].兵器材料科学与工程,1994,(6):62-67.
    34.钱鲁阳.奥贝球铁齿轮的研究与应用[C].第四届全国等温淬火球铁(ADI)技术研讨会论文集,苏州,2006,(12):45-54.
    35.苏华钦,严密.Si、Cu、Mo对奥贝球铁组织和性能的影响[J].东南大学学报,1995,(4):71-76.
    36.严密,孙俊才.工艺参数对等温火球铁残余奥氏体量的影响[J].铸铁研究学报,1995,(2):15-18.
    37. K.B Rundman, R C Klug.An X-Ray and Metallographic Study of an Austempered Ductile Cast Iron.Transaction of the A. F. S.,1982,(90):499-508.
    38.余靖,龚文邦,向纲玉.高性能等温淬火球铁(ADI)铸件的试制及生产[J].现代铸铁,2004,(4):33-35.
    39. M Sully, B Met.The use of spheroidal graphite irons integrity applications.The British Foundryman,1976,(8):197-203.
    40.赵伯潘.高锰奥-贝球铁的生产试验[J].铸造,1995,(7):22-25.
    41.周继扬.ADI理论与实践的近代进步[C].第三届全国等温淬火球铁(ADI)技术研讨会论文集,大连,2002.11:14-26
    42.宋强,仲季,李树年.磷含量对贝氏体球铁低温冲击韧性的影响[J].铸造,1983,(2):28-32.
    43.李超荣,惠梦君,梁吉等.铸态奥氏体-贝氏体球铁中合金元素的影响[J].球铁,1986,(1):6-10.
    44.郭新立,刘治国.Ni在球墨铸铁中的行为及作用[J].材料研究学报,1995,(4):289-293.
    45.叶学贤.奥氏体贝氏体球墨铸铁的试验及生产[J].球铁,1983, (3):1-6.
    46. D A Harris,R J Maitland.Iron and Steel,Vol.43,No5(Octoler1970):325-328.
    47. E Dorazil. AFS International Cast Metals Journal,Vol.7,No2(June 1982):52-62.
    48.陈春怀,周敬恩.淬火介质冷却能力的测定和应用[J].金属热处理,2001,(11):28-31.
    49.张克检.淬火介质的冷却特性曲线究竟说明了什么[J].热处理技术与装备,2007,(2):25-28.
    50.张克检.淬火冷却控制过程中的新认识与新技术[J].金属热处理,2010,(10):103-112.
    51. ASM,HandbookTM,Vo.l 4 HeatTreating[M], SAM Internationa,l 1991:69
    52. G. E. Totten, C. E. Bates, Handbook of Quenchants and QuenchingTechnology [M]. SAM Internationa,l 1993:70.
    53.张正容.传热学[M].北京:人民教育出版社,1982:56-58.
    54.张立文,朱大喜,王明伟,等.淬火冷却介质换热系数研究进展[J].金属热处理,2008, (1):53-56.
    55.袁俭,张伟民,刘占仓,等.不同冷却方式下换热系数的测量与计算[J].材料热处理学报,2005,(4):115-119.
    56.王伟佳.多种常用钢在不同淬火介质中换热系数的测算.[D].辽宁:大连理工大学:2007
    57.吴树森.材料加工冶金传输原理[M].北京:机械工业出版社,2001:112-113.
    58. Yang J H, Putatunda S K.Effect of microstructure on abrasion wear behavior of austempered ductile cast iron (ADI) processed by a novel two-step austempering process[J].Materials Science and Engineering A , 2005, 406:217-228.
    59. K.Narasimha Murthy,P.Sampathkumaran,S.Seetharamu.Abrasion and erosion behaviour of manganese alloyed permanent moulded austempered ductile iron[J].Wear,267(2009):1393-1398.
    60.刘光华.等温淬火球铁(ADI)基本知识[J].中国铸造装备与技术,2007,(6):65-67.
    61. Y.Sahin,M.Erdogan,V.Kilicli.Wear behavior of austempered ductile irons with dual matrix structures[J]. Materials Science and Engineering A,444(2007):31–38.
    62.高颂.含碳化物等温淬火球墨铸铁的研究与应用[D].天津:河北工业大学,2008.
    63. KLHayrynen,KRBrandenberg.Carbidic Austempered Ductile Iron (CADI)-the New Wear Material [J]. AFS Trans,2003,111:845-850.
    64.方鸿生,王家军等.贝氏体相变[M].北京:科学出版社,1999.
    65. R.C.Voigt.等温处理球墨铸铁组织的扫描电镜分析[C].奥氏体-贝氏体球墨铸铁.武汉,1986:49-60.
    66.徐祖耀,刘世楷.贝氏体及贝氏体相变[M].北京:科学出版社,1999.
    67. Aaronson H I.The Mechanism of Phase Transformation in Crystalline Solids.The Institute of Metals,1969:270-281.
    68.饶启昌,贺柏龄,周庆德,等.球磨机磨球冲击疲劳剥落抗力的研究[J].水利电力机械,1990,(1):22-27.
    69.许根华,刘英杰,沈万慈,等..球磨机磨球的冲击及破损模拟试验[J].矿山机械,1994,(2):18-22.
    70.包宇波,胡斌.应用LS-DYNA进行汽车正面碰撞模拟分析[J].科技创新导报,2008(,7):173-174.
    71.俞汉清,陈金德.金属塑性成形原理[M],北京:机械工业出版社,1999:207.
    72.王仁,熊祝华,黄文彬.塑性力学基础[M],北京:科学出版社,1982:77.
    73.许根华,刘英杰,沈万慈.材料磨损与失效分析[M],北京:机械工业出版社,1993:195-199.
    74.许云华,王发展,武红,等.冲击接触载荷下45钢亚表层组织结构[J] .热加工工艺,1999,(4):10-12.
    75.许根华,沈万慈,刘英杰,等.落球冲击下高铬铸铁磨球中残余奥氏体的形变与相变[J].钢铁研究学报,1996,(1):40-44.
    76.刘现.含碳化物奥铁体球墨铸铁磨球的研究[D].天津:河北工业大学,2009.
    77.宋建忠,关成君.金属型全覆砂铸造磨球自动化生产线工艺装备设计[J].铸造,2009,(8):817-819.
    78.梅瑛,胡在矶.金属型球铁磨球凝固时偏聚物和夹杂定位的研究[J].铸造技术,2006,(7):702-706.