蒺藜皂苷对脑缺血再灌注损伤的保护作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒺藜(tribulus terrestris)是蒺藜科植物蒺藜的干燥成熟果实。蒺藜皂苷(gross saponins of tribulus terrestris, GSTT)是蒺藜的有效成分之一,是以甾体皂苷为主的十多种皂苷的混合物。研究证实蒺藜皂苷具有降低血压、舒张血管、抑制血小板聚集、降低血糖、抑制肿瘤生长等作用。关于蒺藜皂苷对于脑血管的作用报道较少。PKCε是蛋白激酶C (protein kinase C, PKC)家族中的一个亚型。研究表明,活化后的PKCε可在缺血性脑损伤中对神经细胞起到保护作用。本实验通过建立大鼠脑缺血再灌注损伤模型及用H2O2损伤PC12细胞建立氧化应激损伤模型,阐明蒺藜皂苷对脑缺血再灌注损伤的保护作用并探讨其机制,为蒺藜皂苷在临床应用提供科学依据。
     在整体水平上,采用线栓法建立大鼠脑缺血再灌注损伤模型。实验结果表明,蒺藜皂苷能够降低脑缺血再灌注损伤大鼠的神经功能评分;降低脑组织匀浆中MDA、NO的含量,并提高SOD的活性;减小脑梗死面积,抑制神经细胞凋亡;免疫组化结果表明,蒺藜皂苷可上调PKCε和ERK1/2蛋白的表达,Western blot结果显示蒺藜皂苷可促进PKCε、ERK1/2和Bcl-2蛋白的表达,可使PKCε发生膜转位。初步提示蒺藜皂苷的保护作用可能是通过激活PKCε与ERK1/2的信号转导通路实现的。
     大鼠肾上腺嗜铬细胞瘤细胞(pheochromocytoma cells,PC12)具有神经元的基本生物学特性,而且容易培养可传代,有利于量化评价药物作用,是一个比较理想的细胞模型。H2O2是体内氧化代谢的中间产物之一,大量积聚时会对细胞产生毒性作用。细胞水平实验采用H2O2损伤PC12细胞来模拟体内氧化应激模型。结果表明:蒺藜皂苷可提高PC12细胞生存力;降低培养液中LDH、MDA的含量,并提高SOD的活性;降低PC12细胞凋亡百分率,抑制细胞内钙超载,稳定细胞线粒体膜电位,降低PC12细胞内ROS含量,促进PKCε、ERK1/2和Bcl-2蛋白的表达。使用PKCε抑制剂白屈菜赤碱(chelerythrine,简称Che),可阻断蒺藜皂苷的上述保护作用。结果进一步提示蒺藜皂苷的保护作用可能是通过激活PKCε-ERK1/2信号转导通路而抑制神经细胞凋亡,从而发挥其保护作用。
     综上所述,蒺藜皂苷可通过激活PKCε,促使其发生膜转位,并且上调ERK1/2蛋白量的表达从而对抗氧化应激损伤,减轻细胞内钙超载、稳定线粒体膜电位,上调抗凋亡蛋白Bcl-2含量,抑制神经细胞的凋亡,从而发挥对脑缺血的保护作用。
Cerebrovascular disease is a common disease in clinic with high morbidity, disablement rate and mortality rate. It seriously influences people’s life and health. Recent epidemiology investigation shows that about one million people are affected by cerebrovascular disease. Cerebrovascular disease is the leading cause of death higher than heart disease and cancer in our country, accounting for sixty to eighty percent. Ischemic cerebrovascular disease (ICVD) refers to occurrences of stenosis and occlusion of main arteries which supply blood to brain. Local brain tissue is ischemic and necrotic, and appears corresponding clinical symptoms. Currently, thrombolysis is the main therapeutic method for the treatment of ICVD through regaining blood reperfusion to the ischemic area. Although some progress has been made but we are still disappointed about reperfussion injury only through anticoagulation, neuroprotection and increasing blood volume. Moreover most drugs may produce adverse reactions. Therefore, the investigation on the mechanism of the cerebral ischemia injury , research and development of protective drugs for the ischemia-reperfusion injury is very important both in theoretical sdudies and practical uses.
     Tribulus terrestris refers to the dry, ripe fruit of the plant caltrop. It has efficacies of nature micro-warm and acrid-bitter flavor and calming liver wind and promoting circulation. The gross saponins of tribulus terrestris(GSTT)is one of the most effective ingredients which is extracted from the whole plant of caltrop. It is a mixture of about ten kinds of saponins. In recent years, some intensive studies on chemical constituent, pharmacological effects, clinical application and toxic effects of GSTT have been made and better results about them have been available. Researches have shown that GSTT have the effects of vasodilating, lowering blood pressure, inhibiting platelet aggregation, reducing blood sugar levels, suppressing tumor growth and enhancing sexual function. Our research team has done a lot of studies on GSTT. Our research has shown that GSTT has the effect of cerebral ischemia-reperfusion injury. But it is unclear about that protective effect and molecular mechanism of GSTT on cerebral ischemia-reperfusion injury. The aim of this research is to set up the model of cerebral ischemia-reperfusion injury in vivo and in vitro and investigate the protective effects and mechanisms of GSTT on the ischemic cerebral injury. It can provide a theoretical basis for safer and more reasonable uses of this therapy in clinic.
     We set up the cerebral ischemia-reperfusion model by blocking middle cerebral artery in vivo and observed effects of GSTT on the neurologic deficit score, SOD, MDA, NO contents and infarction area in the brain tissue. At the same time, some samples were prepared to store in the formaldehyde solution for HE and toluidine blue staining and TUNEL immunohistochemical performance. Other samples were taken to store in the liquid nitrogen for the measure of Western blot. The protein expression of PKCε, ERK1/2 and Bcl-2, were analyzed by Western blot. PKCεtranslocation and change of ERK1/2 were detected by immunohistochemical and Western blot.
     Experiments results in vivo showed that GSTT could significantly reduce the neurologic deficit score, contents of MDA and NO, and increased the activity of SOD in brain tissue, and decreased cerebral infarction area and neuronal cell apoptosis. GSTT could improve cerebral ischemia-reperfusion injury. The results of immunohistochemical and western blot analysis showed that GSTT could upregulate the protein expression of PKCε, ERK1/2 and Bcl-2. GSTT could promote PKCεtranslocation and upregulated the expression of ERK1/2. It was demonstrated that GSTT could protect cerebral ischemia-reperfusion injury through strengthening anti-oxidative enzyme activities, improving the ability of cleaning free radicals, alleviating the injury induced by free radicals, promoting PKCεtranslocation, upregulating the expression of ERK1/2 and inhibiting cell apoptosis.
     In order to further investigate the protective effects and mechanisms of GSTT on cerebral ischemia-reperfusion injury, we used 0.1mmol·L-1 hydrogen peroxide (H2O2) to damage pheochromocytoma cell (PC12 cell). PC12 cell is an ideal model because it can be easily cultivated and has basal neuron biological characteristics. H2O2 is one of middle metabolizing products of the oxidative metabolism. Its accumulation in the body may lead to toxic effect on cells. The survival ability was detected by methyl thiazolyl tetrazolium (MTT) method. The contents of LDH, SOD and MDA in cultured conditions were measured by using the instruments. We determined the optimum dose and studied of the mechanism of GSTT on PC12 cell. The optimum dose of GSTT is 10mg·L-1. The percentage of apoptosis rate and the content of ROS were measured with flowcytometry. Mitochondrial memberane potential (△Ψm) and intracellular calcium concentration were observed with laser confocal microscopy system. The change of ERK1/2 was observed with immunofluorescence method. At the same time, the protein expressions of PKCε, ERK1/2 and Bcl-2 were analyzed with Western blot.
     The results showed that GSTT could increase the survival rate of PC12 cells, reduce the release of LDH from PC12 cells, increase the activity of SOD ,reduce the concentration of MDA and PC12 cells apoptosis percentage and intracellular calcium concentration, stabilize the mitochondrial membrane potential, reduce the content of ROS, improve PKCεactivation and translocation,upregulate the protein expressions of ERK1/2 and Bcl-2. The inhibition of PKCεcould block the protective effects of GSTT.The results revealed that GSTT could produce the protective action through activating PKCε-ERK1/2 signaling pathway and inhibiting neurocyte apoptosis possibly.
     From the above, we can make a conclusion that protective effects of GSTT on cerebral ischemia-reperfusion injury in rats and oxidative stress damaged by H2O2 of PC12 cells are probably through strengthening anti-oxidative enzyme activity, improving the ability of cleaning free radicals, inhibiting lipid peroxidation injury, stabilizing the mitochondrial membrane potential, protecting mitochondrial function, promoting PKCεtranslocation, upregulating expressions of ERK1/2 and Bcl-2 and inhibiting neuron apoptosis.
     Innovative ideas:
     1. GSTT has been applied for many years in clinic. But it is unclear about protective effects and mechanisms of GSTT on cerebral ischemia-reperfusion injury. We study the protective effects of GSTT on neuron injury by in vivo and in vitro experiments。
     2. The study of the effects of GSTT on free radical,intracellular calcium overload, mitochondrial membrane potential,apoptosis and the protein expression of PKCε、ERK1/2 have not been reported up to now.
     3. Our research will provide a new thought and theoretical basis for extracting new and effective monomers of GSTT through an intensive exploration in effects of GSTT on cerebral ischemia.
引文
[1]IIdan F, Gocer A I, Tuna M, et al.The effects of pretreatment of intravenous nimodipine on Na+-K+/Mg2+ATPase, Ca2+/Mg2+ATPase, lipid peroxidation and early ultra structural findings following middle cerebral artery occlution in the rat[J].Neurol Res, 2001, 23(1): 96-104.
    [2]Turley K R, Toledo-Pereyra L H, Kothari RU. Molecular mechanisms in the pathogenesis and treatment of acute ischemic stroke [J]. J Invest Surg, 2005, 18:207-218.
    [3]蔡卫斌,杨中汉,李朝阳,等.银杏内酯B对谷氨酸诱导脑皮质神经元凋亡及Ca2+超载的影响[J].中国病理生理杂志,2005,2(4):652-656.
    [4]Kotake Y, Yamamoto M, Matsumoto M, et al. Sivelestat, a neu-trophil elastase inhibitor, attenuates neutrophil priming after hepatoenteric ischemia in rabbits [J].Shock, 2005, 23(2): 156-160.
    [5]周鸿雁,毛海峰,王一蓉,等.脑缺血损伤的研究进展[J].湖南文理学院学报(自然科学版),2005,17(2):72-75.
    [6]苏志达,李瑜,李宏建.卒中治疗药物临床前的实验研究[J].国外医学脑血管疾病分册,2000,8(5):290-293.
    [7]王尧,杜子威.神经生物化学与分子生物学[M].北京:人民卫生出版社,1997:390.
    [8]蔡竖平,桂秋萍,韩志涛,等.脑缺血-再灌注后海马迟发性神经元死亡的实验研究[J].军医进修学院学报,2002,23(4):268-270.
    [9]方舒东,朱也森.脑缺血再灌注损伤的病理生理研究进展[J].医学综述,2006,12(18):1114-1116.
    [10]Nishizawa Y. Glutamate release and neuronal damage in ischemia [J]. Life Sci, 2001, 69(4):369-381.
    [11]Obrenovitch T P,Urenjak J,Zilkha E,et al. Excitotoxicity in neurological disorders-the glutamate paradox[J]. Int J Dev Neurosci, 2000, 18(2-3):281-287.
    [12]张焰,陈群,顾卫东,等.灯盏花素对脑缺血再灌注沙土鼠兴奋性氨基酸释放和学习记忆能力的影响[J].中华实用中西医杂志,2004,4(17):1930-1932.
    [13]陈敏,李长青.钙与脑缺血再灌注后神经细胞凋亡.脑与神经疾病杂志[J]. 2003,11(4):253-255.
    [14]Lewen A, Matz P, Chan P H. Free radical pathways in CNS injury [J]. J Neurotrauma, 2000, 17(10):871-890.
    [15]Duchen M R, Guinness O. On the involvement of a cyclosporine A sensitive mitochondrial pore in myocardial reperfusion injury.Cardio Res, 1993, 27(10): 1790-1796.
    [16]Bernardi P, Dotronilli V. The permeability transation pore as a mitochondrial calcium release channel: a critical appraisal.J Bioe Biom, 1996, 28(2): 131-132.
    [17]Alkayed N J, Harukuni I, Kimes AS, et al. Gender-linked brain injury in experimental.Stroke, 1998, 29(1): 159-165.
    [18]马玉羡.脑缺血再灌注损伤病理生理研究机制进展[J].河南医学研究,1998,7(4):375-378.
    [19]刘宏,吴平生.全脑缺血再灌注后发生迟发性神经元死亡的机制[J].国外医学·生理、病理科学与临床分册,1999,19(5):379-382.
    [20]Reiter R J. Oxidative damage in the central nervous system: protection by melatonin [J].Prog Neurobio, 1998, 56: 359-384.
    [21]Bates B, Hirt L, Thomas S S,et al. Neurotrophin-3 promotes cell death induced in cerebral ischemia, oxygen-glucose deprivation, and oxidative stress: possible involvement of oxygen free radicals [J]. Neurobiol Dis, 2002, 9(1): 24-37.
    [22]Chen Y H, Du G H, Zhang J T. Salvianolic acid B protects brain gainst injuries caused by ischemia-reperfusion in rats [J]. Actaharmacol Sin, 2000, 21(5): 463-466.
    [23]Manus M J, Buchan A M, Hill I E,et al.Global ischemia can cause DNA fragmentation actative of apoptosis in rat barin [J]. Neuro sciL ett, 1993, 164: 89-93.
    [24]Radi R, Backman J S, Bush K M, et al. Peroxynitite induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide [J]. Arch Biochem Biophys, 1991, 288: 481-487.
    [25]Huang Z H, Hang P L, Panahian N, et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase [J]. Science, 1994, 265: 1883-1885.
    [26]Ferriero D M, Sheldon R A, Black S M, et al. Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat [J]. Pediatr Res, 1995, 38: 912-918.
    [27]甘照儒,桑栎楠.脑缺血/再灌注损伤级联反应研究进展[J].医学综述,2009,15(1):43-44.
    [28]Cao G, Minnami M, Pei W. Intracellular baxtranslocation aftertransient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death [J]. J Cereb Blood Flow Metab, 2001, 21(4):321-333.
    [29]王梅,王友群,缺血引发的脑损伤发病学机理[J].中国实用医,2008,3(25):183-186.
    [30]Gourmala N G, Buttinii M, Limonta S, et al. DifemnfiM and independent expression of monocyte chemoattractant protein mRNA by astrocytes and macrophages in rat brain and peripheral hpoVdysaecharide admistration [J]. J Neuroimmunol, 1997, 74: 35-40.
    [31]Sairanen T R, lindsberg P J, BrennerM, et al. Global for brain ischemia results in differenfial cellular expression of interleukin and its receptor atmRNA and protein level [J]. J Cerob Blood FlowMetab, 1997, 17: 1107-1110.
    [32]Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury [J]. Trends Neurosci, 1997, 20:132-139.
    [33]Huang J, Upadhyay U M, Tamargo R J. Inflammation in stroke and focal cerebral ischemia [J]. Surg Neurol, 2006, 66(3): 232-245.
    [34]Danton G H, Dietrich W D. Inflammatory mechanisms after ischemia and stroke [J]. Neuropathol Exp Neurol, 2003, 62(2): 127-136.
    [35]Nita D A, Nita V, Spulber S, et al. Oxidative damage following cerebral ischemia depends on reperfusion-a biochemical study in rat [J]. J Cell Mol Med, 2001, 5(2): 163-170.
    [36]游然,幸敏丽,沈海滔,等.缺血性脑血管疾病的发病机制及治疗药物[J].药学进展,2009,33(6):247-253.
    [37]段秋红,王西明,王忠强,等.体外模拟缺血再灌注诱导神经细胞线粒体功能改变的研究[J].卒中与神经疾病,2004,11(5):271-274.
    [38]Ray S K. Currently evaluated calpain and Caspase inhibitors for neuroprotection in experimental brain ischemia [J]. CurrMed Chem, 2006, 13(28): 3425-3440.
    [39]Loh K P, Huang S H, De Silva R,et al. Oxidative stress: apoptosis in neuronal injury [J]. Curr Alzheimer Res, 2006, 3(4): 327-337.
    [40]Ashkenazi A, Dixit V M. Death receptors: signaling and modulation [J]. Science, 1998, 281(5381):1305-1308.
    [41]Screaton G R, Mongkolsapaya J, Xu X N, et al.TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL [J]. Curr Biol, 1997, 7(9): 693-696.
    [42]Pan G, O’Rourke K, Chinnaiyan A M, et al. The receptor for the cytotoxic ligand TRAIL [J]. Science, 1997, 276:111-113.
    [43]Pan G, Ni J, Wei YF, et al. An antagonist decoy receptor and a death domain- containing receptor for TRAIL [J].Science, 1997, 277(5237): 815-818.
    [44]Stewart J H, Nguyen D, Chen GA, et al. Induction of apoptosis in malignant pleural mesothelioma cells by activation of the Fas (Apo-1/CD95) death signal pathway [J].Thorac Cardiovasc Surg, 2002, 123:295-302.
    [45]高欣,康立源,高秀梅,等.脑缺血后神经细胞凋亡通路及中药干预[J].中国中医药信息杂志,2007,14(7):96-98.
    [46]Kim J S, He L, John J, et al. Mitochondrial permeability transition:a common pathway to necrosis and apoptosis[J]. Biochem Biophys Res Commun, 2003, 304(3): 463-470.
    [47]Li Y, Chopp M, Powers C, et al. Apoptosis and protein expression after focal cerebral ischemia reperfussion in rats [J]. Brain Res, 1997, 765(2): 301-305.
    [48]Repicim,Ceneeno C, Tomas S, et al .Time-course of c-Jun N-terminal kinase activation after cerebral ischemia and effectofD-JNKI1 on c-jun and Caspase-3 activation[J]. Neuroscience, 2007, 150(1): 40-49.
    [49]Ni B, Wu X, SuY, et al.Transient global forebrain ischemia induces a prolonged expression of the Caspase-3 mRNA in rat hippocampal CA1 pyramidal neurons [J]. Cereb Blood Flow Metab, 1998, 18 (3):248-256.
    [50]Shimizu S, Narita M, Tsujimoto Y.Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC [J].Nature, 1999, 399(6735): 411-412.
    [51]崔翔,陈彦青,等.脑缺血神经元凋亡的机制[J].武警医学院学报,2008,17(11):1031-1036.
    [52]刘亚君,崔鹤,谢东萍,等.Bcl-2和Bax在缺血预处理保护海马神经元缺血再灌损伤中的作用[J].山东大学学报(医学版),2006,44 (3):227-230.
    [53]Yin X M, Luo Y, Cao G, et al. Bid-mediated mitochondrial pathway is critical to ischemic neuronal apoptosis and focal cerebral ischemia [J]. J Biol Chem, 2002, 277 (44):42074-42081.
    [54]Shou Y, Li N, Li L, et al. NF-kappaB-mediated up-regulation of Bcl-X (S) and Bax contributes to cytochrome c release in cyanide-induced apoptosis [J]. J Neurochem, 2002, 8l (4): 842-852.
    [55]Graharn S H, Chen J, Clark R S. Bcl-2 family gene productd incerebral isehemia and traumatic brain injury [J].Neurotrauma, 2000,17(10): 831-841.
    [56]Shimizu S, Nagayama T, Jin K L, et al. Bcl-2 antisense treatment prevents induced of tolerance to focal ischemia in the rat brain [J].Cereb Brain Flow Metab, 2001, 21(3): 233-243.
    [57]Liu D, Lu C, Wan R,et al. Activation of mitochondrial APT-dependent potassium channels products neurons against ischemia-induced by a mechanism involve suppression of Bax translocation and cytochrome C release [J]. Cereb Blood Flow Metab, 2002, 22(4): 431-443.
    [58]Kim P K, Dutra A S, Chandraseklzarappa S C,et al. Genomics tructure and mapping of human FADD, an intracellular mediator of lymphocyte apoptosis [J]. J Immu, 1996, 157(12): 5461-5466.
    [59]Salvesen G S, Dixit V M. Caspases: intracellular signaling by proteolysis [J]. Cell, 1997, 91(4): 443-446.
    [60]Muzio M. Signalling by proteolysis: death receptors induce apoptosis [J]. Int J Clin Lab Res, 1998, 28(3): 141-145.
    [61]Stennicke H R, Jurgensmeier J M, Shin H,et al. ProCaspase-3 is a major physiologic target of Caspase-8 [J]. J Biol Chem, 1998, 273: 27084-27090.
    [62]Wallaeh D,Varfolomeev E E, Malinin N L,et al. Tumor necrosis factor receptor and Fas signaling mechanisms [J]. Annu Rev Immunol, 1997, 17:331-367.
    [63]Jin K, Graham SH, Mao X, et al.Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia [J]. Cereb Blood Flow Metab, 2001, 21 (12): 141l-1421.
    [64]Martin-Villalba A, Hahne M, Kleber S, et al.Therapeutic neutralization of CD95- ligand and TNF attenuates brain damage in stroke [J]. Cell Death Differ, 2001, 8 (7): 679-686.
    [65]黄宏艳,肖晓山,等.脑缺血损伤病理及脑细胞凋亡的干预[J].现代医院,2009,9(10):8-11.
    [66]Akoyev V, Das S, Jena S, et al. A review of the preclinical and clinical evidence for protein kinase C as a target for drug development for bipolar disorder [J].Curr Psychia Rep, 2008, 10(6):510-519.
    [67]Azzi A, Oscoboinik D, Hensey C, et al. The protein kinase C family [J]. FEBS, 1992, 208: 547-587.
    [68]李云峰. PKC在细胞凋亡中的作用[J].中国老年学杂志,2004,24(1):87-88.
    [69]Monika C, Fredrik B M, Tadeusz W. Hypothermia prevents the ischemia-induced translocation and inhibition of protein kinase C in the rat striatum [J].J Neurochem, 1991, 57(5): 1814-1817.
    [70]Goran P, Eyerchares L, Isom G E. Neuroprotective effects of PKC inhibition against chemical hypoxia [J]. Brain Res, 1995, 676: 205-211.
    [71]Crumrine C R, Dubyak G, Lamanna J C. Decreased protein kinase C, activity during cerebral ischemia and after reperfusion in the adult rat [J]. J Neurochem, 1990, 55(6): 2001-2007.
    [72]Joo F, Tosaki A, Olah Z, et al. Inhibition by H-7 of the protein kinase C prevents formation of brain edema in Sprague-Dawley CFT rats [J].Brain Res, 1988, 16(2): 98-103.
    [73]帅杰,董为伟.PKC抑制剂灯盏花素对缺血/再灌注脑损害的作用研究[J].中国药理学通报,1998,14(1):75-78.
    [74]Herbert J M, Augereau J M, Gleye J. Chelerythrine is a potent and specific inhibitor of protein kinase C [J]. Biochem Biophys Res Commun, 1990, 172(3): 93-96.
    [75]李楚彦,董瑾,李玲,等.PKCε在脑卒中的作用[J].武警医学院学报,,2009,18(3):263-265.
    [76]Chou W H, Choi D S, Zhang H, et al. Neutrophil protein kinase C delta as a mediator of stroke-reperfusion injury [J]. J Clin Invest, 2004, 114(1): 49-56.
    [77]Wang J, Bright R, Mochly-Rosen D,et al.Cell-specific role for epsilon and beta I-protein kinase C isozymes in protecting cortical neurons and astrocytes from ischemia-like injury [J]. Neuropharmacology, 2004, 47(1): 136 -145.
    [78]Mcnamara R K, Wees E A, Lenox R H. Differential subcellular redistribution of protein kinase C isozymes in the rat hippocampus induced by kainic acid [J]. J Neurochem, 1999, 72(4): 1735-1743.
    [79]Kurkinen K, Keinanen R, Li W, et al.Preconditioning with spreading depression activates specifically protein kinase C delta [J]. Neuroreport, 2001, 12(12): 269 -273.
    [80]Kumar K, Wu X L.Post-ischemic changes in protein kinase C RNA in the gerbil brain following prolonged periods of recirculation: a phosphorimaging study [J].Metab Brain Dis, 1994, 9(4): 323-331.
    [81]Raval A P, Dave K R, Mochly-Rosen D,et al. Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice [J]. JNeurosci, 2003, 23(2): 384 -391.
    [82]Di-Capua N, Sperling O, Zoref-Shani E. Protein kinase C-epsilon is involved in the adenosine-activated signal transduction pathway conferring protection against ischemia- reperfusion injury in primary rat neuronal cultures [J]. J Neurochem, 2003, 84(2): 409- 412.
    [83]Baines C P, Zhang J, Wang G W, et al. Mitochondrial PKC epsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKC epsilon-MAPK interactions and differential MAPK activation in PKC epsilon-induced cardioprotection [J]. Circ Res, 2002, 90(4): 390-397.
    [84]李军,曹红,曾邦雄,等. MAPK级联反应与缺血性脑损伤[J].国外医学·麻醉学与复苏分册,2002,23(4):232-235.
    [85]Chou K G. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy[J]. J Clin Invest, 1998, 102: 1311-1320.
    [86]刘哲,宋晓东,惠汝太,等.ERK分子在心血管系统中的作用[J].中国分子心脏病学杂志,2005,5(6):818-820.
    [87]李海芳,张永健.治疗脑缺血药物研究进展[J].中国医院药学杂志,2004,24(11):706-707.
    [88]杨世杰.药理学(8年制)[M].北京:人民卫生出版社,2005:362-363.
    [89]许俊堂.口服抗凝药的作用机制与临床应用(上)[J].中国医刊,2006,41(1):51-52.
    [90]张立群,陈洁丽,程焱,等.尼莫地平对局灶性脑缺血鼠脑血影蛋白的影响[J].中风与神经疾病杂志,2001,18(5):300-301.
    [91]Min H J, Tomohiro K, Junichi H, et al. Different of eNOS and nNOS inhibition on transient forebrain ischemia [J]. Brain Res, 2002, 946: 139-143.
    [92]张予阳,于庆海.神经营养因子对缺血性脑损伤的影响及其药物调节[J].中国药理学通报,2003,19(3):261-262.
    [93] Hiroyuki T, Hideo T, Akihiro N, et al.FK506attenuates early ischemic neuronal death in a monkey model of stroke [J]. J Nucl Med, 2001, 42(12):1833-1837.
    [94]张晓琴,徐艳,赵发国.大鼠局灶性脑缺血再灌注损伤的炎症机制及药物干预[J].中国神经免疫学和神经病学杂志,2001,8(2):5-7.
    [95]张仲苗,江波.脑缺血治疗药物的研究进展[J].中国现代应用药学杂志,2006,23(1):24-27.
    [96]Dirnag I U, Iadecola C, Moskowitz M A. Pathobiology of ischaemic stroke: an integrated view [J]. Trends Neurosci, 1999, 22(9): 391-395.
    [97]Gillardon F, Kiprianova I, Sandkuhler J, et al. Inhibition of Caspases prevents cell death of hippocampalCA1 neurons, but not impairment of hippocampal long-term potentiation following global ischemia [J]. Neuroscience, 1999, 93(4): 1219-1223.
    [98]Krupinski J, Lopez E, Marti E, et al.Expression of Caspases and their substrates in the rat model of focal cerebral ischemia [J]. Neurobiol Dis, 2000, 7(4): 332-337.
    [99]张立颖,张剑辉.脑缺血的药物治疗研究进展[J].中国医院药学杂志,2006, 26(2):199-201.
    [100]王思思,纪影实,杨世杰.蒺藜皂苷激活PKCε抗氧化应激诱导心肌细胞凋亡的机制[J].药学学报,2009,44(2):134-139.
    [101]李红,杨世杰.注射用蒺藜皂苷的抗血栓作用[J].吉林大学学报(医学版),2005,31(1):14-16.
    [102]孙巍,李晶莹,杨世杰.蒺藜皂苷对缺血心肌细胞内核转录因子-κB的作用[J].中草药,2008,29(6):889-892.
    [103]陈慧敏.心脑舒通抗衰老29例临床观察[J].实用老年医学,1993,7(3):140.
    [104]杨煌建,瞿伟等.蒺藜皂苷对肾癌细胞的实验影响[J].中国中药杂志,2005,30(16):1271-1274.
    [105]李明娟,瞿伟菁,褚书地,等.蒺藜水煎剂对小鼠糖代谢中糖异生的作用[J].中药材,2001,24(8):586-588.
    [106]冯玛莉,李宝平,武玉鹏,等.蒺藜的降血糖作用[ J].中草药,1998,29(2):107-109.
    [107]李君玲,杨松松.蒺藜皂苷化学及药理研究概述[J]中医药学刊, 2006,24(8):1509-1511.
    [108]曹惠玲,陈浩宏,许士凯.蒺藜及其有效成分的药理与临床研究进展[J].中成药,2001,23(8):602-605.
    [109]Muneer A, Salman W, Husni T, et al. Tribulus terrestris: preliminary study of its diuretic and contractile effects and comparison with Zea mays [J]. Journal of Ethnophar- macology, 2003, 85(2): 257–260.
    [110]褚书地,瞿伟菁,李穆,等.蒺藜化学成分及药理作用研究进展[J].中国野生植物资源,2003,22(4):4-6.
    [111]马常升,马文领,戴维国,等.线栓法制备大鼠局灶性脑缺血再灌注模型的研究[J].解剖学杂志,1999,22(3):209-211.
    [112]李仪奎.中药药理实验方法学[M].上海:上海科学技术出版社,1991:145-146.
    [113]李涵,陈萌.脑缺血再灌注损伤后神经元损伤机制的研究进展[J].承德医学院学报,2007,(424):413-415.
    [114]侯俊英,王秀华,李红,等.蒺藜皂苷对缺血再灌注损伤心肌细胞保护作用实验研究[J].中国药理学通报,2004,20(4):418-421.
    [115]王雪云,李红,杨世杰,等.蒺藜皂苷对大鼠脑缺血/再灌注损伤的保护作用[J].中国药理学通报,2005,21(1):111-114.
    [116]王先梅,杨丽霞,严睿,等.能量代谢基因表达改变在大鼠卒中发病学中的意义[J].中国急救医学,2004,24(8):572-574.
    [117]Kontos H A. Oxygen radicals in cerebral ischemia: the 200l Wiilis Lecture [J]. Stroke, 2001, 32(11): 2712-2716.
    [118]Kilic E, Kilic U, Matter C M, et al. Aggravation of Focal Cerebral Ischemia by Tissue Plasminogen Activator Is Reversed by 32Hy2droxy232Methylglutaryl Coenzyme A Reductase Inhibitor but Does Not Depend on Endothelial NO Synthase [J]. Stroke, 2005, 36(2): 332-336.
    [119]Rachel B, Daria M R. The Role of Protein Kinase C in Cerebral Ischemic and Reperfusion Injury [J]. Stroke, 2005, 36(12):2781-2790.
    [120]Nicole O, Ali C, Docane F,et al. Neuroprotection mediated by glial cell line-derived neurotrophic facto:Involvement of a reduction of nase pathway [J]. J neurosci, 2001, 21(9): 3024-3033.
    [121]Wang X, Wang H, Xu L, et al. Significant neuroprotection ischemic brain injury byinhibition of MEK1 protein kinase in mice [J]. Pharmacol Exp Ther, 2003, 304(1): 172-178.
    [122]余卫平,钱之玉,绪广林,等.西红华酸对心肌细胞氧化应激性损伤的作用[J].中国药科大学学报,2003,34(5):452-455.
    [123]刘亚玲,于秋红,薛连璧.线粒体对缺血性神经细胞死亡的影响[J].山东医药,2007,47(1):75-76.
    [124]Wang X. The expending role of mitochondia in apoptosis [J]. Genes Dev, 2001, 15(22): 2922-2933.
    [125]肖卫民,蒋碧梅,石永忠等.过氧化氢通过线粒体通路和死亡受体通路诱导心肌细胞凋亡[J].中国动脉粥样硬化杂志,2003,11(3):185-188.
    [126]Chan P H. Reactive oxygen radicals in signaling and damage in the ischemic brain [J]. J Cereb Blood Flow Metab, 2001, 21(1): 2-14.
    [127]Uecker M, Da S R, Grampp T, et al.Translocation of protein kinase C isoforms to subcellular targets in ischemic and anesthetic preconditioning [J]. Anesthesiology, 2003, 99(1): 138-47.
    [128]Jin Z Q, Goetzl E J, Karliner J S. Sphingosine kinase activation mediates ischemic preconditioning in murine heart [J]. Circulation, 2004, 110(14): 1980-1989.