Ti-Ni-Cr超弹性合金相变和形变特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Ti-50.8Ni-0.3Cr(原子%)形状记忆合金(SMAs)为研究对象,用X射线衍射仪、示差扫描量热仪、拉伸实验、光学显微镜和电子显微术研究了退火和时效工艺对该合金相变、形变行为和显微组织的影响。结果表明:
     退火温度T_(an)对Ti-50.8Ni-0.3Cr合金的相变行为有着显著影响。T_(an)=350~450℃时,合金发生A→R/R→A型可逆相变;T_(an)=500℃时,合金发生A→R→M/M→R→A型相变;T_(an)=550~600℃时,合金发生A→R→M/M→A型相变;T_(an)=650~800℃时,合金不发生相变。随时效时间t_(ag)延长,300℃时效态合金的相变类型为A→R/R→A,400℃时效态合金发生由A→R/R→A向A→R→M/M→R→A转变,500℃时效态合金发生由A→R→M/M→R→A向A→R→M/M→A转变。随T_(an)升高,合金的R相变温度T_R先升高后降低,M相变温度T_M升高,M相变热滞ΔT_M降低。合金经300~500℃时效后,T_R~(400)>T_R~(300)>T_R~(500)。随t_(ag)延长,T_R、T_M先快速升高后趋于稳定,ΔT_M先快速降低后趋于稳定。另外,退火和时效态合金的R相变热滞ΔT_R均在4℃左右。
     在退火处理过程中,由于Ti-50.8Ni-0.3Cr合金的供货态为冷加工态,退火时将发生回复与再结晶。T_(an)=350~500℃时,合金为回复阶段,显微组织仍呈纤维状;T_(an)=550~580℃时,合金发生再结晶,纤维组织逐渐变成无畸变等轴晶粒;T_(an)=590~800℃时,为晶粒长大阶段,显微组织为粗大且大小不均匀的晶粒;随T_(an)升高,合金的应力诱发马氏体临界应力σ_M先降低后升高,随后趋于稳定;残余应变εR在T_(an)=350~590℃时变化不大,始终保持在较低的水平,当T_(an)>590℃时,则急剧升高。另外还可以得出,合金的开始再结晶温度在570℃左右,要使该合金获得良好的超弹性,退火温度应低于再结晶温度。
     在固溶时效处理过程中,800℃固溶淬火态合金塑性良好,适合于冷成形加工。随时效时间t_(ag)延长,300℃和400℃时效态合金的抗拉强度σ_b~(300)和σ_b~(400)先急剧增大后趋于稳定,且σ_b~(300) <σ_b~(400),延伸率δ_k~(300)和δ_k~(400)先急剧减小后趋于稳定;500℃时效后,σ_b~(500)先急剧减小后趋于稳定,δ_k~(500)先急剧增大后趋于稳定。随t_(ag)延长,300℃和400℃时效态合金的应力诱发马氏体临界应力σ_M300和σ_M400均逐渐减小,而σ_M500则先减小后增加再减小,极大值在t_(ag)=10h时取得。此外,随t_(ag)延长,300℃时效态合金的Ti3Ni4析出相呈细小颗粒状弥散分布;400℃时效态合金的Ti3Ni4析出相由颗粒状演变成透镜状;500℃时效态合金的Ti3Ni4析出相发生由透镜状向针状再向粗片状演变。时效温度对Ti3Ni4析出相形态的影响效果比时效时间显著。
     随试验温度Td的升高,退火和时效态Ti-50.8Ni-0.3Cr合金弹簧的应力诱发马氏体相变临界切应力τ_M均逐渐升高;其中,随T_(an)的升高,τ_M先降低后升高;随t_(ag)延长,300℃时效态合金弹簧的τ_M逐渐降低。随循环次数N增加,合金弹簧应变恢复率先快速衰减,后趋于稳定;预循环可增强弹簧元件SE的稳定性。
Effects of annealing and aging treatment on transformation, deformation and microstructure of Ti-50.8Ni-0.3Cr(% atomic fraction)Shape Memory Alloys (SMAs) were investigated by X-ray diffraction, differential scanning clorimetry, tensile test, optical microscopy and electonic microscopy in this paper. The results are as follows.
     A→R/R→A type reversible transformation occurred in 350~450℃annealed alloy upon cooling/heating, A→R→M/M→R→A occurred in 500℃annealed alloy, A→R→M/M→A occurred in 550~600℃annealed alloy, and no transformation occurred in the above 650℃annealed alloys. With increasing aging time, the transformation type of 300℃aged alloy is A→R/R→A, the one of 400℃aged alloy is from A→R/R→A to A→R→M/M→R→A, and the one of 500℃aged alloy is from A→R→M/M→R→A to A→R→M/M→A. With increasing T_(an), the R transformation temperature T_R increases first and then decreases, the M transformation temperature T_M increases, and the M temperature hysteresiseΔT_M decreases. After aging at 300~500℃, the T_R~(400)>T_R~(300)>T_R~(500). With increasing t_(ag), the T_R and T_M increases first and then tend to stable, and theΔT_M decreases first and then tend to stable. Futhermore, the R temperature hysteresis in the annealed and aged alloys is all about 4℃.
     The Ti-50.8Ni-0.3Cr alloys took place the recovery and the recrystallisation procedure during annealing treatment due to the cold working as recived. When T_(an) =350~500℃, the alloy is at the recovery procedure, the microstructure is fibriform; when T_(an) =550~590℃, the alloy is at the recrystallisation procedure, the microstructure turns to the unstrained equi-axed grains; When T_(an) =600~800℃, the alloy is at grain growth procedure, the microstructure became larger and asymmetrical grain. With increasing T_(an), the critical stress for inducing martensiteσ_M descends firstly and then rises; when T_(an) =350~590℃, the residual strainεR has no obvious change and keeps at a low value all the time. When T_(an) >590℃, theεR rises rapidly. Furthermore, the recrystallisation temperature of the alloy is about 570℃. In order to getting excellent SE, the annealing temperature of the alloy should be below recrystallization temperature.
     After solution and aging treatment, the 800℃solution annealed Ti-50.8Ni-0.3Cr alloy exhibits well plasticity and is advant_(ag)ed to cold deformation. With increasing t_(ag), the tensile strengths (σ_b~(300) andσ_b~(400)) of 300℃and 400℃aged alloys increase sharply firstly and then tend to a stable value, here,σ_b~(300) <σ_b~(400); the % elongationδ_k~(300) andδ_k~(400) decrease sharply firstly and then tend to stable. After aging at 500℃, theσ_b~(500) decreases sharply firstly and then tends to stable, theδ_k~(500) increases sharply firstly and then tends to stable. With increasing t_(ag), the critical stress for inducing martensitic transformationσ_M300 andσ_M400 of 300℃and 400℃aged alloys decrease gradually, whileσ_M500 decreases firstly and then increases sharply, finally decreases gradually again and the maximum is reached at t_(ag)=10h. Furthermore, with increasing t_(ag), the morphology of Ti3Ni4 precipitates of 300℃aged alloy is fine particle shape; the one of 400℃aged alloy evolves from particle to lenticular shape; the one of 500℃aged alloy evolves from lenticular to needle to plate shape. The influencing of the aging temperature on the morphology of Ti3Ni4 precipitates is more significant than that of the aging time.
     With increasing the test temperature Td, the critical shear stress for inducing martensitic transformationτ_M of both the annealed and aged Ti-50.8Ni-0.3Cr alloy spring increase gradually; with increasing T_(an), theτ_M decreases firstly and then increases; with increasing t_(ag), theτ_M of 300℃aged alloy spring decreases gradually; with increasing the stress-strain cycles numbers N, the strain recovery ratio declines quickly at the beginning and then slowly.
引文
[1] K. Otsuka, C. M. Wayman. Shape Memory Materials [M]. Cambridge:Cambridge University Press, 1998
    [2]贺志荣. TiNi形状记忆合金的工程应用研究现状和展望[J].材料导报, 2005,19(4): 50-53
    [3]赵连城,郑玉峰.形状记忆与超弹性镍钛合金的发展和应用[J].中国有色金属学报, 2005,14: 323-326
    [4] L. Janke, C. Czaderski, M. Motavalli and J. Ruth. Applications of shape memory alloys in civil engineering structures-overview, limits and new ideas [J]. Materials andStructures, 2005, 38: 578-592
    [5] Sandrock G D, Perkins A J and Hehemann R F. The premartensitic instability in near-equiatomic TiNi [J]. Metal Trans, 1971, 2: 2769-2781
    [6] Wayman C M, Cornelis J and Shimizu K. Transformation behavior and the shape memory effect in thermally cycled Ti-Ni [J]. Scr. Metal, 1972, 6: 115-122
    [7] Z. Farhat, C. Zhang. On the deformation of superelastic TiNi alloy [J]. Tribol Lett, 2009,9
    [8] F. J. Gil, J. A. Planell, C. Libenson. Differences in the pseudoelasticity behaviour of Nickel-Titanium orthodontic wires [J]. Journal of Materials Science: Materials in Medicine, 1993, 4: 281-284
    [9] Saburi T. Ti-Ni Shape Memory Alloys. Shape Memory Materials [M]. Cambridge University Press, 1998, 77
    [10] Y. B. Wang, Y. F. Zheng, Y. Liu. Effect of short-time direct current heating on phase transformation and superelasticity of Ti-50.8at.%Ni alloy [J]. Journal of Alloys and Compounds, 2009, 477: 764-767
    [11]贺志荣,周敬恩,宫琦修一.固溶时效态TiNi合金的相变行为与Ni含量的关系[J].金属学报, 2003,39 (6): 617-622
    [12] Eckelmeyer K H. The Effect of Alloying on the Shape Memory Phenomenon in Ni-Ti Alloy [J]. Scr. Metall. 1976, 10: 667-672
    [13]贺志荣,王芳,周敬恩. Ni含量和热处理对Ti-Ni形状记忆合金相变和形变行为的影响[J].金属热处理, 2006, 31(9): 17-21
    [14]张志敏.冷变形和热处理对TiNiCr形状记忆合金超弹性影响的研究[D].江苏大学硕士学位论文, 2007
    [15]贺志荣,王芳. Ti-Ni-Co(Cr, V)超弹性合金的相变和形变特性[J].金属热处理, 2008, 33 (5): 16-18
    [16] Saburi T, Tatsumi T and Nenno S. Effect of Heat Treatment on Mechanical Behavior of TiNi Alloy [J]. Journal de Physique. 1982, 43: 261-266
    [17]贺志荣,张永宏,王永善等. Ti-50.6Ni超弹性弹簧的相变和形变特性[J].金属学报, 2004,40(1): 46-50
    [18]贺志荣. Ti-50.8Ni-0.3Cr超弹性合金的相变与形变特性[J].金属学报, 2008, 44 (9):1076-1080
    [19]谢英超,赵连城,雷廷权. TiNi形状记忆合金中富镍相得析出对机械行为的影响[J].金属科学与工艺, 1990, 9(1): 118-123
    [20] Fei Jiang, Yinong Liu, Hong Yang, Li Li, Yufeng Zheng. Effect of Ageing Treatment on the Deformation Behaviour of Ti-50.9at.%Ni[J]. Acta Materialia, 2009, 57(16): 4773-4781
    [21]黄兵民,王永前,程建霞等.近等原子比TiNi合金的超弹性[J].中国有色金属学报, 1996, 4: 110-136
    [22]黄兵民.冷变形Ni-Ti合金的显微组织及超弹性[D].哈尔滨工业大学博士论文, 1997
    [23] Zhang C S, Wang Y Q, Cheng J X et al. Pseudo-elasticity of Near-equiatomic Ni-Ti Shape Memory Alloy[J]. Proc. 1st Int. Conf. on Shape Memory and Superelastic Technologies. Asilomar, California, USA, March. 7-10,1994: 383-388
    [24]司乃潮,张志敏.冷变形对Ni-Ti-Cr形状记忆合金超弹性的影响[J].稀有金属材料与工程, 2008, 37 (1): 185-188
    [25]张春生. NiTiNb宽滞后记忆合金的组织结构和形状马氏体的稳定性[D].哈尔滨工业大学博士论文, 1991
    [26]蔡伟. Ni-Ti-Nb记忆合金应变恢复特性与形变马氏体的逆转变[D].哈尔滨工业大学博士论文, 1994
    [27] Zhao L C and Cai W. The Interface Structure and Stability of Deformation-induced Martensite in a Ni-Ti-Nb alloy with wide Hysteresis: Proc. of Inter. conf. on Displacive Phase Transformations and Their Applications in Materials Engineering [J]. Inoue K et al. TMS, 1998: 93-100
    [28] Saburi T, Tatsumi T, Nenno S. Effect of Heat Treatment on Mechanical Behavior of TiNi Alloy [J]. J. de. Phys. 1982, 43: 261-266
    [29]巩建鸣,户伏寿昭.循环加载下TiNi形状记忆合金超弹性变形行为[J].南京工业大学学报, 2001, 1(24): 52-56
    [30]郑碧玉,商泽进,王忠民.加载速率对超弹性TiNi形状记忆合金棒材力学行为的影响[J].机械科学与技术, 2008, 27(9): 1236-1242
    [31]左晓宝,李爱群,倪立峰等.超弹性形状记忆合金丝(NiTi)力学性能的实验研究[J].土木工程学报, 2004, 37 (12): 11-16
    [32]候俊锋,苏三庆,王社良. NiTi形状记忆合金丝拉伸实验研究[J].西安科技大学学报, 2009, 29(1): 49-53
    [33] Eggeler. G, Hornbogen. E, Yawny. A, Heckmann. A and Wager. M. Structure and function fatigue of TiNi shape memory alloys. Materials Science and Engineering A, 2004, 378(1-2): 24-33
    [34]贺志荣,张永宏,解念锁,刘琛.影响TiNi合金弹簧元件应变恢复率的因素[J].中国有色金属学报, 1998, 8 (Suppl.1): 218-222.
    [35]张英会,刘辉航,王德成.弹簧手册[M].北京:机械工业出版社, 1997, 8
    [36]石美玉,孟祥龙.恒载荷下TiNi和TiNiCu形状记忆合金弹簧的热稳定性[J].哈尔滨工程大学学报, 2008, 29(4): 416-419
    [37]毛晨曦,李惠,欧进萍.形状记忆合金被动阻尼器及结构地震反应控制试验研究和分析[J].建筑结构学报, 2005, 26(3): 38-44
    [38] Yongqing Fu, Hejun Du, Weimin Huang, Min Hu. TiNi film based shape memory alloy and microactuators [J]. International Journal of Computational Engineering Science, 2003 ,4(2): 221-225
    [39]徐祖耀,江伯鸿,杨大智等.形状记忆材料[M].上海:上海交通大学出版社, 2000, 1
    [40] Fu Y. Q, Du H. J. Effects of film composition and annealing on residual stress evolution for shape memory TiNi film [J]. Materials Science and Engineering A, 2003, 342(1-2): 236-244
    [41]曲炳郡. TiNi形状记忆合金薄膜制备工艺及其单元互联微执行器研究[D].大连理工大学博士论文, 2001, 10
    [42]刘晓鹏,金伟,曹明洲. TiNi薄膜马氏体稳定化及其形状记忆效应研究[J].金属学报, 2002,38 (2): 193-195
    [43] Ken K Ho, Mohanchandra K P, Gregory P Carman. Examination of the sputtering profile of NiTi under target heating conditions [J].Thin Solid Films ,2002, 413(1-2): 1-7
    [44] Ken K Ho, Gregory P Carman. Sputter deposition of NiTi thin film shape memory alloy using a heated target [J]. Thin Solid Films, 2000 ,370(1-2): 18-29
    [45]郑雁军. TiNi形状记忆合金丝/Al基复合材料中TiNi合金约束态相变的研究[D].大连理工大学博士论文, 2000
    [46] Yasubumi Furuya, Atsushi Sasaki and Minoru Taya. Enhanced Mechanical Properties of TiNi Shape Memory Fiber/ Al Matrix Composite [J]. Materials Transactions. 1993,34(3): 224-227
    [47]朱玮国.形状记忆合金及其复合材料的本构关系[D].大连理工大学博士论文, 2002
    [48]张新平,张宇鹏.多孔NiTi形状记忆合金研究进展[J].材料研究学报, 2007, 21(6): 561-569
    [49]姜海昌,戎利建.多孔NiTi形状记忆合金中Ni的释放行为[J].金属学报, 2008, 44(2): 198-202
    [50]梁春永,杨阳,王洪水.应用飞秒激光在NiTi合金表面制备多孔微结构[J].科学通报, 2008, 53(1): 61-65
    [51]张利祥,胡国新.注射成形制作高孔隙率NiTi形状记忆合金的实验研究[J].上海交通大学学报, 2008, 42(1): 87-90
    [52]吴全兴. TiNi合金形状记忆和超弹性特性的应用[J].稀有金属快报, 2007, 26(10): 42-44
    [53]赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社, 2002
    [54]陈付时.超弹性在医学上的应用[J].上海钢研. 1997, 4: 54-55
    [55]贺志荣. Ti-50.8Ni-0.3Cr超弹性合金的相变与形变特性[J].金属学报, 2008, 44 (9): 1076-1080
    [56] Fukuda T, Takahata M, Kakeshita T, Saburi T. Two Way Shape Memory Properties of a Ti-51Ni Single Crystal Including Ti3Ni4 Precipitate of a Single Variant[J]. Mater Trans, 2001,142 (2): 323-328
    [57]柳伟,郑玉贵,饶光斌等.相变伪弹性对NiTi合金多相流损伤的影响[J].金属学报, 2002,142 (2): 185-188
    [58]巩建鸣,户伏寿照,高田和幸等.循环加载条件下TiNi形状记忆合金超弹性变形特性分析与模拟[J].航空材料学报, 2002, 22, 4: 6-11
    [59]李树盛,崔立山. NiTi记忆合金恢复应力的计算机仿真[J].航空制造工程, 1998, 2: 46-48
    [60]郑雁军,崔立山,杨大智. TiNi形状记忆合金恢复力模型[J].大连理工大学学报, 2000, 40(2): 180-182
    [1] Janke L, Czaderski C, Motavalli M and Ruth J. Applications of shape memory alloys in civil engineering structures-overview, limits and new idears [J]. Materials and Structures, 2005,38: 578-592
    [2] Bi-Chiau, John A. Shaw, Mark A. Iadicola. Thermodynamics of shape memory alloy wire: modeling, experiments, and application [J]. Continuum Mech. Thermodyn, 2006,18: 83-118
    [3] E. Pieczyska, W. Nowacki, T. Sakuragi and H. Tobushi. Superelastic deformation properties of TiNi shape memory alloy [J]. Key Engineering Materials, 2007,340-341: 1211-1216
    [4] Dong Y. S, Xiong J. L, Li A. Q, Lin P. H. A passive damping device with TiNi shape memory alloy rings and its properties [J]. Materials Science and Engineering A, 2006,416: 92-97
    [5] J. Raghavan, Trevor Bartkiewicz, Shawna Boyko, Mike Kupriyanov, N. Rajapakse, Ben Yu. Damping, tensile, and impact properties of superelastic shape memory alloy (SMA) fiber-reinforced polymer composites [J]. Composites: Part B, 2009, http://www.elsevier.com/locate/compositesb
    [6]熊九郎,林萍华,董寅生,李爱群. Ti-Ni形状记忆合金环超弹阻尼器的阻尼特性研究[J].功能材料, 2006, 2(37): 255-261
    [7] Jiang H C, Rong L J. Ways to lower transformation temperatures of pours NiTi shape memory alloy fabricated by self-propagating high-temperature synthesis [J]. Materials Science and Engineering A, 2006; 438-440: 883-886
    [8]贺志荣,王芳,王永善,夏鹏举,杨波. V和Cr对Ti-Ni超弹性合金相变和形变特性的影响[J].金属学报, 2007, 43(12): 1293-1298
    [9] Q. S. Liu, X. Ma, C. X. Lin, Y. D. Wu. Effect of the heat treatment on the damping characteristics of the NiTi shape memory alloy [J]. Materials Science and Engineering A, 2006, 438-440: 563-566
    [10]贺志荣,王芳.热处理对Ti-49.8Ni-1.0Co超弹性合金相变行为的影响[J].金属学报, 2008, 44 (1): 23-28
    [11] Sia N N, Jeom Y C. Strain rate dependence of deformation mechanisms in a Ni-Ti-Cr shape-memory alloy [J]. Acta Mater. 2005, 53: 449-454
    [12]司乃潮,张志敏.冷变形对NiTiCr形状记忆合金超弹性的影响[J].稀有金属材料与工程, 2008, 37(1): 185-188
    [13] Jeom Y C, Sia N N. Effect of annealing and initial temperature on mechanical response of a Ni-Ti-Cr shape-memory alloy [J]. Materials Science and Engineering A, 2006, 432: 100-107
    [14] Miyazaki S, and Wayman C M. The R-Phase transformation and associated shape memory mechanism in Ti-Ni single crystals [J]. Metall Trans, 1988, 36: 181-192
    [15] Jafar Khalil-Allafi, Antonin Dlouhy, Cunther Eggeler. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations [J]. Acta Materialia, 2002, 50: 4255-4274
    [16] A. Kroger, S. Dziaszyk, J. Frenzel, Ch. Somsen, A. Dlouhy, G. Eggeler. Directtransformation electron microscopy observations of martensitic transformation in Ni-rich NiTi single crystals during in situ cooling and straining [J], Materials Science and Engineering A, 2008, 481-482: 452-456
    [17] A. Dlouhy, O. Bojda, Ch. Somsen, G. Eggeler. Conventional and in-situ transmission electron microscopy investigations into multistage martensitic transformations in Ni-rich NiTi shape memory alloys [J]. Materials Science and Engineering A, 2008, 481-482: 409-413
    [18] H. Sehitoglu, J. Jun, X. Zhang, I. Karaman, Y. Chumlyakov, H. J. Maier and K. Gall. Shape memory and pseudoelastic behavior of 51.5%Ni-Ti single crystals in solutionzed and overaged state [J]. Acta Mater, 2001,49: 3609-3620
    [1] Hisaaki Tobhushi, Kikuaki Tanaka, Tatsuya Hori, Takayuki Sawada, Takeharu Hattori. Pseudolasticity of TiNi shape memory alloy [J]. Jsme Int J Ser A, 1993,36(3): 314-418
    [2] Zhang Tinghua, Zheng Yufeng, Cai Wei. The phase behavior of tini shape memory alloys [J]. Material Science and Technology, 1997,5(1): 80-86
    [3] Xiao Jun Yan, Jing Xu Nie. Stusy of a new application form of shape memory alloy superelasticity [J]. Smart Mater Struct, 2003, 12: 14-23
    [4] Salichs. J, Hou. Z, Noori. M. Vibration suppression of structures using passive shape memory alloy energy dissipation devices [J]. J. Intell. Mat. Struct, 2001, 12: 671-680
    [5] Dolce.M, Cardone.D. Mechanical behavior of shape memory alloys for seismic applications, 2. Austenite niti wires subjected to tension [J]. Int. J. Mech. Sci, 2001, 43(11): 2657-2677
    [6]许久军,严立朱,新河. TiNi形状记忆合金沙蚀磨损的机敏行为[J].中国有色金属学报, 2001, 10(10): 188-193
    [7] V. G. Dorodeiko, V. V. Rubanik, V. V. Rubanil Jr, S.N.Miliukina. Heat treatment of TiNi wire used for intrauterine contraceptives [J]. Materials Science And Engineering A, 2008, 481-482: 616-619
    [8]李艳峰,米绪军,高宝东,尹向前.退火工艺对TiNi形状记忆合金相变的影响[J].热加工工艺,2008, 37(24): 24-27
    [9]刘书芹,袁志山,王江波.热变形对TiNi形状记忆合金丝材力学性能以及超弹性的影响[J].热加工工艺2007, 36(22): 20-23
    [10]贺志荣,王芳,王永善等. V和Cr对Ti-Ni超弹性合金相变和形变特性的影响[J].金属学报, 2007, 43(12): 1293-1296
    [11] Jeom Y C, Sia N N. Effect of annealing and initial temperature on mechanical response of a Ni-Ti-Cr shape-memory alloy. Materials Scicence and Engineering A, 2006, 432: 100-107
    [12]贺志荣. Ti-50.8Ni-0.3Cr超弹性合金的相变与形变特性[J].金属学报, 2008, 44(9): 1076-1080
    [13] Y.F.Zheng, B.M.Huang, J.X.Zhang, L.C.Zhao. The microstructure and linear superelasticity of cold-drawn tini alloy [J]. Materials Science And Engineering A, 2000, A279: 25-35
    [14] Saburi T, Nenno S, Nishimoto Y et al. Deformation behavior of shape memory Ti-Ni alloy crystals [J]. Scripta Metallurgica, 1984,18: 363-366
    [15]吴波,孙科学,李惠,唐卫胜.热处理对形状记忆合金超弹性滞回性能的影响[J].振动工程学报, 2000,13(3): 449-454
    [16] Chang B C, Shaw J A, Iadicola M A. Continuum Mech Thermodyn. 2006; 18: 83
    [17] Chumlyakov Y I, Kireeva I V, Karaman I. Russian Physics Journal. 2004; 47(9): 893
    [1] S. M. Seyyed Aghamiri, M. Nili Ahmadabadi, Sh. Raygan, I. Haririan, M. S. Ahmad Akhondi. The mechanical and thermal behaviors of heat-treated Ni-rich NiTi orthodontic archwires [J]. JMEPEG, 2009, 18: 834-847
    [2]陈欣宋,孔杰,孙玲玲.形状记忆合金超弹性阻尼特性及工程应用[J].噪声与振动控制, 2003, 2: 14-17
    [3] Castellano. M. G. Seismic protection of the basilica in San Francesco ad Assisi [J].2000, http://rin365.arcoveggio.enea.it/GLIS/HTML/gn/assisi/g5assisi.htm
    [4] Li. H. J, Dunne. D. New corrosion resistant iron-based shape memory alloys [J]. ISIJ Int, 1997,37(6): 605-609
    [5]王亚芳.形状记忆合金的超弹性及其应用研究[D].西北工业大学硕士论文, 2004
    [6] I. V. Kireeva, Yu. I. Chumlyakov, E. G. Zakharova, I. Karaman. Shape memory and superelasticity in single-phase nickel titanium single srystals [J]. Journal de Physique. TV, 2004, 115(0): 175-183
    [7]贺志荣,周敬恩.固溶时效态TiNi合金相变行为与Ni含量的关系[J].金属学报,2003, 39(6): 617-622
    [8]黄兵民,蔡伟,赵蔚,赵连城.热处理和冷变形对Ti-Ni合金非线性超弹性的影响[J].宇航材料工艺,1997, 5: 24-26
    [9]黄兵民.冷变形Ti-Ni合金的显微组织及超弹性[D].哈尔滨工业大学博士论文, 1997
    [10] Nirai Nayan, V. Buravalla, U. Ramamurty. Effect of mechanical cycling on the stress-strain response of a martensitic Nitinol shape memory alloy [J]. Materials Science And Engineering A, 2009, A 525: 60-67
    [11] Jiao Yu-qin, Wen Yu-hua, Li Ning, He Jia-qiang, Teng Jin. Effect of environmental temperature on damping of cu-al-mn alloy [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 616-619
    [12] Hosoda H, Wakashima K, Miyazaki S, Inoue K. Factors for controlling martensitic transformation temperature of TiNi shape memory alloy by addition of ternary elements [J]. Mater Res Soc Symp Proc, 2005, 842: 353-358
    [13] Uchil J, Kumara K G, Mahesh K K. Effects of heat treatment temperature and thermal cycling on phase transformations in Ni-Ti-Cr alloy [J]. J Alloys Compounds. 2001, 325: 210-214
    [14]张志敏.冷变形和热处理对Ti-Ni-Cr形状记忆合金超弹性影响的研究[D].江苏大学硕士学位论文, 2007
    [15] D. Holec, O. Bojda, A. Dlouhy. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys [J]. Materials Science and Engineering A, 2008, (481-482): 462-465
    [16] Jafar Knalil-Allafi, Antonin Dlouhy, Gunther Eggeler. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations [J]. Acta Materialia, 2002, 50: 4255-4274
    [17] Olson G B and Cohen M J. Mechanism for the strain-induced nucleation of martensitic transformation [J]. J Less-Common Met, 1972,28: 107-117
    [1]刘永红,杨毅,贾宝贤.变载荷作用下TiNi形状记忆合金弹簧的变形特性[J].功能材料, 2001, 32(1): 42-44
    [2]刘永红,杨毅,张作龙.环境介质对形状记忆合金弹簧记忆恢复效应的影响[J].功能材料,2001, 32(4): 382-384
    [3]宋固全,徐玉红,吴晓钢.形状记忆合金弹簧力学性能分析[J].南昌大学学报(工科版),2005, 27(2): 1-5
    [4]陈安明,钱学军.形状记忆合金螺旋弹簧的设计[J].机械设计与制造工程, 1999,28 (1): 17-19
    [5]贾宝贤,刘永红等.形状记忆合金螺旋弹簧的设计方法[J].机械设计, 1999, 16(4): 13-17
    [6]李晋芳,任勇生.形状记忆合金超弹性弹簧的设计[J].太原理工大学学报, 1997, 30(4): 410-412
    [7] Patel J R and Cohen M. Criterion for the action of applied strss in the martensitic transformation. Acta Met.1953, 1: 531-538
    [8] Wayman C M. Phase Transformations, Nondiffusive, R. W. Cahn and P. Haasen, eds, Physical Metallurgy, Third Revised and Enlarged Edition, Elseriver Science PublishersBV, 1983, chapter 15: 1032-1073
    [9] Liang C, Rogers C A. Design of shape memory alloy springs with application in vibration control [J]. J Vibration and acoustics, 1993, 115: 128-135
    [10]王志刚. TiNi形状记忆合金变形特性实验研究[J].力学学报, 1995, 27(5): 587-595
    [11] Liang.C, Rogers.C.A. Design of shape memory alloy springs with applications in vibration control [J]. J. Intell. Mater Syst. Sturut, 1997, 8:314-322
    [12]贺志荣.热处理工艺对Ti-Ni合金相变及形状记忆行为的影响[J].金属热处理, 1999, (1): 4–6
    [13] Kim J I, Liu Y, Miyazaki S. Ageing-induced two-stage R-phase transformation in Ti-50.9at.%Ni [J]. Acta Materialia, 2004, 52: 487-499.
    [14]王吉军,崔立山等. Ni-Ti形状记忆合金的振动主动控制研究[J].大连理工大学学报, 1997, 37(4): 485-489
    [15]贺志荣,张永宏,王永善,周敬恩. Ti49.4Ni50.6超弹性弹簧的相变和形变特性[J].金属学报, 2004, 40(1): 46-50
    [16] Patel J R and Cohen M. Criterion for the action of applied stress in the martensitic transformation [J]. Acta Met, 1953, 1: 531-538
    [17] Wayman C M. Phase transformations, Nondiffusive, R. W. Cahn and P. haasen, eds, Physical Metallurgy, Thirs Revised and Enlarged Edition, Elsevier Science Publishers BV, 1983, 15: 1032-1073
    [18]李丙运等.多孔形状记忆合金的变形特性及热-机械循环对形状记忆性能的影响[J].金属学报, 1999, 35(4): 362-364