TI介质地震波传播特征与正演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球介质广泛存在波动各向异性,地震各向异性主要表现为地震波传播速度是传播方向的函数、体波间的相互耦合、横波发生分裂等。地震各向异性研究已经成为地震学研究领域中的前沿课题之一,开展地震各向异性研究对认知地球介质结构、勘探开发复杂油气藏和预报地质灾害均具有理论意义和实用价值。
     各向异性是沉积岩石中几乎普遍存在的现象。沉积岩石中各向异性是横向各向同性而在纵向上为非均质性,称为TI介质。在褶皱和上冲作用下,一些地层发生了倾斜,此时TI介质的对称轴不再水平或者垂直,就形成了所谓的TTI介质。针对沉积岩普遍存在的TI介质,本文深入研究了TTI介质弹性波传播特征、TTI介质反射透射系数和AVO特征,TI介质qP波单程波正演模拟和弹性波正演模拟方法。
     相速度、群速度和偏振方向是地震波传播的重要特征。本文用Bond变换、Christoffel方程和Crampin公式推导了TTI介质弹性波相速度和群速度公式。利用Thomsen参数,实现了相速度公式的弱各向异性近似化。将推导的相速度带入Christoffel方程,得到TTI介质弹性波偏振方向。再进一步利用弱各向异性近似得到了xoz面内和三维偏振方向的近似公式。数值计算表明弱各向异性近似公式在一定精度范围之内与精确值吻合很好。
     反射系数和透射系数是AVO研究的基础。本文利用推导的TTI介质弹性波相速度和偏振方向,建立入射波、反射波和透射波的位移波函数,再利用介质分界面上应力连续和位移连续条件,建立了qP波入射TTI介质弹性分解面的拟Zoeppritz方程。该方程的解就是精确的反射和透射系数,可以通过数值方法进行求解。按照各向同性类似方法,本文根据弱各向异性近似和弹性界面相似介质近似,推导了反射和透射系数的近似解,并重点研究了反射系数的近似,同时给出了反射系数的三项近似式以及小角度近似下的两项近似式,最后根据精确和近似的反射系数,研究了不同TTI介质四种AVO响应,分析了各向异性对AVO的影响。
     单程波传播算子是单程波正演模拟和深度偏移的基础。本文基于介质分解原理,以均匀TI介质为背景,利用广义屏级数展开方法,建立了VTI介质广义屏近似qP波单程传播算子,HTI介质广义屏近似qP波单程传播算子,椭圆TTI介质qP波单程传播算子以及TTI介质qP波相移传播算子。利用推导的TI介质qP波单程波传播算子,根据定位原理、数学检波器原理和等时叠加原理,建立TI介质qP波单程波正演模拟算法。同时利用推导的TI介质qP波单程波传播算子,根据成像条件,建立TI介质qP波深度偏移算法。正演模拟结果表明由于TI介质各向异性的存在,使得地震波传播速度随方向变化,因此TI介质岩层的反射波在接收时间、能量分布和相位等方面都不同于各向同性波的特点,增加了地面资料的难度。深度偏移结果表明,各向异性介质采集的地震资料,偏移处理时需要考虑各向异性的影响,否则会存在一定误差。
     对于TI介质弹性波正演模拟,首先根据介质分解理论将介质分解为均匀各向同性背景和扰动,将各向异性参数也当作各向同性背景的扰动。在此基础上,从TI介质弹性波波动方程出发,根据弹性薄板近似,利用分离的Green函数得到TI介质弹性波场传播算子,进一步推导得到TI介质反射波场的积分解。通过求解,实现了TI介质弹性波正演模拟。
Earth media is characterized by its anisotropy. Seismic anisotropy is mainly manifested in the following aspects: seismic wave propagation velocity differs with the change of the propagation direction, body-wave couples mutually and S-wave splits, etc. As one of the leading-edge topics in seismology study, seismic anisotropy study is of theoretical and practical significance for the cognition of earth structure, the exploration and development of complex oil and gas reservoirs, and the forecasting of geological hazards as well.
     Anisotropy is common in sedimentary rocks. Anisotropy in sedimentary rocks presents the feature of isotropy in the transverse direction and inhomogeneity in the vertical direction, known as transversely isotropic media (TI media). Some strata caused by folds and uprush may tilt, TI media will turn to so-called tilted transversely isotropic media (TTI media), for the symmetry axis of TI media is no longer horizontal or vertical. Since TI media in sedimentary rocks is common, this paper discusses the elastic wave propagation feature in TTI media, reflection coefficient and transmission coefficient, AVO characteristics in TTI media, the methods of qP-wave one-way wave forward modeling and elastic wave forward modeling in TI media.
     Phase velocity, group velocity and polarization direction are essential characteristics of seismic wave propagation. In this paper, elastic wave phase velocity and group velocity formulas of TTI media are derived with the application of Bond transform, Christoffel equation and Crampin formula. Thomsen parameters help to realize the weak anisotropy approximation of phase velocity formula. Polarization direction of elastic wave in TTI media is worked out by putting phase velocity substitute into the Christoffel equation. Using the weak anisotropy approximation, the approximate formulas in xoz plane and three-dimensional polarization direction are obtained. Numerical calculations indicate that the approximate formula of weak anisotropy well matches with the accurate values in a certain precision range.
     Reflection coefficient and transmission coefficient are the basis of AVO study. In this paper, the elastic wave phase velocity and polarization direction in TTI media derived are used to establish displacement wave functions of incident wave, reflection wave and transmission wave. Then, under the conditions of stress and displacement continuity on the media interface, quasi Zoeppritz equation for qP-wave incident in TTI media interface is set up. The solution of the equation is just the exact reflection and transmission coefficients, which can be obtained by numerical methods. The approximate solutions of reflection coefficient and transmission coefficient are deduced by using similar methods of dealing with isotropy, on the basis of weak anisotropy approximation and similar media approximation of elastic interface. This paper mainly studies the approximation of reflection coefficient, and gives three-term approximation and two-term approximation under the condition of small-angle approximation of the reflection coefficient. Based on the exact and approximate reflection coefficients, this paper performs the study of four types of AVO responses of different TTI media, and the analysis of the impact of anisotropic parameters on AVO.
     One-way wave propagator is the foundation of one-way wave forward modeling and migration. This paper sets up one-way propagator in TTI media, including generalized-screen approximate qP-wave one-way propagator of VTI media, HTI media, elliptical TTI media, and phase-shift propagator of TTI media, in generalized-screen series expansion method, under the premise of homogeneous TI media, depending on media decomposition principle. The qP-wave one-way wave propagator of TTI media derived is used to set up qP-wave one-way wave forward modeling algorithm, based on positioning principle, mathematical geophone principle and equal-time stacking principle, etc. The method of depth migration in TTI media is carried out by one-way wave propagator of TTI media and imaging condition. The result of forward algorithm shows that the reflected wave of TI media is different from the isotropic waves in some aspects, such as time of receipt, energy distribution, which makes surface data more complicate, due to the anisotropy of TI media which leads to the difference of seismic wave propagation velocity with the change of direction. The migration result shows the effect of anisotropy is taken into account for acquisition data in anisotropic media.
     With respect to TI media elastic wave forward modeling, first of all, media is decomposed into homogeneous isotropic background media and perturbations, with anisotropy parameters as the disturbance of isotropic background media, according to media decomposition principle. On the basis of TI media elastic wave equation, using elastic thin-slab approximation, and separated Green function, this paper obtains elastic wave field propagator of TI media and derives reflection wave field integral solution of TI media. Elastic wave forward modeling of TI media is carried out eventually by the integral solution.
引文
[1]程玖兵,王华忠.波动方程共炮检距道集叠前深度偏移[J].石油地球物理勘探, 2001, 36(5): 526-532.
    [2]董良国,李国治,杨泉荣.横向各向同性介质中弹性波的物理模拟[J].石油物探, 1999, 38(1): 76-85
    [3]董良国.地震波数值模拟与反演中的几个关键问题研究[D].上海:同济大学, 2003
    [4]杜世通.地震波动力学[M].山东:石油大学出版社, 1996
    [5]范帧祥,郑仙仲.地震波参数反演与应用技术[M].河南:河南科学技术出版社, 1998
    [6]何樵登,张中杰.横向各向同性介质中地震波及其数值模拟[M].吉林:吉林大学出版社, 1996
    [7]贺振华,王才经,李建朝.反射地震资料偏移处理与反演方法[M].重庆:重庆大学出版社, 1989
    [8]贺振华,胡光眠,黄德济.数学检波器与波动方程地震叠前正演[J].成都理工大学学报(自然科学版), 2004, 31(6): 675-678
    [9]贺振华,熊晓军.等时叠加波动方程叠前正演[J].物探化探技术, 2005, 27(3): 194-198
    [10]李庆忠.走向精确勘探的道路[M].北京:石油工业出版社, 1993
    [11]卢明辉,聂建新,杨慧珠.井间地震资料中纵波各向异性参数反演[J].工程力学, 2006, 23(S1): 58-61
    [12]罗小明,凌云,牛滨华,等.井地联合提取VTI介质各向异性参数[J].地学前缘, 2005, 12(4): 576-580
    [13]马兴瑞,陶良.弹性波反演方法及其应用[M].北京:科学出版社, 1998
    [14]马在田.计算地球物理学概论[M].上海:同济大学出版社, 1997
    [15]马在田.地震成像技术[M].北京:石油工业出版社, 1989, 35-80
    [16]牟永光,裴正林.三维复杂介质地震数值模拟[M].北京:石油工业出版社, 2005
    [17]牛滨华,孙春岩.方位界面及其波场数值模拟[J].石油地球物理勘探, 1994, 29(6): 685-694
    [18]牛滨华,王海君,沈操.实用P波速度各向异性提取的一种方法研究[A].地震各向异性学术研讨会论文摘要集[C], 1998: 73-74
    [19]宋海滨,马在田,张关泉.层状横向各向同性介质反问题初探[J].地球物理学报, 1997, 40(1): 105-118
    [20]孙成禹.地震波理论与方法[M].山东东营:中国石油大学出版社, 2007
    [21]滕吉文,王光杰,杨顶辉.地球各向异性介质中地震波理论、检测与应用研究[J].地学前缘, 1998, 5(1-2): 83-90
    [22]王德利,何樵登,韩立国.单斜介质中方位NMO速度Thomsen参数反演方法研究[J].地球物理学报, 2006, 49(1): 249-255
    [23]吴国忱,王华忠.波场模拟中的数值频散分析与校正策略[J].地球物理学进展, 2005, 20(1): 58-65
    [24]吴国忱,梁锴. VTI介质频率-空间域准P波正演模拟[J].石油地球物理勘探, 2005, 40(5): 535-545
    [25]吴国忱.各向异性介质地震波传播与成像[M].山东:中国石油大学出版社, 2006
    [26]吴如山,金胜汶,谢小碧.广义屏传播算子及其在地震波偏移成像方面的应用[J].石油物探, 2004, 43(3): 223-228
    [27]熊煜,李录明,罗省贤.各向异性介质弹性波场正演及偏移[J].成都理工大学学报(自然科学版), 2006, 33(3): 310-316
    [28]熊高君,贺振华,黄得济,等.改进的正演模拟定位原理[J].石油地球物理勘探, 1998, 33(6): 742-748
    [29]熊高君,贺振华,张琳,等.共炮记录正演模拟检波点下延记录原理[J].石油物探, 1999, 38(2): 43-49
    [30]熊小兵,贺振华.声波方程共炮记录叠前深度偏移[J].石油物探, 1998, 37(4): 48-54
    [31]熊晓军.单程波动方程地震数值模拟新方法研究[D].成都:成都理工大学, 2007
    [32]杨慧珠,张友生,陶果.井眼条件下弹性波传播问题的三维有限差分数值模拟[J].地球物理学进展, 2003, 12(1): 348-352
    [33]苑书金,于常青.各向异性介质中的弹性阻抗及其反演[J].地球物理学进展, 2006, 21(2): 520-523
    [34]杨文采.地球物理反演和地震层析成像[M].北京:地质出版社, 1989
    [35]殷八斤,曾灏,杨在岩. AVO技术的理论与实践[M].北京:石油工业出版社, 1995
    [36]阴可,杨慧珠.各向异性介质中的AVO[J].地球物理学报, 1998, 41(3): 382-391
    [37]张宝金.地震波参数反演及其可信度分析[D].上海:同济大学, 2003
    [38]张关泉.利用低阶偏微分方程组的大倾角差分偏移[J].地球物理学报, 1986, 29(3): 273-282
    [39]张美根.各向异性弹性波正反演问题研究[D].北京:中国科学院地球物理研究所, 2000
    [40]张卫涛,杨慧珠.各向异性介质弹性波传播的三维不规则网格有限差分方法[J].地球物理学报, 2004, 18(2): 332-337
    [41]张永刚.地震波场数值模拟方法[J].石油物探, 2003, 42(2): 143-148
    [42]张中杰,何樵登.含裂隙介质中地震运动学问题正演模拟[J].石油地球物理勘探, 1989, 24(3): 290-300
    [43]张中杰,滕吉文.各向异性介质中界面上改进型斯奈尔定律[J].科学通报, 1995, 40(2): 1724-1728
    [44]钟伟芳,聂国华.弹性波的散射理论[M].武汉:华中理工大学出版社, 1997
    [45] Aki K., and Richards P. G... Quantitative seismology: Theory and methods[M]: W. H. Freeman and Company, 1980, volumes 1 and 2
    [46] Alkhalifah T.. Acoustic approximation for processing in transversely isotropic media[J]. Geophysics, 1998, 63(2): 623-631
    [47] Alkhalifah T.. An acoustic wave equation for anisotropic media[J]. Geophysics, 2000, 65(4): 1239-1250
    [48] Alkhalifah T.. An acoustic wave equation for orthorhombic anisotropic[J]. Geophysics, 2003, 68(4): 1169-1172
    [49] Backus G.. E.. Long-wave elastic anisotropy produced by horizontal layering[J]. J. Geophys. Res., 1962, 67(11): 4427-4440
    [50] Berryman J. G... Long-wave elastic anisotropy in transversely isotropic media[J]. Geophysics, 1979, 44(5): 896-917
    [51] Byun B. S.. Seismic parameters for transversely isotropic media[J]. Geophysics, 1984, 49(11): 1908-1914
    [52] Byun B. S.. Corrigan D., Seismic traveltime inversion for transverse isotropy[J]. Geophysics, 1990, 55(2): 192-200
    [53] Berenger J. P., A perfectly matched layer for absorption of electromagnetic waves[J]. J. Comput Phys., 1994, 114(2), 185-200
    [54] Carcione J. M., Kosloff, D., Behle A., et al. A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media[J]. Geophysics, 1992, 57(12), 1593-1607
    [55] Castagna J. P.. Petrophysical imaging using AVO[J]. The Leading Edge, 1993, 12(3): 72-178
    [56] Cheadle S. P., Brown R. J., Lawton D. C.. Orthorhombic anisotropy: A physical modeling study[J]. Geophysics, 1991, 56(10): 1603-1613
    [57] Collino F., Tsogka C.. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J]. Geophysics, 2001, 66(1): 294-307
    [58] Coultrip L.. High-accuracy wavefront tracing traveltime calculation[J]. Geophysics, 1993, 58(2): 284-292
    [59] Clayton R., Engquist B.. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bull. Seis. Soc. Am., 1977, 67(6): 1529-1540
    [60] Claerbout J.. Image the earth’s interior[M]. Black Sientific Publication, 1985: 10-35.
    [61] Crampin S., Bamford D.. Inversion of P-wave velocity anisotropy[J]. Geophys. J. R. astr. Soc., 1977, 49(1): 123-132
    [62] Crampin S.. Seismic wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic[J]. Geophs. J. R. astr. Soc., 1978, 53(3): 457-496
    [63] Crampin S.. Mcgonigler, Bamford, Estimating crack parameters for observations of P wave velocity anisotropy[J]. Geophysics, 1980, 45(3): 345-360
    [64] Crampin S.. A review of wave motion in anisotropic and cracked elastic-media[J]. Wave Motion, 1981, 3: 343-391
    [65] Crampin S.. Effective anisotropic elastic constants for wave propagation through cracked solids[J]. Geophys. J. R. astr. Soc., 1984, 76(1): 135-145
    [66] Crampin S.. Chesnokov E. M., Hipkin R. A.. Seismic anisotropy-the state of the art[J]. First Break, 1984, 3: 9-18
    [67] Crampin S.. An introduction to wave propagation in anisotropic media[J]. Geophysical Journal of the Royal Astronomical Society, 1984, 76(1): 17-28
    [68] Crampin S.. Evaluation of anisotropy by shear-wave splitting[J]. Geophysics, 1985, 50(1): 142-152
    [69] Chapman C. H., Shearer P. M.. Ray tracing in azimuthally anisotropic media-II: Quasi- shear wave coupling[J]. Geophys. J. I., 1989, 96(1): 65-83
    [70] Daley P. F., Hron F.. Reflection and transmission coefficients for seismic waves in ellipsoidally anisotropic media[J]. Geophysics, 1979, 44(1): 27-38
    [71] Dan kosloff, Baysal E.. Migration with the full wave-equation[J]. Geophysics, 1983, 48(3): 677-687
    [72] Dehghan K., Farra V., Nicolétis L.. Approximate ray tracing for qP-waves in inhomogeneous layered media with weak structural anisotropy[J]. Geophysics, 2007, 72(5): SM47–SM60
    [73] Esmersoy. Split-shear wave inversion for fracture evaluation[A]: 60th Ann. Internat. Mtg. [C], Soc. Expl. Geophys., Expanded Abstracts, 1990: 1400-1403
    [74] Ferguson R. .J. and Margrave G.. F.. Depth imaging in anisotropic media by symmetric non-stationary phase shift[J]. Geophys. Prosp., 2002, 50(3): 281-288
    [75] Fisher R., Lees J. M.. Shortest path ray tracing with sparse graphs[J]. Geophysics, 1993, 58(7): 987-996
    [76] Fryer G.. J., Frazer N.. Seismic wave in stratified anisotropic media-II: Elastodynamic eigensolutions for some anisotropic system[J]. Geophys. J. R. astr. Soc., 1987, 91(1): 73-101
    [77] Gajewski D., Psencik I.. qP wave phase velocities in weakly anisotropic media–perturbation approach[A]. 66th Ann. Internat. Mtg.[C], Soc. Expl. Geophys., Expanded abstracts, 1996: 1507-1510
    [78] Gazdag J.. Wave equation migration with the phase-shift method[J]. Geophysics, 1978, 43(7): 1342-1351
    [79] Gazdag J., Sguazzero P.. Migration of seismic data by phase shift plus interpolation[J]. Geophysics, 1984, 49(2): 124-131
    [80] Han Q. Y., Wu R.S.. A one-way dual-domain propagator for scalar qP-waves in VTI media[J]. Geophysics, 2005, 70(2): D9-D17
    [81] Hess H. H.. Seismic anisotropy of the upper mantle[J]. Nature, 1964, 203: 629-631
    [82] He Z. H., Xiong G. J., Zhang Y. X.. Nonzero offset seismic forward modeling by one-way acoustic wave-equation[A]. 68th Ann. Internat. Mtg.[C], Soc. Expl. Geophys., Expended Abstracts, 1998: 1921-1924.
    [83] Higdon R. L.. Absorbing boundary conditions for elastic waves[J]. Geophysics, 1991, 56(2): 231-241
    [84] Huang L. J., Fehler M. C., Wu R.S.. Extended local Born Fourier migration method[J]. Geophysics, 1999, 64(5): 1524-1534
    [85] Huang L.J., Fehler M.C., Roberts P.M., et al. Extended local Rytov Fourier migration method[J]. Geophysics, 1999, 64(5): 1535-1545
    [86] Hudson J A. Wave speeds and attenuation of elastic wave in material containing cracks[J]. Geophys. J. R. astr. Soc., 1981, 64(1): 133-150.
    [87] Igel H., Mora P., Riollet B.. Anisotropic wave propagation through finite-difference grids[J]. Geophysics, 1995, 60(4): 1203-1261
    [88] Jakobsen M., Liu E. R., Chapma M.. Estimation of anisotropic permeability in fractured reservoirs from seismic AVOZ analysis[A]. 77th Ann. Internat. Mtg.[C], Soc. Expl. Geophys., Expanded Abstracts, 2007: 99-103
    [89] Jolly R.N.. Investigation of shear waves[J]. Geophysics, 1956, 21: 905-938
    [90] Jones L.F., Bernitsas, Nick B., Farmer, P., Leslie, J. and Bridson, M., Anisotropic ambiguities[A]. 72nd Ann. Internat. Mtg.[C], Soc. Expl. Geophys., Expanded Abstracts, 2002, 121-124
    [91] Juhlin C.. Finite-difference elastic wave propagation in 2D heterogeneous transversely isotropic media[J]. Geophysical Prospecting, 1995, 43(6): 843-858
    [92] Kitchenside P.. Phase shift-based migration for transverse anisotropy[A]. 61st Ann. Internat. Mtg.[C], Soc. Expl. Geophys., Expanded Abstracts, 1991: 993-996
    [93] Le Rousseau J. H., De Hoop M.V.. Scalar generalized-screen algorithms in transversely isotropic media with a vertical symmetry axis[J]. Geophysics, 2001, 66(5): 1538-1550
    [94] Levin F. K.. The reflection, refraction, and diffraction of waves in media with an elliptical velocity dependence[J]. Geophysics, 1978, 43(3): 528-537
    [95] Li X.Y., Crampin S.. Approximations to shear-wave velocity and moveout equations in anisotropic media[J]. Geophysical Prospecting, 1993, 41(7): 833-857
    [96] Marfurt K.J., Accuracy of finite-difference and finite-element modeling of scalar and elastic wave equations[J]. Geophysics, 1984, 49(5): 533-549
    [97] Martins J L. Elastic impedance in weakly anisotropic media[J]. Geophysics, 2006, 71(3): D73 -D83
    [98] Meadows M., Coen S.. Exact inversion of plane layered isotropic and anisotropic elastic media by the state-space approach[J]. Geophysics, 1986, 51(11): 2031-2050
    [99] Mora P., Modeling anisotropic seismic waves in 3-D[A]. 59th Ann. Internat. Mtg.[C], Soc. Expl. Geophys., Expanded Abstracts, 1989: 1039-1043
    [100] Moser T. J.. Shortest path calculation of seismic rays[J]. Geophysics, 1991, 56(1): 59-67
    [101] Min D. J.. Improved frequency-domain elastic wave modeling using weighted- averaging difference operators[J]. Geophysics, 2000, 65(3): 884-895
    [102] Nur A., Simmons G... Stress-induced velocity anisotropy in rock: an experimental study[J]. Jour. of Geophys. Res., 1969, 74(27): 6667-6674
    [103] Nichols D. E.. Maximum energy traveltimes calculated in the seismic frequency band[J]. Geophysics, 1996, 61(1): 253-263
    [104] Ohanian V.. Weak transverse isotropy by perturbation theory[A]. 66th Ann. Internat. Mtg.[C], Soc. Expl. Geophys., Expanded Abstracts, 1996: 1838-1841
    [105] Osman O. M., Robinson E. A.. Seismic source signature estimation and measurement[M]. Tulsa: Society of Exploration, 1996
    [106] Postma G.. W.. Wave propagation in a stratified medium[J]. Geophysics, 1955, 20(4): 780-806
    [107] P?en?ík I., Farra V. First-order ray tracing for qP waves in inhomogeneous, weakly anisotropic media[J]. Geophysics, 2005, 70(6): D65–D75
    [108] Pratt R. G., Frequency-domain elastic wave modeling by finite differences: A tool for crosshole seismic imaging[J]. Geophysics, 1990, 55(5): 626-632
    [109] Pratt R. G., Ship R. M.. Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in Sediments using crosshole data[J]. Geophysics, 1999, 64(3): 902-914
    [110] Qian J., Symes W.. Finite-difference quasi-P traveltimes for anisotropic media[J]. Geophysics, 2002, 67(1): 147-155
    [111] Qin F., Luo Y., Olsen K. B., et al. Finite-difference solution of the eikonal equation along expanding wavefronts[J]. Geophysics, 1992, 57(3): 478-487
    [112] Ristow D., Ruhl T.. Fourier finite-difference migration[J]. Geophysics, 1994, 59(12): 1882-1893
    [113] Robert W., Clayton, Robert H.. A Born-WKBJ inversion method for acoustic reflection data[J]. Geophysics, 1981, 46(11): 1559-1567
    [114] Rommel B. E.. Approximate polarization of plane waves in medium having weak transverse isotropy[J]. Geophysics, 1994, 59(10): 1605-1612
    [115] Schoenberg M., de Hoop M.V.. Approximate dispersion relations for qP-qSV-waves in transversely isotropic media[J]. Geophysics, 2000, 65(3): 919-933
    [116] Sena A. G.. Seismic traveltime equations for azimuthally anisotropic and isotropic media: Estimation of interval elastic properties[J]. Geophysics, 1991, 56(12): 2090-2101
    [117] Sethian J., Popovici A.. 3-D traveltime computation using the fast marching method[J]. Geophysics, 1999, 64(2): 516-523
    [118] Shin S., Shin, C., Kim W.. Traveltime calculation using monochromatic one way wave equation[A]. 70th Ann. Internat. Mtg.[A], Soc. Expl. Geophys., Expanded Abstracts, 2000: 2313-2316
    [119] Shin C., Min D.J., Marfurt K.J., et al. Traveltime and amplitude calculations using the damped wave solution[J]. Geophysics, 2002, 67(5): 1637-1647
    [120] Shin C., Marfurt K.J., Park K.G., et al. Traveltime and amplitude calculation using a perturbation approach[J]. Geophysics, 2002, 67(5): 1648-1655
    [121] Shin C., Ko S., Kim W., et al. Traveltime calculations from frequency-domain downward-continuation algorithms[J]. Geophysics, 2003, 68(4): 1380-1388
    [122] Stoffa P.L., Fokkema J.T., et al. Split-step Fourier migration[J]. Geophysics, 1990, 55(4): 410-421
    [123] Thomsen L.. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1954-1966
    [124] Tanimoto T.. Surface-wave ray tracing equations and Fermat’s principle in an anisotropic earth[J]. Geophys. J. R. astr. Soc., 1987, 88(1): 231-240
    [125] Tsings C., Vafidis A.. Elastic wave propagation in transversely isotropic media using finite difference[J]. Geophysical Prospecting, 1990, 38(8): 933-949
    [126] Tsvankin I., Reflection moveout and parameter estimation for horizontal transverse isotropy[J]. Geophysics, 1997, 62(2): 614-629
    [127] Tsvankin I.. Anisotropic parameters and P-wave velocity for orthorhombic media[J]. Geophysics, 1997, 62(4): 1292-1309
    [128] Tsvankin I.. Seismic signatures and analysis of reflection data in anisotropic media[M]. Elsevier Science, 2001
    [129] Uren N.F., Gardner G.H.. McDonald J.A.. The migrator’s equation for anisotropic media[J]. Geophysics, 1990, 55(11): 1429-1434
    [130] Vidale J.E.. Finite-difference traveltime calculation[J]. Bull. Seis. Soc. Am., 1988, 78(6): 2062-2076
    [131] Vidale J. E.. Finite-difference calculation of traveltimes in three dimensions[J]. Geophysics, 1990, 55(5): 521-526
    [132] Wang T. L., and Tang X. M.. Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach[J]. Geophysics, 2003, 68(5): 1749-1755
    [133] Wu X. Y., Wu R. S.. Wavefield and AVO modeling using elastic thin-slab method[J]. Geophysics, 2006, 71(5): C57-C67
    [134] Zhang L., Rector J., An eikonal solver in tilted TI media[A]. 72nd Ann. Internat. Mtg.[C], Soc. Expl. Geophys., Expanded Abstracts, 2002: 1955-1958
    [135] Zhou H. B., Pham D., Gray S., et al. Tomographic velocity analysis in strongly anisotropic TTI media[A]: 74th Ann. Internat. Mtg.[C], Soc. Expl. Geophys., Expanded Abstracts, 2004: 2347-2350