轿车正面碰撞被动安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车安全问题一直伴随着汽车工业的发展,并且是各国政府、社会以及各大汽车制造厂关注的焦点之一。为保障交通事故中的人员安全、提高汽车的被动安全性能,各国政府和行业组织制定了严格的汽车安全法规与评价体系。这些法规和评价体系不仅是检验、评价汽车被动安全性能的重要依据,而且为汽车被动安全设计提供了研究方向。正面碰撞作为汽车交通事故和法规评价中的主要碰撞形式,已经成为轿车被动安全性设计的重要目标之一。另外,在碰撞事故中汽车对行人的保护性能越来越受到政府、企业和社会的关注,在汽车前端结构抗撞性设计中兼顾行人保护设计已经成为正面碰撞被动安全性能设计的新趋势。本文从整车正面碰撞被动安全性出发,对汽车正面结构抗撞性设计、乘员约束系统匹配优化以及对行人小腿保护性能等方面进行了较深入的研究。本文主要研究内容如下:
     ①根据正面碰撞汽车-乘员动力学模型分析车体结构、乘员约束系统的主要参数与乘员胸部伤害响应的内在关系。对乘员胸部伤害关于碰撞加速度水平、车体结构最大动态变形、乘员约束系统固有频率和松弛量等主要参数进行敏感度分析;
     ②建立正面碰撞仿真模型进行乘员主要伤害响应关于双阶加速度特征参数敏感性分析,将双阶加速度波形应用到正面抗撞性目标定义的工程实践中。以能量管理方法为基础提出基于平均压溃力的前端主要吸能部件优化设计方法,并运用该方法对某国产C轿车前部结构进行正面抗撞性优化设计及整车试验验证。同时,对该轿车在正面64km/h40%偏置碰撞中的乘员舱侵入现象进行了改进设计与整车试验验证;
     ③在某国产轿车第一轮车体结构正面抗撞性整车试验中借用同级别轿车正面安全气囊和安全带部件,并以此缩小约束系统仿真优化参数范围。建立正面乘员约束系统仿真模型,并进行部件试验、台车试验验证,然后采用分步正交试验设计方法对正面乘员约束系统进行优化设计和试验验证。依据中国新车评价体系(C-NCAP)和欧洲新车评价体系(Euro-NCAP)评价某国产轿车正面成年乘员保护性;
     ④详细分析汽车前部造型、空间布置、前端结构参数以及刚度特性等对行人小腿保护的影响。结合某国产轿车被动安全开发,应用多刚体和有限元耦合计算的方法对汽车前端结构进行改进设计,提高行人小腿保护性能。
     本文的主要创新点如下:
     ①提出基于平均压溃力的前端主要吸能部件优化设计方法,利用该方法可以提高汽车前部结构正面抗撞性仿真优化设计的效率和精度;
     ②在正面抗撞性整车验证试验中借用同级别轿车正面安全气囊和安全带的方法,缩小正面约束系统仿真优化的参数数量和范围;
     ③采用分步正交试验设计方法对正面乘员约束系统进行优化设计,提高优化精度和可控性;
     ④应用多刚体软件和有限元软件耦合计算的方法对某国产轿车前端结构改进设计,提高行人小腿保护性能。
     本论文所研究的项目为国内首次自主开发Euro-NCAP(2012)5星安全性能的轿车平台。通过参与该轿车正面碰撞被动安全性开发和控制的全过程,形成了高安全性能汽车的前部结构抗撞性设计、正面乘员约束系统匹配和行人小腿保护性能的一般性控制方法,为实现汽车正面碰撞被动安全性能的综合控制提供了切实可行的方法和理论依据。本论文研究内容及结果,对开发安全性能可获得Euro-NCAP5星级评价的自主品牌汽车具有一定的理论与实际意义。
Automotive safety issues have been accompanied by the development of automobileindustry, and have been the focus of governments, society and major manufacturers. Toprotect persons in traffic accidents and enhance the vehicle's passive safety, governments andorganizations have developed rigorous safety regulations and protocols, which are not onlythe basis for testing and evaluating automotive passive safety, but also specify the direction ofpassive safety design. Frontal crash is a major impact mode in real traffic accident and passivesafety regulation, so the frontal crashworthiness is one of the essential design targets forvehicle passive safety. In addition, pedestrian protection has gotten more and more concernsof governments, manufacturers and society, considering pedestrian protection in the design offront structure has become a new trend for frontal passive safety design. On the basis offrontal passive safety development, the frontal structure crashworthiness design, occupantrestraint system matching and pedestrian lower leg protection were studied in-depth. Thecontent in this paper are as follows:
     ①On the basis of the vehicle-occupant kinetic model, The intrinsic relationship andinfluence of occupant restraint system parameters on the occupants injuries were analyzed.Using MATLAB software, sensitivity analysis of occupant injury response on the accelerationlevel, the maximum dynamic deformation, natural frequency and slack of restraint systemwere discussed.
     ②According to the vehicle-occupant mathematic model, sensitivity analysis of dummyinjuries on the two stage acceleration characteristic parameters were analyzed, then themethod was applied to define the front crashworthiness objective in practice. In view of theenergy management, the method of vehicle frontal structure optimization was proposed basedon average crushing force sustained by main energy-absorbing component in frontal crash,which was successfully applied on the frontal structure crashworthiness optimization of adomestic sedan and validated by full vehicle impact test. At the same time, improvements forthe intrusion of the compartment in the mode of64km/h40%Offset Deformable Barrierimpact was fulfilled then were also validated effective by full vehicle impact test.
     ③To mount other vehicle frontal airbags and seat belts in the vehicle used to verify thefrontal structure crashworthiness in a domestic sedan passive safety development process,which reduced the number and scope of parameters for the restraint system optimization. Thesimulation model of occupant restraint system was created, which validated by componenttest and sled test. Two step DOE method was created to optimize occupant restraint systemand validation tests were fulfilled. A domestic sedan adult occupant protection was evaluated based on the C-NCAP (2010) and the Euro-NCAP (2012).
     ④The affects of the front of the shape, spatial arrangement, the front-end structuralparameters and stiffness characteristics on the pedestrian lower leg protection were discussedin details. Combined with the passive safety development of a domestic sedan, applyingmulti-rigid body and finite element coupling calculation improved the pedestrian lower legprotection performance.
     The innovations in this paper are as follows
     ①The method of vehicle frontal structure optimization was proposed based on averagecrushing force sustained by main energy-absorbing components in frontal crash, which couldimprove efficiency and accuracy of the frontal structure crashworthiness simulation.
     ②To mount other vehicle frontal airbags and seat belts in the vehicle used to verify thefrontal structure crashworthiness in a domestic sedan passive safety development process,which reduced the number and scope of parameters for the restraint system simulation.
     ③Two step DOE method was created to optimize occupant restraint system, whichenhanced the accuracy and control of optimization.
     ④Multi-rigid body and finite element coupling calculation method was created toimprove the pedestrian lower leg protection.
     The research project covered in the paper was a domestic self-developed platform aimedat Euro-NCAP (2012)5-star rating for the first time. Through the development process ofpassive safety, the general control method of front structure design, restraint system matchingand pedestrian lower leg protection were initially formed to meet the Euro-NCAP (2012),which provided a feasible thesis basis and control methods for car passive safety. Theachievements in the paper had some theoretical and practical significance for self-brandvehicles to get Euro-NCAP5-star rating.
引文
[1]王瑄,李宏光,赵航.现代汽车安全[M].北京:人民交通出版社,1998.
    [2]葛如海,刘志强,陈晓东.汽车安全工程[M].北京:化学工业出版社,2005.
    [3] Margie Peden等著,刘光远译.世界预防道路交通伤害报告[M].北京:人民卫生出版社,2004.
    [4] Traffic Safety Facts2009. NHTSA,Washington DC20590.
    [5]中华人民共和国道路交通事故统计年报(2004年度).公安部交通管理局,2005.
    [6]中华人民共和国道路交通事故统计年报(2009年度).公安部交通管理局,2010.
    [7]中国道路交通安全研究.国务院发展研究中心产业经济部,2007.
    [8]王正国.交通伤及其预防对策.中华创伤杂志[J],2004.20(3).
    [9]黄世霖,张金换,王晓冬等.汽车碰撞与安全[M].北京:清华大学出版社,2000.
    [10]朱西产.汽车正面碰撞试验法规及其发展趋势的分析.汽车工程[J],2002(Vol24)No.1:1-5.
    [11]张金换,杜汇良,马春生.汽车碰撞安全设计[M].北京:清华大学出版社,2010.
    [12]李红建.轿车正面碰撞安全性能综合控制研究[D].长春:吉林大学汽车工程学院,2005.
    [13]白鹏,龙海靖,李晓明.欧洲NCAP与我国汽车.汽车工程[J],2007(Vol29) No.11:958-963.
    [14]黄中荣,郑祖丹. Euro-NCAP对汽车被动安全性能设计的影响.上海汽车[J],2008.11:39-40.
    [15]牛家忠,朱杏娟.汽车主动安全性与被动安全性的发展.重型汽车[J],1997.6:29-31.
    [16]路平,吴义虎.中国道路交通事故特点分析.第一届国际汽车交通安全研究会徽议论文[C],2000.
    [17] Norbert H ver, Bernd Lichte. Multi-beam Lidar Sensor for Active Safety Applications.SAE2006-01-0347.
    [18]林逸,郭九大,王望予.汽车被动安全性研究综述.汽车工程[J],1998.1:1-9.
    [19] Michael J. Wheeler. Crashworthiness of Aluminum Structured Vehicles. ProceedingsESV16th,1998.
    [20] B. Yan, K. Laurin, K. Xu, S. Sriram, M. Huang. A New Dual Phase Steel forAutomotive Body Panels. SAE2003-01-0518.
    [21] Jinbo Qu, Wael Dabboussi, James Nemes, Steve Yue. High Strain Rate DeformationBehavior of Advanced High Strength Steels for Automotive Applications. SAE2006-01-1430.
    [22] Lutz Kessler, Joerg Gerlach PhD, Thorsten Beier lng and Michael Linnepe lng.TheImpact of Advanced Material Simulation Parameters in Press Shop Operations UsingMild Steel Grades. SAE2010-01-0992.
    [23]张燕.基于能量管理技术的某轿车正面碰撞约束系统参数设计[D].长春:吉林大学汽车工程学院,2009.
    [24] Matthew Huang,Vehicle Crash Mechanics,CRC Press,2002.
    [25] Sun Chuangfan, Cao Libo, Research of a New Type of Vehicle ImpactEnergy-Absorbing Equipment’s Energy-Absorbing Performance[C]. INFATSProceedings,2005.10.
    [26]程秀生,张吉国,周刚.汽车保险杠参数对人体腿部损伤影响程度.吉林大学学报(工学版)[J],2003,第33卷,第2期:25-30.
    [27]高彬.汽车正面撞击的结构耐撞性研究[D].哈尔滨:哈尔滨工业大学汽车工程学院,2006.
    [28]刘凤梧.微型客车针对正面碰撞法规的系统改进设计.汽车技术[J],2009.9.
    [29]王大志.某轻型客车正面碰撞安全性改进设计.中国汽车工程学会第七届汽车安全技术会议论文集[C].2002.
    [30] Emmanuel Glasson, Valérie Maistre and Claude Laurent. Car Front End ModuleStructure Development Regarding Pedestrian Protection and other MechanicalConstraints. SAE2001-01-0761.
    [31]林逸,王望予,郭九大,刘锡国.汽车碰撞的二维人体运动学仿真及其在交通安全研究中的应用.中国公路学报[J],1995(Vol8) No.3.
    [32]郭九大、林逸、靳春宁、王望予、方传流,汽车碰撞仿真的三维人体模型及应用.中国汽车工程学会第十届学术年会论文集[C]. C960007.
    [33] Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user'smanual, version970.2003.
    [34] PSI of ESI Group. PAM-Crash Solver Reference Manual.2000.
    [35] Mecalog Sarf. RADIOSS Input Manual, Version3.1. France,1996.
    [36] OASYS PRIMER. User manual, Version9.4. November2009.
    [37] Theory Notes Manual, VPG3.1,2005.
    [38] Madymo (TNO). Theory Manual, V6.41,2008.
    [39] Mahmood H.F., Paluszny A., Design of Thin Walled Column for Crash EnergyManagement-Their Strength and Mode of Collapse, SAE Paper No.811302,P4039-4050.
    [40] Mahmood H. F., and Paluszny. A. Design of Thin Wall Columns for Crash EnergyManagement-Their Strength and Mode of Collapse. SAE Fourth InternationalConference on Vehicle Structural Mechanics, Nov.1981, Paper No.811302.
    [41] Mahmood, H. F., and Paluszny, A., Axial Collapse of Thin Wall Cylindrical Column.Fifth International Conference on Vehicular Structural Mechanics, Detroit,1984, SAEPaper No.840727.
    [42] Wiezbicki.T., Recke. L., Abramowicz.W., Gholami.T.. Stress Profiles in Thin-WalledPrismatic Columns Subjected to Crush Loading-I. Compression, Computers&Structures Vol.51No.6, P611-623.
    [43] Wiezbicki.T., Recke. L., Abramowicz.W., Gholami.T., J.Huang.Stress Profiles inThin-Walled Prismatic Columns Subjected to Crush Loading-II. Bending,Computers&Structures Vol.51No.6,P625-641.
    [44] Wierzbicki, T., and Akerstrom, T., Dynamic Crushing of Strain Rate Sensitive BoxColumns. SAE Paper No.770592, Proceedings of the2nd International Conferenceon Vehicle Structural Mechanics, April18-20,1977.
    [45] Heon Young Kim. A Study on The Hybrid Finite Element Modeling for Side ImpactSimulation. SAE Paper1999-01-3185.
    [46] Vander Lugt, D.A. et. al. Passenger Car Frontal Barrier Simulation Using NonlinearFinite Element Method, SAE Passenger Car Meeting and Exposition, Dearborn,Michigan, Paper No.871958.
    [47] Kaiser, A.(1992) Some Examples on Numerical Simulation in Vehicle SafetyDevelopment,8th International Conference on Vehicle Structural Mechanics and CAE,Traverse City, Michigan, SAE Publisher, pp.119-128.
    [48] Schelkle, E. and Remensperger, R.(1991) Integrated Occupant-Car Crash Simulationwith the Finite Element Method: The Porsche Hybrid IIIDummy and Airbag Model,in Frontal Crash Safety Technologies for the90’s, SAE paper No.910654.
    [49] Kim, O-S, Kim, S-T, Jung, S-B, and Kim. Sub-Structure Vehicle Test and Analysis toPredict the Frontal Crash Performances of Full-Scale Vehicle. SAE InternationalCongress and Exposition, Detroit, Paper No.1999-01-0076,1999.
    [50] Hahm, S-J, Won, Y-H, and Kim. Frontal Crash Feasibility Study Using MADYMO3Dframe Model,. SAE International Congress andExposition, Detroit, Paper No.1999-01-0072,1999.
    [51] Jesus Monclus-Gonzalez, Cing-Dao Kan and Nabih E. Bedewi, Versatility andLimitations of a Fully Detailed Finite Element Model of a1997Dodge GrandCaravan for Crashworthiness Applications. SAE2000-01-0629.
    [52] Farid Bendjellal, Gilbert Walfisch, Christian Steyer, Jean-Yves. The Combination of Aa New Airbag Technology With a Belt Load Limiter. Proceedings ESV20th,1998,Paper NumberS5-O-14.
    [53] D. Kallieris, G.Schmidt, New Aspects of Pedestrian Protection Load and Injury Patternin Simulated Pedestrian Accidents. SAE881725.
    [54] Thomas, Maclaughlin, John F. Wiechel. Head Impact Reconstruction HIC Validationand Pedestrian Injury Risk. SAE930895.
    [55] Jeff R. Crandall. Research Program to Investigate Lower Extremity Injuries. SAE940711.
    [56] Jeff R. Crandall. Biomedical Response and Physical Prosperities of the Leg Foot andAnkle. SAE962424.
    [57] Koji Mizuno. Head injuries in vehicle-pedestrian impact. SAE2000-01-0157.
    [58] Yasuhiro Dokko and Osamu Ito. Development of Human Lower Limb and Pelvis FEModels for Adult and the Elderly. SAE2009-01-0396.
    [59] Tyler A. Kress, David J. Porta, Stefan M. Duma, John N. Snider, and Nury M. Nino,ADiscussion of the Air Bag System and Review of Induced Injuries. SAE960658.
    [60] Jian-fu, Joseph Tomas, Lauire Sparks. Optimization of Driver-Side Airbag andRestraint System by Occupant Dynamics Simulation. SAE952703.
    [61] Huang, M., An Analysis of the Vehicle-Occupant Impact Dynamics and Its Application.SAE Paper No.830977,1983.
    [62] Huang, M. and Loo, M. A Study on Ride-Down Efficiency and Occupant Responses inHigh Speed Crash Tests. SAE-SP-1077, SAE Paper No.950656,1995.
    [63]熊文,张金换,裘真,黄世霖.越野车耐撞性设计改进与分析[C].中国汽车工程学会第六届汽车安全技术会议,2001.
    [64]孔凡忠,黄世霖,张金换,刘凤梧,王大志.汽车碰撞数值模拟方法的研究进展
    [C].中国汽车工程学会第七届汽车安全技术会议,2002.
    [65]龚剑,刘凤梧,黄世霖,张金换.整车碰撞模拟计算及其在改进设计中的运用[C].中国汽车工程学会第七届汽车安全技术会议,2002.
    [66]王大志.基于乘员保护的汽车正面碰撞结构设计与变形控制研究[D].北京:清华大学汽车工程系,2006.
    [67]江建,陈宗渝,段广洪,向东.汽车偏置正面碰撞的数值仿真及结构改进[J].中国公路学报,2009.9(Vol22) No.5.
    [68]马春生,张金换,胡经耀,黄世霖.基于正交试验的汽车侧面碰撞结构改进设计
    [C].中国汽车工程学会第十三届汽车安全技术会议,2010.
    [69]张金换,马春生,黄世霖.平头轻型客车正面碰撞安全性改进设计研究[C].中国汽车工程学会第十三届汽车安全技术会议,2010.
    [70]贾宏波,黄金陵,郭孔辉,谷安涛,王中校.汽车车身结构碰撞性能的计算机模拟、评价与改进[J].吉林工业大学学报,1998.2.
    [71]王登峰,曾迥立.汽车吸能转向机构与驾驶员碰撞的仿真与试验[J].汽车工程,2003(Vol.25)No.1:20-24.
    [72]李红建.轿车车体侧面抗撞性研究[D].长春:吉林大学2003.3.
    [73]张建伟.基于数值模拟技术提高微型客车正面抗撞性的研究[D].长春:吉林大学2003.5.
    [74]刘静岩.面向微型客车车身结构正面抗撞性设计的参数化建模研究[D],长春:吉林大学2004.5.
    [75]魏一凡.微型客车30o斜角碰撞及40%偏置碰撞抗撞性研究[D],长春:吉林大学2005.5.
    [76]刘中华.薄壁直梁动态撞击的变形吸能特性的仿真与分析[D].长春:吉林大学2004.5.
    [77]林逸,张建伟,马天飞,杨文利.微型客车抗撞性改进的计算机仿真[J].汽车工程,2002(Vol24) No.6:466-469.
    [78]张君媛,微型客车乘员约束系统参数优化与系统性能稳定性研究[D].长春:吉林大学2003.10.
    [79]张君媛,林逸,张敏,华伟.基于非参数统计的汽车乘员约束参数灵敏度分析[J].汽车工程,2004(Vol26)No.4:43-445.
    [80]张君媛,林逸,华伟,张敏.基于随机模拟的汽车安全带系统约束效能优化[J].汽车工程,2004(Vol26)No.3:311-313.
    [81][81]王景生.行人腿部碰撞安全性与保险杠参数优化的仿真方法研究[D].长春:吉林大学2006.3.
    [82]唐洪斌.乘用车正面抗撞性设计方法研究[D].长春:吉林大学2008.10.
    [83]钟志华,张维刚,曹立波,何文.汽车碰撞安全技术[M].北京:机械工业出版社,2003.
    [84]张维刚,钟志华.汽车正撞吸能部件改进的计算机仿真[J].汽车工程,2002.1.
    [85] Bai Zhonghao, Liu Yonghua, Cao Libo. Simulation Study of Energy Absorbing SquareColumn for Vehicle Crash Test[C]. INFATS Proceedings,2005.10.
    [86]刘子建.汽车乘员碰撞损伤防护及智能型安全气囊关键要素研究[D].长沙:湖南大学2001.6.
    [87]张维刚.汽车碰撞安全性设计与改进技术[D].长沙:湖南大学2002.10.
    [88]曹立波.汽车前碰撞安全性的试验与仿真技术研究[D].长沙:湖南大学2001.10.
    [89]何文,钟志华,杨继匡.汽车安全气囊技术的新发展[J].汽车安全,2000(4):P33-37.
    [90]何文.汽车安全气囊工作过程计算机仿真理论与试验验证技术研究[D].长沙:湖南大学2002.
    [91]李凡.汽车-行人碰撞中行人颅脑动力学响应及损伤防护的研究[D].长沙:湖南大学2002.
    [92]李莉.汽车与行人碰撞事故调查分析及仿真研究[D].长沙:湖南大学2006.
    [93]危海烟.汽车与行人碰撞中下肢损伤防护及其评价方法研究[D].长沙:湖南大学2006.
    [94]陈勇.儿童行人在汽车碰撞中头部损伤的防护技术研究[D].长沙:湖南大学2008.
    [95]朱大勇,王宏雁,高卫民.轿车正面碰撞的计算机模拟.中国汽车工程学会第六届汽车安全技术会议论文集[C],2001.
    [96]王进.汽车碰撞中数据采集系统的分析与研究[D].武汉:武汉理工大学2004.5.
    [97]叶智博.安全气囊碰撞数据处理与点火算法研究[D].武汉:武汉理工大学2005.5.
    [98]胡玉梅.汽车正面碰撞设计分析技术及应用研究[D],重庆:重庆大学2002.5.
    [99]胡玉梅,邓兆祥,李晓红,王攀,王勇.微型客车正面碰撞计算机仿真时间及精度研究[J].汽车工程,2004(Vol26)No.6:719-722.
    [100] Gu Lei,Xu Min,Qi Guojun,Gao Xinhua,Xu Liwei,Xu Youzhong,ComputationalRobust Design Methods for Vehicle Crash Safety,INFATS Proceedings,2005.10
    [101]王阳,孙振东.汽车实车碰撞试验方法探讨[J].汽车技术,2001,3.
    [102]陈晓东,苏清祖,程勇,朱西产.汽车侧撞移动变形壁障有限元模型的开发[J].汽车工程,2003(Vol25)No.3:260-263.
    [103] Traffic Safety Facts2005. NHTSA.
    [104] H.Katoh, R.Nakahama. Study on the Ride-Down Evaluation.9th InternationalTechnical Conference on Experimental Safety Vehicles.1982.
    [105]朱西产,钟荣华.薄壁直梁件碰撞吸能计算机仿真方法的研究[J].汽车工程,2000(Vol.22)No.2.
    [106]贾宏波,黄金陵,谷安涛,王中校.车辆典型薄壁直梁结构碰撞模拟研究与参数选择[J].农业机械学报,1998.1.
    [107] J. Z. Cao, M. R. Koda and S. E. Law. Vehicle Pulse Shape Optimization to ImproveOccupant Response in Front Impact. SAE paper2004-01-1625.
    [108] S. Mark. Effect of Frontal Crash Pulse Variations on Occupant Injuries.18th ESV,paper400.
    [109] M. S. Varat and S. E. Husher. Crash pulse Modeling for Vehicle Safety Research.18thESV, paper501.
    [110] J. Wu, S. Bilkhu and G. S. Nusholtz. An Impact Pulse-Restraint Energy Relationshipand Its Application. SAE paper2003-01-0505.
    [111]潘作峰,郭睿,李红建.基于“G1-G2设计规则”的能量管理法在车体耐撞性概念设计中的应用[J].武汉大学学报(工学版),2006年10月(第39卷):70-73.
    [112]朱西产,钟荣华.薄壁直梁件碰撞性能计算机仿真方法的研究[J].汽车工程,2000年第2期(第22卷):85-89.
    [113]林逸,李红建,王继新,王新宇,邱少波.车体典型结构件的抗弯曲冲击特性研究[J].农业机械学报,2005.4(Vol36):17-21.
    [114]刘维海、程秀生、朱学武等.基于平均压溃力的轿车前端结构优化方法[J].汽车技术,2011.7:19-23.
    [115]游世辉,钟志华.汽车安全气囊的计算机仿真研究的现状与趋势[J].湖南大学学报(自然科学版).2000.27(3):43-48.
    [116]钟志华,杨济匡.汽车安全气囊技术及其应用[J].中国机械工程·2000.11(1-2):234-237.
    [117]魏春园,等译.汽车安全性与舒适性系统[M].北京:北京理工大学出版社,2006.
    [118]张维刚,何文,钟志华.车辆乘员碰撞安全保护技术[M].湖南长沙,湖南大学出版社,2007年,P93.
    [119]王维平,朱一凡等.仿真模型有效性确认与验证[M].国防科技大学出版社.1998.
    [120]林逸,范成建.汽车乘员安全约束系统的优化[J].汽车工程200年(第22卷)第5期.
    [121] Viano D C, Arepally S.1990Assessing the Safety Performance of Occupant RestraintSystem. Processing of the34th STAPP Car Crash Conf. SAE Paper902328.
    [122] Yih-Charng Deng. How Airbags and Seat Belts Work Together in Frontal Crashes.SAE Paper952702.
    [123] Euro-NCAP. FRONTAL IMPACT TESTING PROTOCOL. Version5.0,October2009.
    [124] Euro-NCAP. ASSESSMENT PROTOCOL–ADULT OCCUPANT PROTECTION.Version5.1, October2009.
    [125] Euro-NCAP. SIDE IMPACT TESTING PROTOCOL. Version5.0, October2009.
    [126] Euro-NCAP. POLE SIDE IMPACT TESTING PROTOCOL. Version5.0,October2009
    [127] EEVC Working Group17Report: Improved Test Methods to Evaluate PedestrianProtection Afforded by Passenger Cars. December1998with September2002Updates.
    [128] Euro-NCAP. PEDESTRIAN TESTING PROTOCOL. Version5.2, November2010.
    [129] Euro-NCAP. ASSESSMENT PROTOCOL–PEDESTRIAN PROTECTION. Version5.0, May2009.
    [130] Euro-NCAP. ASSESSMENT PROTOCOL–CHILD OCCUPANT PROTECTION.Version5.1, October2009.
    [131] Euro-NCAP. ASSESSMENT PROTOCOL–SAFETY ASSIST. Version5.0, May2009.
    [132] Euro-NCAP. THE DYNAMIC ASSESSMENT OF CAR SEATS FOR NECKINJURY PROTECTION TESTING PROTOCOL. Version2.9, February2009.
    [133] Euro-NCAP. ASSESSMENT PROTOCOL–OVERALL RATING. Version5.0, May2009.
    [134] EEVC Working Group17Report: Improved Test Methods to Evaluate PedestrianProtection Afforded by Passenger Cars(December1998with September2002Updates).
    [135]“DIRECRIVE2003/102/EC OF THE EUROPEAN PARLIAMENT AND OF THECOUCIL OF17NOVEMBER2003”, Official Journal of the European Union,2003
    [136] Global Technical Regulation No.9, Pedestrian Safety, Established in the GlobalRegistry on12November2008.
    [137]苗强,王大志,马美林,刘军勇.概念设计与有限元仿真评估方法在行人腿部保护车身设计中的应用[C].The6th Int. Forum of Automotive Traffic Safety(INFATS),December2008. P232-236.
    [138]加里.布朗.关于全球行人保护要求不断提高情况下的车辆设计展望[J].轻型汽车技术.2005.
    [139][139]吴斌,朱西产,苗强等.有利于行人腿部保护的车身前端设计和优化[C].2010中国汽车工程学会年会论文集SAE-C2010E150.
    [140] Yong Ha Han and Young Woo Lee. Optimization of Bumper Structure for PedestrianLower Leg Impact. SAE2002-01-0023.
    [141] Yong Ha Han and Young Woo Lee. Development of a Vehicle Structure withEnhanced Pedestrian Safety. SAE2003-01-1232.
    [142] Emmanuel Glasson, Valérie Maistre and Claude Laurent. Car Front End ModuleStructure Development Regarding Pedestrian Protection and other MechanicalConstraints. SAE2001-01-0761.
    [143]黄冬.轿车-行人碰撞中头部和下肢损伤分析以及防护措施研究[D].湖南大学2008年5月.
    [144] Joung Myung Lim, Ju Yong Park and Dong-Won. Shin Development of an OptimizedStructure for Meeting Pedestrian Protection Requirements. SAE2011-01-0770.