结构非线性振动的智能控制方法与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构振动控制的发展很多都局限于对于线性结构的研究,但是结构在强震作用下将不可避免地进入塑性阶段,从而表现出非线性行为,因此研究结构非线性振动控制具有重要的理论与实际意义。本文着重研究了结构非线性振动控制的智能控制算法与模型试验,主要研究内容如下:
     1.针对设置层间控制器的结构非线性振动控制问题,结合滑模控制和自适应模糊控制算法各自的优点,提出了结构非线性振动的自适应模糊滑模控制算法,并采用模糊系统来消除滑模控制中的抖振现象,根据Lyapunov稳定定理设计出了相应的模糊控制器和自适应律。为了解决全状态观测问题,利用神经网络的非线性逼近能力,基于结构的非线性振动模型设计了动态神经网络观测器。通过在Benchmark结构非线性振动模型上的仿真验证了本文提出的智能算法的有效性,并进行了鲁棒性分析,结果表明:自适应模糊滑模控制可以很好地控制结构非线性振动,且具有比线性控制算法更好的鲁棒性;同时动态神经网络观测器也能够较好地观测结构非线性振动的全部状态,从而能够实现基于自适应模糊滑模控制算法的结构非线性振动输出控制。
     2.分析了本文提出的自适应模糊滑模主动控制力的特点,得出其适合用半主动控制算法实现的结论。通过选择合适的半主动控制算法,利用磁流变阻尼器来跟踪和实现此主动控制力。在Benchmark结构非线性振动模型上进行了磁流变半主动控制仿真分析,并对主动控制力、半主动控制力的特点和控制效果以及结构半主动控制系统耗能进行了分析。同时采用遗传算法对磁流变阻尼器的位置进行了优化,根据半主动控制算法的特点,提出了两阶段的优化算法,并给出了20层Benchmark模型中磁流变阻尼器的最优布置。同时针对作动器故障问题,采用动态神经网络辨识出现作动器故障的结构非线性振动模型,并基于此动态神经网络模型提出了结构非线性振动的容错控制算法。
     3.针对设置AMD的结构非线性振动控制问题,根据AMD控制的特点,提出了相应的模糊控制算法。为了解决AMD控制高层结构时模糊输入过多的问题,采用基于二次型指标的广义模糊输入,通过仿真验证了本文所提出的控制算法的合理性和有效性。结合仿真结果对AMD控制的目的及本质进行了较深入的分析,从而对AMD控制结构非线性振动提出了一些合理性的建议。最后,为了改善AMD对结构非线性振动控制可能放大层间响应的问题,采用AMD控制和层间阻尼器相结合的联合控制方式得到了很好的控制效果。
     4.利用压电材料对考虑几何非线性及模型不确定性的非线性梁进行了振动控制的试验研究,对于梁在大变形时产生的几何非线性进行了理论及试验研究和分析,并通过在梁端附加质量来模拟此结构的质量不确定性,然后对于不同的质量不确定性,通过试验比较了一般的模糊控制与自适应模糊滑模控制的控制效果,试验结果也验证了自适应模糊滑模控制对于非线性及模型不确定性有较好的控制作用。
     5.为了解决结构非线性控制试验模型的可重复性问题,提出并实现了利用旋转式磁流变阻尼器模拟结构塑性铰的方法,建立了相应的结构非线性振动的试验模型。通过控制此旋转式磁流变阻尼器的输入来实现不同的非线性行为,在各种不同的非线性行为下利用磁流变阻尼器实现了对于此试验模型的半主动控制,进而在此试验模型上验证了动态神经网络观测器及自适应模糊滑模控制算法的有效性。试验结果也表明本文提出的智能控制算法能够较好地实现对结构非线性振动的控制。
The current development of structural control has often been restricted to linear structures. However due to the inelastic deformation under intense ground shaking, it has theoretical and practical value to study the control of structural nonlinear vibration. The application of intelligent control algorithm in structural nonlinear vibration control is emphasized in this dissertation. The main research works are outlined as following:
     1.Aimed at controlling structural nonlinear vibration using interstory controller, an adaptive fuzzy sliding mode (AFSM) control algorithm is proposed to control structural nonlinear vibration, combining the advantage of sliding mode control and adaptive fuzzy control. Furthermore, the chattering phenomenon of sliding mode control is attenuated by an adaptive fuzzy system. The adaptation law is derived from Lyapunov direct method. To obtain all states of the structure, a dynamical neural network (DNN) observer is designed taking the advantage of dynamical neural network to approximate the arbitrary dynamic system. Numerical simulation is conducted on the nonlinear Benchmark structure. Robust analysis is also performed. The results show that AFSM control is suitable and robust for the control of structural nonlinear vibration. The dynamical neural network can also estimate the total states of structural nonlinear vibration, which leads to the output control of structural nonlinear vibration using the intelligent control algorithm.
     2.An active control force based on the AFSM control algorithm is analyzed and proved to be suitable for semi-active control device. Magnetorheological (MR) damper is used to trace the active control force using the developed semi-active control algorithm. Simulation of MR damper control using AFSM control is conducted on the nonlinear Benchmark structure. The control force is applied to each floor through an MR damper. The characteristic of active control force, semi-active control force and control effect are analyzed. The energy analysis is also performed. Furthermore, the placement of MR damper is optimized using a genetic algorithm. Based on the characteristic of semi-active control a two-phase optimization progress using genetic algorithm is developed and verified via numerical simulations. The optimal placement of MR damper for the control of structural nonlinear vibration is presented. On the other hand, considering fault tolerance control for structural nonlinear vibration, the dynamical neural network is used to identify the nonlinear structure with faults. Based on this dynamical neural network model, the corresponding fault tolerance controller is proposed to control structural nonlinear vibration and demonstrated by numerical simulations.
     3.To utilize active mass damper (AMD) to control the structural nonlinear vibration, a specified fuzzy controller is proposed and analyzed. To overcome the difficulty for excessive inputs to fuzzy controller, the generalized fuzzy input based on linear-quadratic cost is adopted and verified by the numerical simulation. The in-depth analysis of AMD control is performed considering the analysis of simulation results. The reasonable proposals for AMD control of structural nonlinear vibration are presented. Furthermore, the innovative AMD-ID (interstory damper) controller is developed to control structural nonlinear vibration. Numerical results verify the effectiveness of proposed controller.
     4.The experimental study of vibration control of a nonlinear beam with piezoelectric material considering geometric nonlinearity and model uncertainty is conducted. The geometric nonlinearity is theoretically and experimentally analyzed for large deflection of beam vibration. Additional masses are added to the tip of beam to realize the mass uncertainty. The general fuzzy control and adaptive fuzzy sliding mode control are compared using experimental data based on mass uncertainty. The experimental results show that adaptive fuzzy sliding mode controller can perform very well with nonlinearity and model uncertainty.
     5.To meet the demand on the cost and repeatability of test model of nonlinear structure, the MR rotary brake is proposed and used to mimic the plastic hinge to establish a nonlinear vibration model. The hysteretic loops of different nonlinear behaviors are realized through the control of voltage input to the MR rotary brake. Moreover, the MR damper is incorporated into the test model to implement the semi-active control. The performance of DNN observer and AFSM controller are verified. As a result, the test data demonstrates that the intelligent algorithms proposed by this dissertation are effective for the control of structural nonlinear vibration.
引文
1 T. T. Soong. Active Structural Control: Theory and Practice. Longman Scientific and Technical, 1990:116~155
    2 L. L. Chung, A. M. Reinhorn and T. T. Soong. Experiments on Active Control of Seismic Structures. Journal of Engineering Mechanics. 1988, 114:241~256
    3 L. L. Chung, R. C. Lin, T. T. Soong and A. M. Reinborn. Experiments on Active Control for MDOF Seismic Structures. Journal of Engineering Mechanics. 1989, 115(8):1609~1627
    4 T. T. Soong, A. M. Reinhorn and J. N. Yang. Active Response Control of Building Structures under Seismic Excitation. Proceedings of 9th World Conference on Earthquake Engineering. Tokyo, Japan, 1988, 8:453~458
    5 T. T. Soong, A. M. Reinhorn, Y. P. Wang and R. C. Lin. Full Scale Implementation of Active Control I: Design and Simulation. Journal of Engineering Mechanics. 1991, 117(11):3516~3536
    6 A. M. Reinhorn, T. T. Soong et al. Full Scale Implementation of Active Control II: Installation and Performance. Journal of Engineering Mechanics. 1993, 119(6):1935~1960
    7 S. J. Dyke, B. F. Spencer et al. Implementation of an Active Mass Driver Using Acceleration Feedback Control. Microcomputers in Civil Engineering: Special Issue on Active and Hybrid Structural Control. 1996, 11:305~323
    8 J. N. Yang, J. C. Wu, et al. Control of Sliding-Isolated Building Using Sliding Mode Control. Journal of Structural Engineering. 1996, 122(2):179~186
    9 C. H. Loh, P. Y. Lin, N. H. Chung. Experimental Verification of Building Control Using Active Bracing System. Earthquake Engineering and Structural Dynamics, 1999, 28:1099~1119
    10 J. C. Wu. Experiment on a Full-Scale Building Model using Modified Sliding Mode Control. Journal of Engineering Mechanics. 2003, 129(4):363~372
    11 B. F. Spencer and S. Nagarajaiah. State of the Art of Structural Control. Journal of Structural Engineering. 2003, 129(7):845~856
    12宋根由.结构主动控制(AMD)系统试验分析.哈尔滨建筑大学博士学位论文. 1996
    13田石柱,刘季.结构模型的AMD主动控制试验.地震工程与工程振动. 1999, 19(4):90~94
    14欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究.高技术通讯. 2002, 10:85~90
    15 A. M. Reinhorn, T. T. Soong. R. J. Helgeson et al. Analysis, Design and Implementation of an Active Mass Damper for a Communication Tower. Proc. Second World Conf. On Struct. Control, Kyoto, Japan, 1998:1727~1736
    16 D. Hrovat, P. Barak, M. Rabins. Semi-active versus Passive or Active Tuned Mass Dampers for Structural Control. Journal of Engineering Mechanics. 1983, 109(3):691~705
    17 M. D. Symans and M. C. Constantinou. Semi-active Control Seismic Protection of Structures: a State-of-the-Art Review. Engineering structures. 1999, 21:469~487
    18 T. Kobori, H. Kanayama, S. Kamagata. A Proposal of New Anti-seismic Structure with Active Seismic Response Control System-Dynamic Intelligent Building. Proceedings of 9th World Conference on Earthquake Engineering. Tokyo, Japan, 1988:465~470
    19李敏霞,刘季.非线性阻尼变刚度半主动结构振动控制.振动工程学报. 1998, 11(3):333~339
    20李敏霞,欧进萍,王刚,硅丽萍.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动. 2000, 20(4):96~100
    21刘季,李敏霞,变刚度半主动结构振动控制.振动控制学报. 1999, 12(2):166~172
    22 Q. Feng, M. Shinozuka. Use of a Variable Damper for Hybrid Control of Bridge Response under Earthquake. Proc., U. S. 5th Nat. Workshop on Struct. Control. Univ. of Southern California, Los Angeles, California, 1990:107~112
    23 K. Kawashima, et al. Seismic Response Control of Bridges by Variable Dampers. Journal of Structural Engineering. 1994, 120(9):2583~2601
    24 W. N. Patten, R. L. Sack and Q. He. Controlled Semi-active Hydraulic Vibration Absorber for Bridges. Journal of Structural Engineering. 1996, 2:187~192
    25 N. Niwa, T. Kobori et al. Dynamic Loading Test and Simulation Analysis of Full-scale Semi-active Hydraulic Damper for Structural Control. Earthquake Engineering and Structural Dynamics. 2000, 29:789~812
    26 N. Niwa et al. Application of Semi-active Damper System to an Actual Building. Proceedings of the Second World Conference on Structural Control. Kyoto, Japan, 1998, 1:815~824
    27 Y. Matsunaga, T. Kobori, M. Takahashi et al. Development of Actual Size of Semi-Active Hydraulic Damper for Large Earthquakes. Proceedings of the Second World Conference on Structural Control. Kyoto, Japan, 1998:1615~1622
    28孙作玉.变阻尼半主动结构控制.哈尔滨建筑大学博士学位论文. 1998
    29 S. Mcmahon, N. Makris. Large Scale ER Damper for Seismic Protection. Proc. Of the 4th Annual Symposium on Smart Structures and Materials Symposium. San Diego U.S.A., 1997:140~147
    30 B. F. Spencer, S. J. Dyke, et al. Phenomenological Model for Magnetorheological Damper. Journal of Engineering Mechanics. 1997, 123(3):230~238
    31欧进萍,关新春.磁流变液及结构减振智能驱动器.地震工程与工程振动. 2001, 21(4):1~7
    32关新春,李金海,欧进萍.足尺磁流变液耗能器的性能与试验研究.工程力学. 2005, 22(6):207~211
    33 S. Mcmahon and N. Makris. Large Scale ER Damper for Seismic Protection. Proceeding of the 4th Annual Symposium on Smart Structures and Materials Symposium, Passive Damping and Isolation Conference. San Diego, 1997:140~147
    34 G. W. Housner et al, Structure Control: Past, Present, and Future. Journal of Engineering Mechanics. 1997, 123(9):897~971
    35 H. J. Jung, B. F. Spencer and Y. Q. Ni. State-of-the-art of Semiactive Control Systems Using MR Fluid Dampers in Civil Engineering Applications. Structural Engineering and Mechanics. 2004, 17, 3-4:493~526
    36李惠,毛晨曦.新型SMA耗能器及结构地震反应控制试验研究.地震工程与工程振动. 2003, 23(1):133~139
    37左晓宝,李爱群,倪立峰,陈庆福.形状记忆合金在结构振动控制中的应用.噪声与振动控制. 2004, 2:9~13
    38陶宝祺.智能材料与结构.国防工业出版社, 1997
    39 T. Kamada, T. Fujita and T. Hatayama et al. Active Vibration Control of Frame Structures with Smart Structures Using Piezoelectric Actuators (Vibration Control by Control of Bending Moments of Columns) . Smart Materials and Structures. 1997, 6:448~456
    40 G. H. Haertling. Rainbow Actuators and Sensors: A New Smart Technology. Proc. SPIE 3044,1997:413~420
    41 X. Shen. Preparation and Structure of Rainbow Piezoelectric Ceramics. Journal Wuhan University of Technology, Materials Science Edition. 2003, 18(4): 24~26
    42 X. Shen, X. W. Wang and I. Lee. Experimental Study on RAINBOW Actuators Made of PSZT. Journal of Intelligent Material Systems and Structures. 2006, 17, 8-9:691~694
    43 A. E. Ackerman., C. Liang and C. A. Rogers. Dynamic Transduction Characterization of Magnetostrictive Actuators. Smart Materials and Structures. 1996, 5:115~120
    44 F. Casciati, T. Yao. Comparison of Strategies for the Active Control of Civil Structures. Proc., First World Conf. Struct. Control. Los. Angeles, USA, 1994, WA1:3~12
    45 S. F. Masri, G. A. Bekey, et al. Optimum Pulse Control of Flexible Structures. Journal of Applied Mechanics. 1981, 48:619~626
    46 L. Meirovitch, L. Silverberg. Control of Structures Subjected to Seismic Excitation. Journal of Engineering Mechanics. 1983, 109(2):604~618
    47 J. N. Yang, Z. Li and S. Vongchavalitkul. Generalization of Optimal Control Theory: Linear and Nonlinear Control. Journal of Engineering Mechanics, 1994, 120(2):266~283
    48 J. N. Yang. New Optimal Control Algorithms for Structural Control. Journal of Engineering Mechanics. 1987, 113(9):1369~1381
    49 M. Abdel-Rohman and H. H. E. Leipholz. Structural Control by Pole Assignment Method. Journal of Engineering Mechanics. 1978, 104(5):1159~1175
    50 C. C. Chang and L. O. Yu. A Simple Optimal Pole Location Technique for Structural Control. Engineering Structures. 1998, 20:792~804
    51 K. Zhou, P. P. Khargonekar, J. Stoustrup and H. H. Niemann. Robust Performance of Systems with Structured Uncertainties in State Space. Automatica. 1995, 31(2):249~255
    52 S. G. Wang. Robust Active Control for Uncertain Structural Systems with Acceleration Sensors. Proc., Third World Conf. on Struct. Control. Como, Italy, 2002, 2:107~112
    53 J. Suhardjo. Frequency Domain Technique for Control of Civil Engineering Structures with Some Robustness Consideration. University of Notre Dame, USA, 1990
    54 W. E. Schmitendor, J. Faryar and J. N. Yang. Robust Control Techniques for Building under Earthquake Excitation. Earthquake Engineering and Structural Dynamics. 1994, 23:539~552
    55 F. Jabbari, W. E. Schmitendorfm, and J. N. Yang. H∞Control for Seismic-Excited Buildings with Acceleration Feedback. Journal of Engineering Mechanics. 1995, 121(9):994~1002
    56 J. Suhardjo, B. F. Spencer and M. K. Sain. Frequency Domain Optimal Control for Wind Excited Structures. Journal of Engineering Mechanics. 1992, 118:2463~2481
    57 J. G. Chase, et al. Robust H∞Static Output Feedback Control with Actuator Saturation. Journal of Engineering Mechanics. 1999, 125(2):225~233
    58 J. C. Wu, H. H. Chih and C. H. Chen. A Robust Control Method for Seismic Protection of Civil Frame Building. Journal of Sound and Vibration. 2006, 294:314~328
    59 G. Song, et al. Robust Hinfinity Control for Aseismic Structures with Uncertainties in Model Parameters. Earthquake Engineering and Engineering Vibration. 2007, 6(4):409~416
    60 J. N. Yang, J. C. Wu, et al. Sliding Mode Control for Nonlinear and Hysteretic Structures. Journal of Engineering Mechanics. 1995, 121(12):1330~1339
    61 J. C. Wu. Experiments on a Full-scale Building Model Using Modified Sliding Mode Control. Journal of Engineering Mechanics. 2003, 129(4):363~372
    62 R. Guclu and A. Sertbas. Evaluation of Sliding Mode and Proportional-integral-derivative Controlled Structures with an Active Mass Damper. Journal of Vibration and Control. 2005, 11(3):397~406
    63 E. Safak. Adaptive Modeling, Identification and Control of Dynamic Structural Systems. I: Theory. Journal of Engineering Mechanics. 1989, 115(11):2386~2405
    64 E. Safak. Adaptive Modeling, Identification and Control of Dynamic Structural Systems. II: Applications. Journal of Engineering Mechanics. 1989, 115(11): 2406~2426
    65 R. A. Burdisso, L. E. Suarez, C. R. Fuller. Feasibility Study of Adaptive Control of Structures Under Seismic Excitation. Journal of Engineering Mechanics. 1994, 120(3):582~593
    66 M. Hoshiya, Y. Saito. Predictive Control of SDOF System. Journal of Engineering Mechanics. 1995, 121(10):1049~1055
    67 J. Rodellar, A. H. Barbat et al. Predictive Control of Structures. Journal of Engineering Mechanics. 1987, 113(6):797~812
    68 F. Lopez-Almansa, R. Andrade, J. Rodellar and A. M. Reinhorn. Modal Predictive Control of Structures. I: Formulation. Journal of Engineering Mechanics. 1994, 120(8):1743~1760
    69 F. Lopez-Almansa, R. Andrade, J. Rodellar and A. M. Reinhorn. Modal Predictive Control of Structures. II: Implementation. Journal of Engineering Mechanics. 1994, 120(8):1761~1772
    70 L. L. Chung. Modified Predictive Control of Structures. Engineering Structures. 1999, 21:1076~1085
    71 K. Huang, et al. Predictive optimal Control for Seismic Analysis of Non-linear and Hysteristic Structures. Earthquake Engineering and Structural Dynamics. 1999, 28:585~607
    72 K. K. F. Wong and R. Yang. Predictive Instantaneous Optimal Control of Elastic Structures During Earthquakes. Earthquake Engineering and Structural Dynamics. 2003, 32(14):2167~2177
    73 R. Kumar, S. P. Singh and H. N. Chandrawat. Predictive Optimal Linear Control of Elastic Structures During Earthquake. Part I. Journal of Engineering Mechanics. 2005, 131(2):131~141
    74 R. Kumar, S. P. Singh and H. N. Chandrawat. Predictive Optimal Linear Control of Elastic Structures During Earthquake. Part II. Journal of Engineering Mechanics. 2005, 131(2):142~152
    75李惠,彭君义.结构模型与控制器降阶的主动控制试验研究.振动工程学报. 2006, 19(1):465~471
    76 M. Yamamoto and Y. Suzuki. Experimental Study of an Active Mass Damper with Variable Gain Control Algorithm. Proceedings of the Second World Conference on Structural Control. Kyoto, Japan, 1998:775~777
    77 S. J. Dyke, B. F. Jr. Spencer et al. Acceleration Feedback Control of MDOF Structures. Journal of Engineering Mechanics. 1996, 122(9):907~918
    78 G. May, A. Kareem and J. C. Kantor. Model Predictive Control of Structures under Earthquakes using Acceleration Feedback. Journal of Engineering Mechanics. 2002, 128(5):574~585
    79 A. K. Agrawal and J. N. Yang. Static Output Polynomial Control for Linear Structures. Journal of Engineering Mechanics. 1997, 123(6):639~643
    80谭述君,吴志刚,钟万勰.考虑控制器时滞的建筑结构减振H∞控制方法.振动工程学报. 2006, 19(4):537~542
    81瞿伟廉,王志春,涂建维.结构主动控制系统的时滞多项式插值补偿算法.武汉理工大学学报. 2007, 29(2):76~82
    82周云,徐龙河,李忠献.半主动磁流变阻尼控制结构的地震反应分析.地震工程与工程振动. 2000, 20(2):107~111
    83李锦华,陈水生,刘喜辉,杨宝山.磁流阻尼器半主动控制研究综述.铁道工程学报. 2006, 8:88~92
    84 J. A. Inaudi. Modulated Homogeneous Friction: A Semi-active Damping Strategy. Earthquake Engineering and Structural Dynamics. 1997, 26(3):361~376
    85 F. Sadek, B. Mohraz, et al. Semiactive Control Algorithms for Structures with Variable Dampers. Journal of Engineering Mechanics. 1998, 124(9):981~990
    86 L. M. Jansen, S. J. Dyke. Semiactive Control Strategies for MR Dampers: Comparative Study. Journal of Engineering Mechanics. 2000, 126(8):795~803
    87欧进萍.结构振动控制-主动、半主动和智能控制.科学出版社, 2003
    88李宏男,阎石,林皋.智能结构控制发展综述.地震工程与工程振动, 1999, 19(2):29~37
    89 F. Casciati, L. Faravelli, and T. YAO. Control of Nonlinear Structures Using the Fuzzy Control Approach. Nonlinear Dynamics. 1996:171~187
    90 M. Yamada, K. Goto et al. Active Vibration Control Using Fuzzy Theory Part 2 Optimal Membership Functions. Proc. of First World Conf. Struct. Control. Los. Angeles, USA, 1994, WPI:13~20
    91张利芬.结构振动的智能控制算法及其仿真分析.哈尔滨工业大学硕士论文, 2001:1~6
    92王刚,欧进萍.结构振动的模糊建模与模糊控制规则提取.国际结构控制与健康诊断研讨会论文集.深圳, 2000
    93 L. Fravelli and T. Yao. Application of an Adaptive-network-based Fuzzy Inference System (ANFIS) to Active Structural Control. Proc. of First World Conf. Strut. Control. Los. Angeles, USA , 1994, WPI:49~58
    94 C. H. Wang, T. P. Hong. Integrating Fuzzy Knowledge by Genetic Algorithms. IEEE Transactions on Evolutionary Computation. 1998, 2(4):138~149
    95 Q. Lu, Z. K. Peng, F. L. Chu and J. Y. Huang. Design of Fuzzy Controller for Smart Structures Using Genetic Algorithms. Smart Materials and Structures. 2003, 12(6):979~986
    96 G. Yan and L. L. Zhou. Integrated Fuzzy Logic and Genetic Algorithms for Multi-Objective Control of Structures Using MR Dampers. Journal of Sound and Vibration. 2006, 296:368~382
    97 S. Pourzeynali, H. H. Lavasani and A. H. Modarayi. Active Control of High Rise Building Structures Using Fuzzy Logic and Genetic Algorithms. Engineering Structures. 2007, 29(3):346-357
    98 R. S. Subramanian, A. M. Reinhorn, S. Nagacajaiah and M. A. Riley. Hybrid Control of Structures Using Fuzzy Logic. Microcomputers in Civil Engineering. 1996, 11:1~18
    99 M. Battini, F. Casciati and L. Faravelli. Fuzzy Control of Structural Vibration, an Active Mass System Driven by a Fuzzy Controller. Earthquake Engineering and Structural Dynamics. 1998, 27:1267~1276
    100 S. B. Kim and C. B. Yun. Sliding Mode Fuzzy Control: Theory and Verification on a Benchmark Structure. Earthquake Engineering and Structural Dynamics. 2000, 29(11):1587~1608
    101 K. S. Park, H. M. Koh and C. W. Seo. Independent Modal Space Fuzzy Control of Earthquake-Excited Structures. Engineering Structures. 2004, 26(2):279~289
    102 B. Widrow and M. A. Lehr. Thirty Years of Adaptive Neural Network Perception, Madaline, and Backpropagation. Proc. IEEE. 1990, 78(9): 1415~1441
    103 A. Joghataie and J. Ghaboussi. Neural Networks and Fuzzy Logic in Structural Control. Proc. of First World Conf. Struct. Control. Los. Angeles, USA, 1994, WPI:21~30
    104 J. P. Conte, A. J. Durrani and R. O. Shelton. Response Emulation of Multistory Building Using Neural Networks. Proc. of First World Conf. Struct. Control. Los. Angeles, USA , 1994, WPI:21~30
    105 F. Amini, H. M. Chen et al. Neural Networks for Identification and Control of Structures. Proc. of First World Conf. Struct. Control. Los. Angeles, USA , 1994, TP3:43~51
    106 J. Ghaboussi and A. Joghataie. Active Control of Structures Using Neural Networks. Journal of Engineering Mechanics. 1995, 121(4):555~567
    107 B. Xu, Z. S. Wu, K Yokoyama and T. Harada. Adaptive Localized Control Of Structure-actuator Coupled System Using Multi-Layer Neural Networks. Journal of Structural Mechanics and Earthquake Engineering. 2001, 18(2):81~93
    108 T. Shiraishi, N. Nakaya and S. Morishita. Vibration Suppression of a Structure with an MR Damper Using a Neural Network Controller.International Journal of Applied Electromagnetics and Mechanics. 2005, 21, 3-4:209~219
    109 S. M. Yang, C. J. Chen and W. L. Huang. Structural Vibration Suppression by a Neural-Network Controller with a Mass-Damper Actuator. Journal of Vibration and Control. 2006, 12(5):495~508
    110李海岭,霍达,王志忠.考虑土-结构动力相互作用影响的结构神经网络控制. 2002, 35(3):61~65
    111黄永安,邓子辰,姚林晓.基于神经网络混合建模的结构振动滑模控制.振动工程学报. 2005, 18(4):465~470
    112王爱文,史杨,缪升.基于遗传算法的TMD系统参数优化和设计.昆明理工大学学报. 2002, 27(1): 69~72
    113郑伟,阎石,莫巨华.基于遗传算法的高层建筑MR阻尼器优化布置.沈阳建筑大学学报. 2005, 21(6): 606~611
    114郭惠勇,张陵,周进雄,蒋健.采用改进遗传算法的结构主动控制器优化布置.振动工程学报. 2003, 16(1): 119~123
    115曹源,汪凤泉.高层多自由度结构作动器优化配置的遗传算法.应用科学学报. 2006, 24(2): 171~175
    116 M. P. Singh, and L. M. Moreschi. Optimal Placement of Dampers for Passive Response Control. Earthquake Engineering and Structural Dynamics. 2002, 31: 955~976
    117 N. Wongprasert and M. D. Symans. Application of a Genetic Algorithm for Optimal Damper Distribution within the Nonlinear Seismic Benchmark Building. Journal of Engineering Mechanics. 2004, 130(4): 401~406
    118王小平,曹立明.遗传算法——理论、应用于软件实现.西安交通大学出版社, 2003.
    119 A. M. Reinhorn, T. T. Soong and C. Y. Yen. Based Isolated Structures with Active Control. Recent Advanced in Design, Analysis, Testing and Qualification Methods. 1987, 127:413~419
    120 B. F. Spencer, J. Suhardjo and M. K. Sain. Nonlinear Optimal Control of a Duffing System. International Journal of Non-Linear Mechanics. 1992, 27(2): 152~172
    121 S. Nagarajaiah, M. A. Riley and A. M. Reinhorn. Hybrid Control of Sliding Isolated Bridges. Journal of Engineering Mechanics. 1993, 119(11): 2317~2332
    122 J. N. Yang, Z. Li, A. Danielians and S. C. Liu. Aseismic Hybrid Control of Nonlinear and Hysteretic Structures I. Journal of Engineering Mechanics. 1992, 118 (7): 1423~1440
    123 J. N. Yang, Z. Li, A. Danielians and S. C. Liu. Aseismic Hybrid Control of Nonlinear and Hysteretic Structures II. Journal of Engineering Mechanics. 1992, 118 (7): 1441~1456
    124 H. Cheng, W. Q. Zhu and Z. G. Ying. Stochastic Optimal Semi-active Control of Hysteretic Systems by Using a Magneto-rheological Damper. Smart Materials and Structures. 2006, 15(3):711~718
    125 J. N. Yang, Z. Li, J. C. Wu and I. R. Hsu. Dynamic Linearization for Sliding Isolated Buildings. Engineering Structures. 1994, 16(6): 437~444
    126颜桂云,孙炳楠,杨骊先,田瑞华.高层建筑非线性地震反应的半主动模型预测控制.浙江大学学报(工学版). 2004, 38(11):1460~1465
    127颜桂云,吴国荣,陈福全.高层建筑非线性地震反应的半主动H∞控制.振动与冲击. 2007, 26(2):93~97
    128 K. Bani-Hani and J. Ghoboussi. Nonlinear Structural Control Using Neural Networks. Journal of Engineering Mechanics. 1998, 124(3):319~327
    129 A. D. Mohammed, S. Bijan and K. Kenny. Fuzzy Controller for Seismically Excited Nonlinear Buildings. Journal of Engineering Mechanics. 2004, 130(4):407~415
    130 A. S. Ahlawat and A. Ramaswamy. Multiobjective Optimal Fuzzy Logic Controller Driven Active and Hybrid Control Systems for Seismically Excited Nonlinear Buildings. Journal of Engineering Mechanics. 2004, 130(4): 416~423
    131 D. H. Kim, S. N. Seo, and I. W. Lee. Optimal Neurocontroller for Nonlinear Benchmark Structure. Journal of Engineering Mechanics. 2004, 130(4): 424~429
    132 L. Zhou, C. C. Chang, L. X. Wang. Adaptive Fuzzy Control for Nonlinear Building-Magnetorheological Damper System. Journal of Structural Engineering. 2003, 129(7):905~913
    133 F. Lkhouane, V. Manosa and J. Rodellar. Adaptive Control of a Hysteretic Structural System. Automatica. 2005, 41(2):225~231
    134徐晓龙,孙炳楠.基于智能算法的高层建筑非线性地震反应的MR阻尼器半主动控制.工程力学, 2008, 25(1):209~216
    135 J. R. Battaini, G. Yang, B. F. Spencer. Bench-scale Experiment for Structural Control. Journal of Engineering Mechanics. 2000,126(2).140~148
    136 T. T. Soong. Experimental Simulation of Degrading Structures Through Active Control. Earthquake Engineering and Structural Dynamics. 1998, 27:143~154
    137 W. E. Reynolds, R. E. Christenson. Bench-scale Nonlinear Test Structure for Structural Control Research. Engineering Structures. 2006, 28:1182~1189
    138王立新.模糊系统与模糊控制教程.清华大学出版社,2003
    139高为炳.变结构控制的理论及设计方法.科学出版社, 1996
    140 G. A. Rovithakis. Tracking Control of Multi Input Affine Nonlinear Dynamical Systems with Unknown Nonlinearities Using Dynamical Neural Networks. IEEE Trans. on systems, Man & Cybern. 1999, 29 (2):179~189
    141 J. Y. Yang, Y. M. Jia. Adaptive Observer for a Class of Nonlinear Uncertain Systems Based on Dynamical Neural Network. Control and Decision. 2002, 17(4):447~449
    142 R. J. Zhu , T. Y. Chai. Robust Observer Design for a Class of Nonlinear Systems Using Current Dynamic Neural Networks. Information and Control. 1998, 27(6):421~425
    143 M. F. Hassan and B. A. Chiha. Neural Network Based Observer Design for a Class of Unknown Nonlinear Systems. Journal of Engineering and Applied Science. 2002, 49(5):927~946
    144 I. Chairez, A. Poznyak and T. Poznyak. New Sliding-mode Learning Law for Dynamic Neural Network Observer. IEEE Trans. on Circuits and Systems II: Express Briefs. 2006, 53(12):1338~1342
    145 H. J. Gong and F. N. Chowdhury. Design of Nonlinear Observer for Nonlinear System Based on RBF Neural Networks. Transactions of Nanjing University of Aeronautics and Astronautics. 2006, 23(4):311~315
    146 E. B. Komatopoulos, M. A. Christodoulou and P. A. Ioannou. High-Order Neural Network Structures for Identification of Dynamical Systems. IEEE Trans. on Neural Networks. 1995, 6(2):422~431
    147周云,徐龙河,李忠献.磁流体阻尼器半主动控制结构的地震反应分析.土木工程学报. 2001, 34(5):10~14
    148张春巍,欧进萍.结构磁流变阻尼半主动控制的改进算法与仿真研究.世界地震工程. 2003, 19(1):37~43
    149宁欣,阎石,王丰.磁流变阻尼器半主动控制算法的改进.沈阳建筑工程学院学报. 2004, 20(1):4~6
    150邸龙,徐赵东,赵鸿铁.双态控制下磁流变阻尼结构的弹塑性地震反应分析.工业建筑. 2003, 33(6):14~16
    151隋丽丽,王刚.应用磁流变减震器控制模型结构的仿真研究.吉林建筑工程学院学报. 2002, 19(1):1~5
    152孙清,张陵,史庆轩,周进雄,倪建华.结构振动的滑模变结构半主动控制.计算力学学报. 2003, 20(5):546~552
    153王敏,臧曙,周东华.非线性动态系统的容错控制.计算技术与自动化. 2004, 23(4):7~10
    154王友清,周东华.非线性系统的鲁棒容错控制.系统工程与电子技术. 2006, 28(9):1378~1383
    155 X. M. Ren, A. B. Rad, P. T. Chan and W. L. Lo. Identification and Control of Continuous-Time Nonlinear Systems via Dynamic Neural Networks. IEEE Trans. On Industrial Electronics. 2003, 50(3):478~486
    156 J. A. Ruz-Hermandez, E. N. Sanchez and D. A. Suarez. Neural Networks-based Scheme for Fault Diagnosis in Fossil Electric Power Plants. Proceedings of International Joint Conference on Neural Networks. Montreal, Canada, 2005:1740~1745
    157 V. Sethi and G. Song. Pole-placement Vibration Control of a Flexible Composite I-Beam Using Piezoceramic Sensors and Actuators. Journal of Thermoplastic Composite Materials. 2006, 19(3):293~307
    158 H. Tjahyadi, F. He and K. Sammut. Multi-Mode Vibration Control of a Flexible Cantilever Beam Using Adaptive Resonant Control. Smart Materials and Structures. 2006, 15(2):270~278
    159 J. Fei and Y. Fang. Sliding Mode Control of a Flexible Beam Using Piezoceramic Actuators. Modelling, Measurement and Control B. 2006, 76, 5-6: 63~70
    160 H. C. Gu and G. B. Song. Active Vibration Suppression of a Flexible Beam with Piezoceramic Patches Using Robust Model Reference Control. Smart Materials and Structures. 2007, 16(4):1453~1459
    161 G. Song and H. Gu. Active Vibration Suppression of a Smart Flexible Beam Using a Sliding Mode Based Controller. Journal of Vibration and Control. 2007, 13(8):1095~1107
    162 M. N. Hamdan and M. H. F. Dado. Large Amplitude Free Vibrations of a Uniform Cantilever Beam Carrying an Intermediate Lumped Mass and Rotary Inertia. Journal of Sound and Vibration. 1997, 206(2):151~168
    163 G. F. Cheng, C. Mei and R. Y. Y. Lee. Large Amplitude Vibration of a Cantilever Beam with Tip Mass Under Random Base Excitation. Advances in Structural Engineering. 2001, 4(4):203~210