流域水量供需协同优化调度系统研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个水资源相对贫乏的国家,自古以来旱灾就是主要自然灾害之一。为解决有限的供水能力和日益增长的需水要求之间的矛盾,必须研究多目标约束条件下水资源高效利用的科学方法,寻找合理调配水源与用水的时空配置方法,达到利用有限的水资源促进经济、社会的持续发展和保护环境健康,实现水资源的可持续利用的目标。
     水资源的科学合理配置涉及到来水和用水两个过程,除需要解决两个过程的预测问题外,更重要的是需要解决两个过程的时空及要素匹配,以便于应用多目标优化理论与技术,实现来水过程与用水过程的协同优化。为此,本论文参考协同学的相关理论和方法,从构造基于流域水量供需协同优化调度理念的智能系统体系结构入手,对来水过程和用水过程的多因素模拟方法与计算两个过程的协同优化算法等研究成果进行了系统化的论述,并以江西省抚河流域为研究原型,通过与不同方法的对比分析检验了主要研究成果。本论文的主要工作成果如下:
     (1)制定多级水量协同优化调度参与对象和原则,提出流域多级水量协同优化调度的框架和流程,分析了水量调度系统的功能需求和设计目标的基础,并对研究区域的来水过程和需水过程进行辨析,提出水量调度的依据。
     (2)系统构建流域控制断面最小需水流量计算模型。依托现有水文站、雨量站、水库和大型灌区取水口,遵循干流与支流相结合的原则,确定流域控制断面和用水区。根据水量分配协商确认方案计算各用水区河道外用水量,利用流域水文站点实测数据和水功能区划资料计算各用水区生态环境需水量,在此基础上,结合区间来水,构建流域各控制断面最小生态需水量计算方法。
     (3)提出了基于动态免疫克隆粒子群算法的产汇流动态模型。通过实验函数的测试了该算法的优势和用处,分析了算法的快速收敛过程。新安江产汇流计算模型,提供了供水数据处理的途径,但模型的多因子调试和模型的准确性,很难处理。应用提出的基于免疫克隆粒子群算法的动态产汇流参数调配的手段和计算方法,通过改变不同时期的新安江模型参数,使新安江日模型的模拟精度有较大的提高,表明该计算方法具有可行性。
     (4)基于数据驱动建模和GRNN理论,提出了河流径流的中长期、短期预测模型,并通过对抚河流域洪门水库区域三个主要水文站月径流序列和10天径流序列的预测结果与BPNN模型对比,检验了动态GRNN径流预测模型的拟合精度和预测的可靠性。
     (5)确定了抚河流域协同水量优化调度的原则,并构建水量调度模型,包括目标函数、约束条件、模型的求解和调度启动条件;基于供需模型的构建,分析不同来水条件下的抚河流域供需状况,构建了协同水量优化调度方法,在非汛期水量协同优化调度方法的基础上,模拟了不同频率来水条件下水量调度结果,验证该方法的可行性。
     (6)非汛期水量调度辅助决策平台构建。以流域控制断面最小需水流量计算方法、动态供水量预测模型和多级流域水量协同优化调度模型为基础,使用C#语言在Visual Studio2005平台上开发了非汛期水量调度辅助决策系统平台,介绍了水量调度系统平台的运行设备及其运行环境,数据信息流过程。同时提出水量调度专家知识库技术,介绍了水量调度专家知识库查询原理和流程,并验证该技术的可靠性,进而为水量调度方案编制提供支撑。
Water resources are relatively poor in China. Drought has been one of major natural disasters in China since ancient times. In order to solve the contradiction between limited water supply capability and ever-increasing water demand, scientific methods have to be found to utilize water resources with high efficiency under multi-objective constraint conditions. Scientific and reasonable methods used to allocate water source and water use, both in spatial and temporal scale, have to be explored. The objectives are to reach the goals of promoting healthy and sustainable development of society, economy and environment with the very limited water resources, and utilizing the water resources in a sustainable way.
     Scientific and reasonable allocation of water resources are related to two processes:the water supply and the water usage. In addition to solve the problem of water predicting in these two processes, the spatial-temporal and elements matching should be solved in priority. The collaborative theory is a optimal technology and it can be obtained the optimal scheme in a multi-objective optimization and reach the best matching in the application of water supply and the water usage. Using relevant theories and methods of synergetics as references, the structure of intelligent system was constructed on the basis of idea of collaborative optimization water dispatching in river basin. Multiple-factor simulation method and calculation for water supply and water use, and collaborative optimization algorithm have been discussed. A case study was conducted in Fuhe River Basin in Jiangxi Province. Major results and conclusions are verified by means of different methods of analysis. Major contents in this thesis are:
     (1) The collaborative optimization scheduling and principle for the multi-level water is established, the framework and process of a collaborative optimization of multi-level water dispatching are proposed by analyzing function requirements and design objectives of water dispatching system, In accordance with the results of analyzing the two processes of water supply and water usage in the studied area, the basis for water dispatching scheme is proposed.
     (2) The water requirement model of the minimum controlling for basin control section is constructed. The basin controlling section and water usage area are decided according to information from relevant hydrologic stations, precipitation stations, water intake of reservoirs and large-scale irrigation areas along the main streams and tributaries in the basin. According to the water allocation scheme, the district river water is calculated, then the water requirement of ecological environment is calculated on basis of the data of the hydrological stations measure and water function materials. After that, combining the interval inflow with river ecological water requirements, a calculation method of each control section is constructed.
     (3) A dynamic model of concentration and runoff based on immune clonal particle swarm optimization algorithm is proposed. The astringency of the proposed algorithm is analyzed by some functions experiments in detail and the accuration and the reliability is tested. Xin'An River model provides a calculation way for water supply, however, it is difficult to reach accuracy in practice. Appling the proposed dynamic immune clonal particle swarm algorithm to select these parameters in the Xin'An River model adaptively in different periods, the precision of simulation model of Xin'An River has greatly improved, the result shows that the calculation method is feasible.
     (4) Based on the theory of the data driven and the generalized regression neural network (GRNN), a dynamic long-term and short-term river runoff predictor is proposed The fitting accuracy and reliability of the monthly and10-days predicting model are tested and verified in three major monthly runoff series of hydrological station in Hongmen Reservoir Area in the Fuhe River Basin by comparing with Back Propagation Neural Network (BPNN). The experiment result shows the dynamic GRNN model have a high fitting precision and reliability.
     (5) The principles used in collaborative optimized water dispatching in Fuhe river basin are formulated. A model used in allocation of water amount is established. The objective function, constraint conditions, solution of model and dispatching startup conditions are determined. On the basis of water supply-demand model, different scenarios of water supply and demand in Fuhe River basin are analyzed under different conditions of water inflow. Methods used in collaborative optimized water dispatching are established. Based on the methods of collaborative optimized water dispatching in non-flooded seasons, scenarios of water dispatching under different frequencies of water supply are simulated with an aim of verifying the feasibility of the model.
     (6) The platform of decision supporting system used for water dispatching in non-flooded seasons is developed. This platform is constructed using calculating methods for the minimum controlling water requirement for basin control section, dynamic model to predict water supply, and collaborative optimized water dispatching model for multi-level river basin. The platform of decision supporting system used for water dispatching in non-flooded seasons was developed with C#on Visual Studio2005. The running equipment of water dispatching system and their running environment are introduced. The data flow process is also described. Technology of expert's knowledge base used in water dispatching is studied. The process and inquiry principle of expert's knowledge base used in water dispatching are illustrated. Also, the reliability of this technology is verified. And then, this technology is used in the formulation of water dispatching scheme.
引文
[1]江西省质量技术监督局,江西省城市生活用水定额(DB36/T419-2011)[S],2011.12.
    [2]沈柑卿.对水资源持续利用重大贡献[J].地理学报,1999,54(2):189-190.
    [3]C. W. Reynolds. Flocks, Herds, and Schools:A Distributed Behavioral Model. Computer Graphics, 1987,21(4):25-34.
    [4]E. T. J. Pitcher, B. L. Partridge, and C. S. Wardle. Blind Fish Can School [J]. Science,1976,194:B. L. Partridge. The Structure and Function of Fish Schools [J]. Scientific American,1982,246:114-123.
    [7]N. Saiwaki, T. Komatsu, C. Anderson and N. R. Franks [J]. Teams in Animal Societies. Behavioral Ecology,2001,12(5):534-540李东,张学成,可素娟,等.沁河水量调度方案可行性探讨[J].人民黄河,2008,30(12):65-66.
    [10]田学民,解建仓,菅玉敏.基于Web的水量调度系统研究与实现.宁夏工程技术,2009,8(3):217-220.
    [11]徐滨,谢建仓,李刚军,等.基于CBR的宁夏灌区水量调度.中国水利,丁斌,任韶斐,魏永强,等.黑河水量调度业务处理与综合监视系统的研究和实现[J].甘肃水利水电技术,2008,44(7):463-465.
    [13]李燕,腾阳.南水北调中线工程水量调度系统设计与研究[J].水利水电技术顾颖,颜志俊,彭岳津.南水北调东线工程水量调度仿真研究[J].南水北调与水利科技,2008,6(1):73-76.
    [15]李燕,周丽.多目标非线性水资源优化配置模型的混合遗传算法[J].水电能源科学,2005,(5):22-25.
    [17]S.G Campbell,B.J.V. Lienden, A. Munevar, R. Field, et al. AH. Lu, G Huang, L. He. An inexact rough-interval fuzzy linear programming methodY. Han, Y.F. Huang, G.Q. Wang, et alP.D. Dahe and D.K. Srivastava Multireservoir multiyield model with allowable deficit J.T. Needham, J. D. Watkins, J.R. Lund,S. Vedula, P.P. Mujumdar, G.C. Sekhar.J.S. Windsor. Optimization model for reservoir flood control [J]. Water Resource Research.1973,9(5):1103-1114.
    [25]J. Wang, X. Yuan, Y. Zhang. Short-term seheduling of large-scale hydroPower systems for energyS.J. Mariano, J.P. Catalao, V.M. Mendes, et al. Head-dependent maximum power generation in short-term hydro seheduling using nonlinear programming[C]. Proeeedings of the LASTED Intemational Conference on Energy and Power Systems,2007,247-252.
    [27]R. E.A. Mouatasim. Boolean Integer Nonlinear Programming for Water Multireservoir Operation[J]. Journal of Water Resour Planning and Management-A SCE,2012,138(2),176-181.
    [29]张玉新,冯尚友.多维决策的多目标动态规划及其应用[J].水利学报,1986,(7D.N.Kumar,F.Baliarsingh. Folded dynamic programming for optimal operation of multireservoir system[J]. Water Resource Management 2003,17(5):337-353.
    [31]贾仁甫,马志鹏,陈守伦.灰色动态规划方法在水库调度中的误差分析[J].水利发电学报,2008,27(4):李顺新,杜辉.动态规划-粒子群算法在水库优化调度中的应用[J].计算机应用,2010,30(6):1550-1551,1580.
    [33]徐嘉,胡彩虹,吴泽宁.离散微分动态规划在水库优化调度中的应用研究[J].气象与环境科学,2011,34(4):79-83.
    [34]Y.C. Wang, Y. Kim, H. Eum, E. Lee, et al. Optimizing operational policies of a Korean multireservoir system using sampling stochastic dynamic programming with ensemble streamflow prediction[J]. Journal of Water Resour Planning and Managemen-ASCE,2007,133(1):A. Serrat-Capdevila and J. Valdes. An alternative approach to the operation of multinational reservoir systems:application to the Amistad & Falcon system (Lower Rio Grande/RioS.J. Mousavi, K. Mahdizadeh, A. Afshar. A stochastic dynamic programming model with fuzzy storage states for reservoir S.J. Mousavi, K.S. Moghaddam, A. Seifi. Application of an interior-point algorithm for optimization of a large-scale reservoir system[J]. Water Resource Management,2004b,18(6): 519-540.周佳,马光文,张志刚.基于改进POA算法的雅碧江梯级水电站群中长期优化调度研究[J].水力发电学报,2010,29(3):15-22.
    [40]秦映波.神经网络算法在物流配送车辆优化调度中应用[J].计算机仿真,2012,29(1):301-303.
    [41]张永永,黄强,畅建霞.基于模拟退火遗传算法的水电站优化调度研究[J].水电能源科学,2007,25(6):102-105.
    [42]徐松,陈守伦涂启玉,梅亚东.基于改进遗传算法的溪洛渡水库优化调度研究[J].水电能源科学,2008,26(3):39-42.
    [44]温进化,陆列寰,何江波,等.基于遗传算法的梯级水库优化调度图研究[J].安徽农业科学,201 1,39(31):19640-19642.
    [45]梁伟,陈守伦,何春元,等邱林,田景环,段春青,等.混沌优化算法在水库优化调度中的应用[J].中国农村水利水电,2005(7):17-19.
    [47]刘起方,马光文,刘群英,等.对分插值与混沌嵌套搜索算法在梯级水库联合优化调度中的应用[J].水利学报,2008,39吴正佳,周建中,杨俊杰.基于蚁群算法的三峡库区洪水优化调度[J].水利发电,2008,34(2):A. El-Shafie, M.R. Taha, A. Noureldin. A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam[J]. Y. Chang, L. Chang, F. Chang. Intelligent control for modeling of赵钰,段富.基于BP神经网络的水库优化调度[J].电脑开发与应用,2010,23(8):50-53.
    [52]R.潘婷,雷晓云,郭秀娟,等.乌鲁瓦提水库调度模型及算法研究[J].人民黄河,2012,34(1):Y.C. Chiu, L.C. Chang, F.J. Chang. Using a hybrid genetic algorithm-simulated annealing algorithm for fuzzy programming of reservoir operation[J].W.C. Huang, L.C. Yuan, C.M. Lee. Linking genetic algorithms with stochastic dynamic programming to the long-term operation of a multireservoir system[J]. Water Resource Research,2002,38(12):1304-1312.
    [56]吴学文,索丽生,王志坚.水电站水库优化调度的改进混沌遗传算法[李辉.红水河梯级水库群短期优化调度研究与应用[D].大连:大连理工大学,2011.
    [58]赵鸣雁,程春田,李刚.水库群系统优化调度新进展[J].水文,2005,25(6):18-23,61.
    [59]Y. Sun, L.B. Zhang, X. S. Gu. A hybrid co-evolutionary cultural algorithm based Rui Zhang, Jianzhong Zhou, et al. Optimal operation of mulit-reservoir system by multi-elite guide particle swarm optimization [J]. Electrical Power and Energy Systems,2013, (48):58-68.
    [61]B. NiuH. MENG, X. ZHANG, S. LIU. A co-evolutionary particle swarm optimization-based method for multi -objective optimization[C]. Proceeding of the 18th Australian Joint Conference on Artificial Intelligence,2005:349-359.李爱国.多粒子群协同优化算法[J].复旦大学学报:自然科学版,2004,43(5):923-925.
    [64]李菲菲,张创业,莫愿斌.基于协同进化思想的人工鱼和粒子群混合优化算法[J].广西民族大学学报:自然科学版,2009,15(赵亮.基于协同PSO算法的模糊辨识与神经网络学习[D].上海:上海交通大学,2009.
    [67]S. Yang and S. Cho刘丙军,陈晓宏.基于协同学原理的流域水资源合理配置模型和方法[J]. 水利学报,2009(1):60-66.
    [69]孙凡,解建仓陈静,杨凯,张勇等.灰色协调度模型在产业用水系统分析中的应用[J].长江流域资源与环境,2008(9):688-692.杨道辉,马光文,过夏明,等.粒子群算法在水电站优化调度中的应用[J].水力发电学报,2006,25(5):5-7.
    [72]马细霞,芮钧,梁伟,陈守伦.基于粒子群算法的水电站中长期优化调度研究[J].水电能源科学,2007,25(5):99-101.
    [74]袁鹏,武斌;任海霞;.基于粒子群算法的水库优化调度模型[J].东北水利水电,2007,274(05):43-45,72.
    [76]邱林,肖琳.改进微粒群优化算法在水库防洪调度中的应用杨子俊,王丽萍,谢维,方婧,喻杉.基于文化粒子群算法的水库发电调度图绘制[J].水力发电,2010,(01):35-37.
    [78]陈田庆;解建仓;张刚;李建勋;岳新利;.基于小生境和交叉选择粒子群算法的水库优化调度研究[J].西北农林科技大学学报(自然科学版),201 1,(07).
    [79]黎晓峰;薛保菊;李维乾;.基于改进粒子群算法的水库优化调度研究[J].水力发电,2008,(11).
    [80]Xiang Fu, Anqiang Li, et al. Short-term scheduling of cascade reservoirs using an immune algorithm-based particle swarm optimization [J]. Computers and MathematicsK.D. Nagesh and R.M. Janga. Multipurpose reservoir operation using particle swarm optimization[J]. Journal of Water Resources Planning and Management,2007,133(3):192-201.
    [82]王海政,仝允桓.可持续发展视角下的区域水资源优化配置模型[J].赵晓军,田富强,胡和平.粒子群优化算法在水量调度方案优化中的应用[J].人民黄河,2007,25(11):杨道辉,马光文,刘起方等.基于粒子群优化算法的BP网络模型在径流预测中的应用[J].水力发电学报,2006,25(2):65-68.
    [85]王亮,张宏伟,岳琳等.PSO-BP模型在城市用水短缺预测中的应用[J].系统工程理论与实践,2007,(9):165-171.冯雁敏,李承军,张铭.基于改进粒子群算法的水库中长期调度函数研究[J].水力发电,2008,34(2):94-97.
    [87]杨菊香.陈立华,朱海涛,梅亚东.并行粒子群算法及其在水库群优化调度中应用[J].广西大学学报:自然科学版,2011,36(4):677-672.
    [89]王福岭,原文林,于健等.改进粒子群算法在梯级水库优化调度中的应用[J].人民黄河,2012,34(3):88-90,94.
    [90]J.Q. Wang and XS.G. Ye and B. He. Application Research on Optimal Operation of Reservoir Group Water Supply Based on Particle Swarm Optimization Algorithm [C]. Intelligent Systems (GCIS),2010 Second WRI Global Congress.16-17 DecZ.L. Wang, H.H. Sheng, J.H. Jia. Application of Y. Ruan. Comparative Analysis of Genetic Algorithms andJ. Zhang, Z. Wu, C.T. Cheng, et al. Improved particle swarmJ. Tian, J.C. Xie, X.H. Xing. Optimal Reservoir Operation Based on Improved Particle Swarm Optimization Algorithm[J]. Applied Mechanics and Materials,2012, 212-213,502-508.
    [96]吴生平.水库群多控制断面缺水期水资源调度模型研究[J].Fjerstad P A, Sikandar A S. Next Generation Parallel Computing for Large-Scale Reservoir Simulation:Proceedings of the SPE International Improved Oil Recovery Conference in Asia Pacific [C].2005:33-41.Dawkins, R., and J. R. Krebs. Arms races between and within species. Proceedings of the Royal Society of London B 1979,205:489-511.
    [99]R.J. Kier, J.C. Ames, R.D. Beer,Z. Kuscsik, D. Horvath, M. Gmitra. The co-evolutionary dynamics of directed network of spin market agents [J]. Physica A:Statistical Mechanics and its Applications,2006,369(2):780-788.M. A. Potter. The Design and Analysis of a Computational Model ofP. J. Angeline and J. B. Pollack. Competitive Environments Evolve Better Solutions 李碧.协同进化算法的研究及其应用[D].:华南理工大学,2010.
    [104]Andries P. Engelbrecht. Fundamentals of ComputationalCartlidge J., Bullock S. Combating coevolutionary disengagementParedis J. Co-evolutionary Computation [J]. Artificial Life,1995,4(2): 355-375.
    [107]Paredis J. Co-evolutionary constraint satisfaction [A]. Proceedings of C. D. Rosin, R. K. Belew. Methods for Competitive C. D. Rosin, R. K. Belew. New methods for competitive coevolution [Tan K.C., Yang Y.J., Goh C.K. A distributed郑浩然,何劲松,龙飞,等.基于多策略机制的多模式共生进化算法[J].小型微型计算机系统,2003,24(6)Kim Y.K., Park K., Ko J. A symbiotic evolutionary algorithm forM. A. Potter and K. A. De Jong, "Cooperative Coevolution:AnK. E. Parsopoulos, "Parallel cooperative micro-particle swarm optimization:A master-slave model," AppliedH. N. Chen, Y. L. Zhu, K. YGarcia-Pedrajas N., Hervas-Martinez C., Ortiz-Boyer D. Cooperative coevolution of artificial X. Zhao, H. Wang, Z. Shao, and J. Miao, "Multi-objective co-evolutionary Krawiec K., Bhanu B. Visual learning by coevolutionary feature synthesis [J]. Krawiec K., Bhanu B. Visual learning by evolutionary andM. Fadaee and M. A. M. Radzi, "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms:A review," Renewable & Sustainable Energy P. Maragathavalli and S. Kanmani, "Evolutionary Multi-Objective Optimization for Data-Flow Testing of Object-Oriented Programs," in Advances In Computing And Information Technology, Vol 2. vol.177, N.L. C. Jiao, H. Wang, R. H. Shang, and F. R. Eberhart and Y. Shi. Particle swarm optimization:Developments, applications and resourcesK. E. Parsopoulos and M. N. Vrahatis. Initializing the Particle Swarm Optimizer using theR. Brits. Niching Strategies for Particle Swarm Optimization [D]. Department of ComputerR. Brits, A. P. Engelbrecht, and F. van den Bergh. AR. Brits, A. P. Engelbrecht, and F. van K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimizer in Noisy andD. Gehlhaar and D. Fogel. Tuning Evolutionary Programming for Confor-mationally Flexible Molecular Docking. InY. Shi and R. C. Eberhart. A Modified Particle Swarm Optimizer. In Proceedings of the IEEE Congress on Evolutionary Computation.1998:69-73.
    [131]J. Peng, Y. Chenj and R. C. Eberhart. Battery Pack State of Charge Estimator Design A. Ratnaweera, S. Halgamuge, and H. Watson. Particle Swarm Optimization with Self-Adaptive Acceleration Coefficients. In Proceedings of the First International Conference on Fuzzy Systems and Knowledge Discovery, pages:264-208,2003.
    [133]J. F. Schutte, A. A. Y. Shi and R. C. Eberhart. Fuzzy Adaptive Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation,2001, (1):101-106.
    [135]江西省水文局.江西水资源综合规划之水资源调查评价报告[R].2004,7.
    [136]Clerc M,Kenedy J. The particle swarm-explosion, stability andR.J. Zhao, The Xinanjiang model applied in China, Journal of Hydrology (1992) 371-381.