涉海抗菌耐蚀性TiO_2复合薄膜的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和科技的进步,世界逐渐步入了海洋开发的时代。海洋资源开发、海上运输、海港和海防建设等涉海领域都需要大量的材料作为基础。然而对于涉海材料而言,海洋是一个十分严酷的腐蚀环境,材料腐蚀尤其是海洋微生物附着导致的材料腐蚀失效问题往往会导致巨大的经济损失,甚至引发严重事故。因此,研究制备防止微生物附着并具良好抗腐蚀性能的涉海功能材料对于海洋开发战略的实施具有重要意义。
     论文针对海洋环境中金属材料受微生物附着腐蚀非常严重的问题,设计研究制备一种集抗菌、耐腐蚀性能于一体的涉海功能材料,通过对海洋微生物附着与金属电化学性质之间相互作用的分析来探索材料的抗菌耐腐蚀性能。
     课题首先用分离纯化方法获得了导致海洋结构材料尤其是钢结构腐蚀破坏的主要菌种----硫酸盐还原菌,并通过测定细菌生长曲线的方法确认了该菌在一定培养条件下的生长规律,利用该菌来研究海水环境中材料的抗菌耐腐蚀性能。
     通过优化制备工艺条件,在常用海洋结构材料----304不锈钢表面制备了TiO2及(银)铈掺杂TiO2薄膜。通过测试透光度曲线的方法研究了薄膜的光谱响应范围,发现经(银)铈掺杂后,TiO2薄膜的响应光波长明显红移,且在可见光区出现强度较大的吸收峰,大大增强了TiO2薄膜的可见光利用率。通过测试涂层/金属电极的光生开路电位-时间曲线,确定TiO2及(银)铈掺杂TiO2薄膜具备较强的光电转化能力,在海水环境中能够对304不锈钢产生一定的光生阴极保护作用。利用静态杀菌方式考察了304不锈钢基体上TiO2及(银)铈掺杂TiO2薄膜的光催化杀菌率,发现薄膜均具杀菌性,对海洋环境中提取的硫酸盐还原菌具有一定杀灭作用;并且,经(银)铈掺杂后,TiO2薄膜的杀菌性能得到进一步提高。将制备得到的涂膜不锈钢和空白304不锈钢浸泡在硫酸盐还原菌的培养液中,浸泡不同时间后,通过扫描电镜进行形貌观察及电化学手段对两种测试样的抗菌耐腐蚀性进行了评测。扫描电镜观察结果显示TiO2及(银)铈掺杂TiO2薄膜可以减少硫酸盐还原菌在304不锈钢基体上的附着繁殖,并减小不锈钢在硫酸盐还原菌菌液中的腐蚀程度。电化学极化曲线分析认为,不锈钢表面TiO2及(银)铈掺杂TiO2薄膜的存在,使不锈钢的腐蚀电流密度Icorr减小,腐蚀速率下降,即TiO2及(银)铈掺杂TiO2薄膜成功地减缓了金属基体的阳极溶解过程。阻抗谱解析与等效电路拟合数据显示,在不锈钢表面涂覆TiO2及(银)铈掺杂TiO2薄膜后,电极反应中的电荷转移电阻Rct增大,试样的抗腐蚀能力增强,进而说明薄膜的存在能有效地阻止海水及硫酸盐还原菌对于金属材料表面的侵蚀。
With the development of science and technology, the exploitation of marine is becoming urgent for the forecast of energy crisis in the world. The marine materials are needed in almost all the area of exploitation of marine, such as transport in ocean and marine engineering. However, marine is a very hard corrosive environment to the materials. Corrosion of marine materials, especially the corrosion caused by marine microbe could result in huge economic losses. Therefore, research on the fabrication of marine functional materials with antibacterial and anti-corrosion properties is of great importance for the exploitation of marine.
     In this paper, marine functional materials with antibacterial and anti-corrosion properties were fabricated to relieve the serious corrosion condition caused by attachment of marine microbe on stainless steel. The antibacterial and anti-corrosion properties of the as-obtained materials were tested by investigating the relationship between the attachment of marine microbe and the electrochemical properties.
     In present work, sulphate-reducing bacterium(SRB) from Qingdao offshore was obtained by isolation and purification method, for SRB was a main bacterium which caused the corrosion of metals. The growth pattern of SRB was confirmed by analyzing its growth curve, and the properties of as-obtained materials were studied in environment in which SRB existed.
     TiO2 film and TiO2 composite films were prepared on 304 stainless steel, in which silver ion and cerium ion were doped for their antibacterial activity. The process parameters of fabrication were discussed, on the basis of which, the optimum fabrication technology was obtained. The spectral response of TiO2 films was researched by analyzing the UV-VIS transmittance spectra. A noticeable shift of absorption edge to the visible light region was observed for TiO2 composite films, and an enhanced absorption peak appeared in the visible region, which was propitious to the photocatalytic effect of TiO2 under visible light.
     TiO2 film and TiO2 composite films exhibited an additional cathodic protective function to 304 stainless steel exposed to SRB in seawater by investigating their photoelectrochemical properties. Bactericidal ratio confirmed that the TiO2 films appeared strong bactericidal activity and most of SRB could be killed in seawater. Moreover, the TiO2 films could exhibit stronger bactericidal activity for the silver ion and cerium ion dopant.
     The antibacterial and anti-corrosion properties were investigated by means of scanning electron microscopy(SEM) and electrochemical method, comparing bare 304 stainless steel with the ones coated with TiO2 films immersed in SRB medium for different time. The results of SEM suggested that TiO2 films could prevent the attachment of SRB on substrates and decrease the extent of corrosion for 304 stainless steel immersed in SRB medium. The measurements of potentiodynamic polarization suggested that TiO2 films decreased the corrosion currents densities(Icorr), corrosion rates, which implied the inhibition of corrosion for 304 stainless steel. Furthermore, the results of electrochemical impedance spectra(EIS) showed that the impedance value decreased with immersion time, but the impedance value of TiO2 films were higher than that of bare 304 stainless steel. Utilizing the equivalent circuit models to interpret the EIS data, it could be obtained that the existence of TiO2 films increased the charge transfer resistance, and inhibited the corrosion rate of 304 stainless steel exposed to SRB in seawater.
引文
[1]张淑泉.关于“自然环境腐蚀”的国际研究动向[J].腐蚀与防护,1997,18(5):210-22.
    [2]Eimutis J, Rimantas R, Albinas L, et al. Microbially influenced corrosion acceleration and inhibition.EIS study of Zn and Al subjected for two years to influence of Penicillium frequentans, Aspergillus niger and Bacillus mycoides[J]. Electrochem. Communications,2005 (7):305-311.
    [3]Chongdar S, Gunasekaran G, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion[J]. Corros. Sci.,2004,46:1953-1967.
    [4]Little B, Ray R. A perspective on corrosion inhibition by biofilms[J]. Corrosion,2002 (58): 424-428.
    [5]Ornek D, Wood T K, Hsu C H, et al. Pitting corrosion control of aluminum 2024 using protective biofilms that secrete corrosion inhibitors[J]. Corrosion,2002,58:761-767.
    [6]Flemming H C, economical and technical overview, in Heitz, E., Flemming H C, and Sand, W.(Eds), Microbially Influenced Corrosion of Materials[M]. Springer Verlag, Berlin/Heidelberg,1996.
    [7]柯伟.中国腐蚀调查报告[M].化学工业出版社,2003.
    [8]Gaines R H. Bacterial activity as a corrosion influence in the soil[J]. J. Eng. Ind. Chem., 1910(2):123-133.
    [9]Butlin K R. Sulphate-reducing bacteria and internal corrosion of ferrous pipes conveying water[J]. Nature,1949,163:26-27.
    [10]Geesey G G. Introduction Part Ⅱ----Biofilm Formation,in Kobrin,G.(ed.), Microbiologically Influenced Corrosion, Houston, NACE international,1993.
    [11]徐怀恕,许兵,纪伟尚.青岛港海洋附着细菌的初步研究[J].山东腐蚀与防护,1986(1):67-71.
    [12]侯保荣.海洋腐蚀环境理论及其应用[M].北京:科学出版社,1998.
    [13]Flemming H C. Mikrobielle werkstofferrstoyung---biofilm and biofouling[J]. Werkstoffe and Korrosion,1994,45(1):29-39.
    [14]Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochimica Acta,2008,54:22-28.
    [15]Yuan S J, Pehkonen S O. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria:AFM and XPS study[J]. Electrochimica Acta,2007, 59:87-99.
    [16]Cheng S, Tian J T, Chen S G, et al. Microbially inuenced corrosion of stainless steel by marine bacterium Vibrio natriegens:(Ⅰ) Corrosion behavio[J]. MaterialsScience and Engineering C, 2009,29(3):751-755.
    [17]骆海朋,杨秀山.中度嗜热氧化硫细菌及中度嗜热氧化亚铁细菌在难处理铜精矿浸出中的应用[J].山东腐蚀与防护,2003,22(2):79-81.
    [18]Brennenstuhl A M, Gendron T S, Cleland R. Mechanisms of underdeposit corrosion in fresh water cooled austenitic alloy heat exchangers[J]. Corrosion Science,1993 (35):699-711.
    [19]Caldwell D E, Korber D R, Lawrence J R. Confocal LaserMicroscopy and Computer Image Analysis in Microbial Econogy,inMarshall,K.C(ed.), Advances in Microbial Ecology, Vol 12, New York, Plenum Press,1992.
    [20]Little B, Wagner. P, Mansfeld F. Microbiologically InfluencedCorrosion of metals and alloys[J].Intern.Mater.Revi.,1991,36(6):253-272.
    [21]Little B, Wagner P, Mansfeld F. An overview of microbiologically influenced corrosion[J]. Electrochim.Acta,1992,37:2185-2194.
    [22]刘宏芳,许立铭,郑家燊.SRB生物膜与碳钢腐蚀的关系[J].中国腐蚀与防护学报,2000,20(1):41-46.
    [23]黄魁元.SRB抑制剂的研究与应用概况[J].工业水处理,1984,(4):19-23.
    [24]Tuttle R N, Kane R D. H2S corrosion in oil and gas production-A complilation of classic papers, National Association of Corrosion Engineers, Houston, Taxas,1981.
    [25]Herbsleb G. The influence of SO2, H2S and CO on pitting corrosion of austenitic chromiumnickel stainless steels with up to 4wt% molybdenum in 1M NaCl[J].Werkst. Corrosi,1982,33:3343-340.
    [26]Postgate J R. The sulphur cycle. In. Inorganic Sulphur Chemistry, Elsevier, New York,1969: 259-279.
    [27]Little B J, Wagner P A, Lewandowski Z. The relationship between biomineralization and microbiologically influenced corrosion. LABS 3, eds. Gaylarde C C, Barbosa T C P, Gabilan N H, the Bri. Phycol. Soc., UK,1998.
    [28]Chamritski I G, Burns G R, Webster B J, et al. Proceeding of corrosion 2001, Paper no.01254, NACE, Houston TX,2001.
    [29]Dickinson W H, Caccavo F, Lewandowski Z. The ennoblement of stainless steel by manganic oxide biofouling[J]. Corros. Sci.,1996,38(8):1407-1422.
    [30]Lewandowski Z, Dickinson W, Lee W. Electrochemical interactions of biofilms with metal surfaces[J]. Wat. Sci. Technol.,1997,36(1):295-302.
    [31]Hamilton W A. Microbially influenced corrosion in the context of metal microorganism interactions,in:Evans L V(Ed.), Biofilms:Recent advances in their study and control[M]. Harwood Academic Publishers, Australia,2001.
    [32]Hamilton W A. Microbially influenced corrosion as a model system for the study of metal microbe interactions:a unifying electron transfer hypothesis[J]. Biofouling,2003,19:65-76.
    [33]Dinh H T, Mumann M, Hassel A W, et al. Iron corrosion by novel anaerobic microorganisms. Nature,2004,27(4):829-832.
    [34]程莎Vibrio natriegens对海洋金属腐蚀的影响及抗点蚀方法研究[D].中国海洋大学,2009.
    [35]Benboudiz-rolletn D, Conte M, Guezennec J, et al. J.Appl. Bacteriol.,1991,71:244-246.
    [36]Coyer J, Cabello- Pasini A, Swift H, et al. Proc. Natl. Acad. Sci.,1996,93:3575-3579.
    [37]朱绒霞,那静彦,郭生武等.有硫酸盐还原菌存在时J55套管钢的极化行为[J].中国腐蚀与防护学报,2001,24(4):147-148,172.
    [38]郭稚弧,唐和清,张君华等.用极化曲线法研究硫酸盐还原菌厌氧腐蚀[J].华中理工大学学报,1992,20(1):129-133.
    [39]吴建华,刘光洲,于辉等.海洋微生物腐蚀的电化学研究方法[J].腐蚀与防护,1995,20(5):231-231.
    [40]Gerchakov S M, Little B J, et al. Probing microbiologically induced corrosion[J]. Corrosion, 1986,42(11):682-692.
    [41]Little B J, Ray R, et al. Electrochemical behavior of stainless steels in natural seawater[M]. Corrosion, NACE, Houston, TX.,1990, P150.
    [42]张远声.电化学技术在微生物腐蚀研究中的应用[J].化工腐蚀与防护,1993(1):2-9.
    [43]王佳,李相波,王伟.海水环境中微生物附着对钝性金属开路电位的影响[J].中国腐蚀与防护学报,2004,24(5):262-266.
    [44]Salvago G, Magagnin L. Biofilm effect on the cathodic and anodic processeson stainless steel in seawater near the corrosion potential:part Ⅰ-corrosion potential[J]. Corrosion,2001,57(8): 680-692.
    [45]Horvath J. Acta Chimica Hungarian,1960,25:65-78.
    [46]Scotto V, Cintio R D, Marcenaro G. The influence of marine aerobic microbial film on stainless steel corrosion behaviour[J]. Corros. Sci.,1985,25(3):185-194.
    [47]Dexter S C, Gao G Y. Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless steel[J].Corrosion,1988,44(10):717-723.
    [48]Scotto V, Lai M E. The ennoblement of stainless steels in seawater:a likely explanation coming from the field[J]. Corros. Sci.,1998,40(6):1007-1018.
    [49]Dexter S C, Duquette D J, Siebert O W, et al. Use and limitations of electrochemical techniques for investigating microbiological corrosion[J]. Corrosion,1991,47(4):308-318.
    [50]Zhang X, Buehnana R A. Biologieally Indueed Comrsion, Naces,1986, P8.
    [51]Mansfeld F, Little B. Corrsion Scicence,1991,3(32):247-272.
    [52]匡飞,王佳,张盾等.硫酸盐还原菌的生长过程及其对D36钢海水腐蚀行为的影响[J].材料开发与应用,2008,23(3):49-52.
    [53]Scully J R. Polarization resistance method for determination of instantaneous corrosion rates[J]. Corrosion,2000,56(2):199-218.
    [54]Fonseca. Ines T E, Jose Feio M, Ana Rose Lino. The influence of the media on the corrosion of mild steel by desulfovibrio desulfuricans bacteria:an electrochemical study[J].Electrochemical Acta.1998,43(1-2):213-222.
    [55]胥聪敏,张耀亨,程光旭等.316L不锈钢在硫酸盐还原菌和铁氧化菌共同作用下的腐蚀行为[J].材料热处理学报,2006,27(5):64-69.
    [56]Chen Y C, Lee C M, Yen S K, et al. The effect of denitrifying Fe-oxidizing bacteria TPH-7 on corrosion inhibition of sodium molybdate[J]. Corrosion Science,2007,49(10):3917-3925.
    [57]Juzeliunas E, Ramanauskas R, Lugauskas A, et al. Microbially influenced corrosion acceleration and inhibition. EIS study of Zn and A1 subjected for two years to influence of Penicillium frequentans, Aspergillus niger and Bacillus mycoides[J]. Electrochemistry Communications,2005,7(3):305-311.
    [58]Ignatiadis I, Amalhay M. Experimental study of corrosion of two stainless steels during the oxidative bacterial dissolution of pyrite using mass loss and electrochemical techniques[J]. International Journal of Mineral Processing.2001,62(1-4):199-215.
    [59]Hector A. Videla. Microbially induced corrosion:an updated overview[J]. International Biodeterioration & Biodegradation,2001,48(1-4):176-201.
    [60]Sheng X X, Ting Y P, Pehkonen S O. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316[J]. Corro. Sci.,2007,49(5):2159-2176.
    [61]Chongdar S, Gunasekaran G, Kumar P. Corrosion inhibition of mild steel by aerobic biofilm[J]. ElectrochimicaActa,2005,50(24,30):4655-4665.
    [62]Angell P, Luo J S, White D C. Microbially sustained pitting corrosion of 304 stainless steel in anaerobic seawater[J]. Corro. Sci.,1995,37(7):1085-1096.
    [63]Turgoose S, Cottis R A. Corrosion made east: Electrochemical impedance and electrochemical noise(Houston,TX:NACE International,2000).
    [64]Stewart J, Williams D E. The initiation of pitting corrosion on austenitic stainless steel:on the role and importance of sulphide inclusions[J]. Corros.Sci.,1992,33 (3):457-474.
    [65]Iverson W P, Oson O G, Heverly L F. The role of phosphorous and hydrogen sulfide in the anaerobic corrosion of iron and the possible detection of this corrosion by an electrochemical noise technique, in Proc. Biologically Induced Corrosion. Ed.S.C.Dexter (Houston,TX, NACE,1986),154-161.
    [66]Yuan S J, Pehkonen S O. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria:AFM and XPS study[J]. Colloids and Surfaces B: Biointerfaces,2007,59:87-99.
    [67]Bremmer P J, Geesey G G, Drkae B. Elueidating corrosion phenomena related to biofilms on metals surface using atomic force microscopy[J].. Curr Microscopy,1992,24:223-229.
    [68]Steele A, Goddard D T, Beech I B. Atomic force microscopy study of microbiological influenced corrosion SRB biofilms on steel surface[M]. Int. Biodeter Biodegrad,1994:34-35.
    [69]Beech I B, Cheung C W. Comparative studies of bacterial biofilm on steel surfaces using atomic force microscopy and environmental scanning electron microscopy[J]. Biofouling 1996, 10(3):65-77.
    [70]林清枝.微生物腐蚀机制与控制[J].大学化学,1999,14(6):29-32.
    [71]冯颖.硫酸盐还原菌与Fe~O协同处理含重金属酸性废水的研究[D].天津大学,2004.
    [72]但智钢.铜离子注入马氏体不锈钢制备抗菌功能材料的研究[D].武汉科技大学,2004.
    [73]夏明珠,马家骧.硫酸盐还原菌对金属的腐蚀作用及其防治[J].腐蚀与防护,1996,17(4):191-192.
    [74]Hoffma M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995,95:69-96.
    [75]Fujishima A, Donald A Tryk. Titanium dioxide photocatalysis[J]. J. Photochem. Photobio. C: Photochem.Rev.,2000,1:1-21.
    [76]Prashant V. Kamat, Nada M. Dimitrijevic. Colloidal semiconductors as photocatalysts for solar energy conversion[J]. Solar Energy,1990,44(2):83-98.
    [77]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展[J].环境科学进展,1997,5(3):1-10.
    [78]Park H, Kim K Y, Choi W. A novel photoelectrochemical method of metal corrosion using a TiO2 solar panel[J]. Chem.Commun.,2001,14:281-282.
    [79]Ohko Y, Saitoh S, Tatsuma S, et al. Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel[J]. J. Electrochem. Soc.,2001,148(1): B24-B28.
    [80]Fujishima A, Honda K. Electrochemical photocatalysis of water at a semiconductor electrode[J], Nature,1972,238(5358):37-38.
    [81]T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake. FEMS Microbiol[J]. Lett,1985,29(1): 211-219.
    [82]LEE S, NISHIDA K, OTAKI M, et al. Photocatalytic inactivation of phage Q-βby immobilized titganium dioxide mediated photocatalyst[J]. Water Sci Technol,1997,35(11-12): 101-106.
    [83]刘贵昂,李燕荣,李尚均.负载型纳米TiO2光催化杀灭溶藻弧菌的研究[J].广东海洋大学学报,2007,27(1):48-51.
    [84]熊建裕.纳米二氧化钛光催化抗菌材料研究[D].华中科技大学,2005.
    [85]Skorb E V, Antonouskaya L I, Belyasova N A, et al. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2:In2O3 nanocomposite[J]. Applied Catalysis B:Environmental,2008,84(1):94-99.
    [86]王洵,龚文琪.铁掺杂纳米TiO2膜的制备与光催化灭菌作用[J].武汉理工大学学报,2007,29(7):50-53.
    [87]蒋莉,刘奎仁,简小琴等.稀土掺杂TiO2光催化抗菌材料的制备与性能研究[J].东北大学学报(自然科学版),2007,29(7):50-53.
    [88]中国腐蚀调查报告[R].第十六届世界腐蚀大会,北京,2005.
    [89]川延保隆,抗菌光触媒粉末,特殊钢(日).1999,48(6):34-41.
    [90]Ohko Y, Saitoh S, Tatsuma T, et al. Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel[J]. J. Electrochem. Soc.,2001,148(1): B24-B28.
    [91]Shen G X, Chen Y C, Lin C J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method[J]. Thin Solid Films,2005,489:130-136.
    [92]Yuan J, Fujisawa R, Tsujikawa S. Photopotentials of copper coated with TiO2 by Sol-Gel method[J].Zairyo-to-Kankyo,1994,43:433-441.
    [93]王鹤峰.不锈钢表面TiO2薄膜的制备及其性能研究[D].太原理工大学,2007.
    [94]Yuan J, Tsujikawa S. Photo-effect of Sol-Gel derived TiO2 coating on carbon steel in alkaline solution[J]. Zairyo-to-Kankyo,1995,44:534-540.
    [95]Huang J, Shinohara T, Tsujikawa S. Protection of carbon steel from atmospheric corrosion by TiO2 coating [J]. Zairyo-to-Kankyo,1999,48:575-581.
    [96]Tatsuma T, Saitoh S, Ohko Y, et al. TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability[J]. Chem. Master,2001,13:2838-2842.
    [1]赵晓栋.硫酸盐还原菌对海洋用钢腐蚀行为的影响及其控制[D].中科院海洋研究所,2007.
    [2]林晶,阎永贵,马力等.304不锈钢在硫酸盐还原菌环境中的腐蚀电化学特性研究[J].全面腐蚀控制,2006,20(2):9-11.
    [3]Ringas C, Robinson F P A. Corrosion of stainless steel by sulfate reducing bacteria-electrochemical techniques [J]. Corrosion,1988,44(9):386-396.
    [4]Ringas C, Robinson F P A. Corrosion of stainless steel by sulfate reducing bacteria total immersion test results [J]. Corrosion,1988,44(9):671-678.
    [5]段继周.海水和海泥环境中厌氧细菌对海洋用钢微生物腐蚀行为的影响[D].中科院海洋研究所,2003.
    [6]陈野.硫酸盐还原菌腐蚀的影响因素及其防治方法[D].大连理工大学,2004.
    [7]工业循环冷却水中硫酸盐还原菌的测定,MPN法.中华人民共和国国家标准(GB/T14643.5-93).
    [8]刘宏芳,黄茁,许立铭.不同种类硫酸盐还原菌的鉴定方法探讨[J].华中理工大学学报,1999,27(7):111-112.
    [9]Marshall C, Frenzel P, Cypionka H. Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria[J].Arch.Microbiol.,1993,159:168-173.
    [10]Posgate J R. Sulfate-Reducing Bacteria[M]. Cambridge, U. K.:Cambridge University Press, 1979.
    [1]Duan J Z, Wu S, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim Acta.,2008,54:22-28.
    [2]Yebra D M, Kiil S, Weinell C E, et al. Effects of marine microbial biofilms on the biocide release rate from antifouling paints-a model-based analysis [J]. Prog. Org. Coat.,2006,57: 56-66.
    [3]Mattila K, Carpen L, Hakkarainen T, et al. Biofilm development during ennoblement of stainless steel in Baltic sea water:A microscopic study [J]. Int. Biodeterior. Biodegrad.,1997,40 (1):1-10.
    [4]Yin Y S, Cheng S, Chen S G, et al. Microbially influenced corrosion of 303 stainless steel by marine bacterium Vibrio natriegens:(Ⅱ) Corrosion mechanism [J]. Mater.Sci.Eng.,C,2009,29: 756-760.
    [5]Dominique T, Wolfgang S.Corrosion Mechanisms in Theory and Practice[M]. New York, Mzrcel Dekker Inc,1995.
    [6]林晶,阎永贵,马力,钱建华.304不锈钢在硫酸盐还原菌环境中的腐蚀电化学特性研究[J].全面腐蚀控制,2006,20(2):9-11.
    [7]Fintan Van Ommen Kloeke, Richard D. Bryant, Edward J. Laishley Localization of Cytochromes in the Outer Membrane of Desulfovibrio vulgaris (Hildenborough) and their Role in Anaerobic Biocorrosion [J]. Anaerobe,1995 (1):351-358.
    [8]Silva S D, Basseguy R, Bergel A. Electron transfer between hydrogenase and 316L stainless steel:identification of a hydrogenase-catalyzed cathodic reaction in anaerobic mic [J]. J. Electroanal Chem,2004,561:93-102.
    [9]Fintan Van Ommen Kloeke, Richard D. Bryant, Edward J. Laishley Localization of Cytochromes in the Outer Membrane of Desulfovibrio vulgaris (Hildenborough) and their Role in Anaerobic Biocorrosion [J]. Anaerobe,1995 (1):351-358.
    [10]Werner S E. Pitting of type 304 stainless steel in the presence of a biofilm containing sulphate reducing bacteria[J]. Corrosion Science,1998,40(2):465-480.
    [11]Duan J Z, Hou B R, Yu Z G. Characteristics of sulfide corrosion products on 316L stainless steel surfaces in the presence of sulfate-reducing bacteria [J]. Mater.Sci.Eng.,C,2006,26: 624-629.
    [12]刘宏芳,许立铭,郑家燊.SRB生物膜与碳钢腐蚀的关系[J].中国腐蚀与防护学报,200020(1):41-46.
    [13]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-42.
    [14]刘东坡.TiO2的光电化学稳定性及对金属的光电化学防腐蚀研究[D].浙江大学,2007.
    [15]G.X. Shen, Y.C. Chen, C.J. Lin. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method[J]. Thin Solid Films,2005,489:130-136.
    [16]R.Subasri, K.Mori. TiO2-Based Photoanodes for Cathodic Protection of Copper[J]. J. Electrochem. Sci,2005,152(3):B105-B110.
    [17]T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake. FEMS Microbiol Lett,1985,29(1): 211-216.
    [18]Y. Kikuchi, K. Sunada, T. Iyoda, et al. Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect[J]. J. Photochem. Photobio A: Chemistry 1997,106:51-56.
    [19]Hideo Dohra, Masahiro Fujishima. Effects of antibiotics on the early infection process of a macronuclear endosymbiotic bacterium Holospora obtusa of Paramecium caudatum[J]. FEMS Microbiology Letters,1999,179(2):473-477.
    [20]高镰,邓珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [21]陈南春,韦翠美.溶胶-凝胶法制备纳米TiO2薄膜[J].稀有金属材料与工程,2007(36):973-976,增刊1.
    [22]张伟伟.纳米氧化钛的制备、改性及光阴极保护性能[D].中国海洋大学,2008.
    [23]Scotto V, Lai M E. The ennoblement of stainless steels in seawater:a likely explanation coming from the field [J]. Corros. Sci,1998,40 (6):1007-1018.
    [24]王佳,李相波,王伟.海水环境中微生物附着对钝性金属开路电位的影响[J].中国腐蚀与防护学报,2004,24(5):262-266.
    [25]Shen X X, Ting Y P, Pehkonen S O. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316[J]. Corros. Sci,2007,49(6):2159-2176.
    [1]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1984.
    [2]中国石油化工设备管理协会设备防腐专业组.石油化工装置设备腐蚀与防护手册[M].北京:中国石化出版社,1996.
    [3]Gaines R H. The Graphitication of Cast Iron as an Electrochemical Process in the Anaerobic[J]. Industrial and Engineering Chemistry,1990 (2):285-291.
    [4]王浩,赵文宽,方佑龄等.二氧化钛光催化杀灭肿瘤细胞的研究[J].催化学报,1999,20(3):373-374.
    [5]Chia-Hsin Li, Yung-Hsu Heish, Wan-Ting Chiu, et al. Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 Photocatalysts [J]. Separation and Purification Technology, 2007,58:148-151.
    [6]刘守新,曲振平,韩秀文等.Ag担载对TiO2光催化活性的影响[J].催化学报,2004,25(2):133-137.
    [7]Xiao hong, S Li, Glen E Fryxell, Chongmin Wang. The synthesis of Ag-doped mesoporous TiO2[J]. Microporous and Mesoporous Materials.2008,111(1-3):639-642.
    [8]Pratap Reddy M, Venugopal A, Subrahmanyam M. Hydroxyapatite-supported Ag- TiO2 as escherichia colidisinfection photocatalyst [J]. Water Research,2007,41:379-386.
    [9]Trapalis C C, Keivanidis P, Kordas G, et al. TiO2 (Fe3+) nanostructured thin films with antibacterial properties [J]. Thin Solid Films,2003,433:186-190.
    [10]丁更新.银离子掺杂纳米二氧化钛粉体的制备、性能研究与应用[D].浙江大学,2001.
    [11]王洪水.纳米银及载银纳米抗菌材料的研究[D].华中科技大学,2006.
    [12]Wang P, Klein C, Humphry-Baker P. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells[J]. J. Am. Chem. Soc.,2005,127:808-809.
    [13]Wenger B, Gratzel M, Moser J E. Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(Ⅱ) complex sensitizers to nanocrystalline TiO2[J]. J. Am. Chem. Soc.,2005,127:12150-12151.
    [14]Nishimura S, Abrame N, lewis B A, et al. Standing wave enhancement of red absorbane and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals[J]. J. Am. Chem. Soc.,2003,125:6306-6310.
    [15]高镰,邓珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [16]Zhao Y, Lin C J. Electrochemical Corrosion Behavior of Copper Clad Laminate in NaCl Solution. Acta Physico-chimica Sinica[J].2007,23(9):1342-1346.
    [17]章妮,孙志华,张琦等.局部阻抗测试技术在评定有机涂层环境失效中的应用[J].装备环境工程,2007,4(1):75-82.
    [18]Liu T, Chen S G, Cheng S, et al. Corrosion behavior of super-hydrophobic surface on copper in seawater[J]. Electrochimica Acta,2007,52:8003-8007.
    [19]梁金生,金宗哲,王静等.环境净化功能(Ce,Ag)/TiO2纳米材料表面能带结构的研究[J].硅酸盐学报,2001,29(5):500-502.
    [20]仇雁翎,李田,赵建夫.TiO2膜制备的胶液配比选择与重复利用[J].工业水处理,2008,28(6):29-32.
    [21]Arnal P, Corriu R J P, Leclercq D, et al. A solution chemistry study of nonhydrolytic sol-gel routes to titania[J]. Chemistry of Materials,1997,9(3):694-698.
    [22]林华香,陈旬,林志聪等.TiO2溶胶的制备和后处理条件对镀膜玻璃表面亲水性的影响[J].福州大学学报(自然科学版),2002,30(3):371-374.
    [23]王英峰,李雪.溶胶-凝胶法制备二氧化钛溶胶[J].合成化学,2008,16(6):705-708.
    [24]Sopyan I, Murasawa S, ashimoto K, et al. Highly effcient TiO2 film photocatalyst degradati-on of gaseous acetaldehyde[J]. Chem Lett,1994:723-726.
    [25]鲍玉胜.TiO2薄膜的耐海水腐蚀性能研究[D].中国海洋大学,2008.
    [26]张宝宏,丛文博,杨萍.金属电化学腐蚀与防护[M].北京:科学出版社,2005.
    [27]Spagnol V, Sutter E, Debienne-chouvy C, et al. EIS study of photo-induced medications of nano-columnar TiO2 films[J]. Electrochimica Acta,2009,54:1228-1232.
    [28]辛柏福,任志宇,玄立春.Ag同步掺杂与沉积对TiO2相变的影响[J].黑龙江大学自然科学学报,2004,21(1):100-103.
    [29]王卫伟,张志焜.过渡金属离子掺杂纳米TiO2的机理和光吸收特性[J].青岛科技大学学报,2003,24(2):102-104.
    [30]徐光年,乔学亮,邱小林等.单分散球形纳米银粒子的制备新方法及其抗菌性能[J].稀有金属材料与工程,2008,37(9):1669-1672.
    [31]张万忠,乔学亮,陈建国.纳米银的合成与表征——三种微乳体系的比较研究[J].稀有金属材料与工程,2009,38(7):1254-1258.
    [1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-42.
    [2]Kayano Sunada, Yoshihiko Kikuchi, Kazuhito Hashimoto, et al. Bactericidal and detoxification effects of TiO2 thin film photocatalysts[J]. Environmental Science & Technology,1998,32(5): 726-728.
    [3]黄岳元,米钰,郭人民等TiO2 /Ag纳米抗菌材料[J].西北大学学报(自然科学版),2003,33(5):566-571.
    [4]Cair X, Hashmoto K, Itoh K, et al. photokilling of malignant cells w ith ultrafine TiO2 powder [J]. Bull Chem Soc Jpn,1991,64(4):1268-1273.
    [5]祖庸,雷阎盈,李晓娥等.纳米TiO2一种新型的无机抗菌剂[J].现代化工,1999,19(8):46-48.
    [6]Yuan J, Fujisawa R, Tsujikawa S. Photopotentials of copper coated with TiO2 by Sol-Gel method[J]. Zairyo-to-Kankyo,1994,43:433-441.
    [7]Park H, Kim K Y, Choi W. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode[J]. J. Phys. Chem. B,2002,106:4775-4781.
    [8]Shen G X, Chen Y C, Lin C J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method [J]. Thin Solid Films,2005,489(1/2):130-136.
    [9]肖正伟,曾振欧,赵国鹏.纳米TiO2涂层在低碳钢上的防腐蚀性能[J].电镀与涂饰,2006,25(12):33-35,45.
    [10]Avellaneda C O, Pawlicka A. Preparation of transparent CeO2-TiO2 coatings for electrochromic devices[J]. Thin Solid Films,1998,335:245-248.
    [11]Sun H J, Liu H L, Ma J, et al. Preparation and characterization of sulfur-doped TiO2/Ti photoelectrodes and their photoelectrocatalytic performance[J]. Journal of Hazardous Materials, 2008,156:552-559.
    [12]Wang Y Q, Cheng H M, Hao Y Z, et al. Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes[J]. Thin Solid Films,1999,349:120-125.
    [13]Wang Y Q, Cheng H M, Zhang L, et al. The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles[J]. Journal of Molecular Catalysis A:Chemical,2000,151:205-216.
    [14]云虹.改进型纳米TiO2复合膜的光生阴极保护研究[D].厦门大学,2008.
    [15]Jong-Won Yoon, Takeshi Sasaki, Naoto Koshizaki, et al. Preparation and characterization of M/TiO2(M=Ag, Au, Pt) nanocomposite thin films[J]. Scripta mater.,2001,44:1865-1868.
    [16]Funda Sayilkan, Meltem Asilturk, Nadir Kiraz, et al. Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate[J]. Journal of Hazardous Materials,2009,162: 1309-1316.
    [17]汪恂,龚文琪.铁掺杂纳米TiO2膜的制备与光催化灭菌作用[J].武汉理工大学学报,2007,29(7):50-53.
    [18]汪铭,丁新更,曹旭丹等.不锈钢基片上制备Ag+/TiO2抗菌薄膜的研究[J].材料科学与工程学报,2003,21(3):379-382.
    [19]肖纪美,曹楚南.材料腐蚀学原理[M].北京:化学工业出版社,2002,P28.
    [20]曹楚南.电化学阻抗谱导论[M].北京:科学出版社,2002,P36.
    [21]Carla Gouveia caridae, Isabel M Pereira S, Christopher M A Bertt. Electrochemical noise and impedance study of aluminum in weakly acid chloride solution[J]. Electrochemical Soc,2004,49: 785-793.
    [22]李劲风,张昭,程英亮等NaCl溶液中Al-Li合金腐蚀过程的电化学特征[J].金属学报,2002,38(7):760-764.
    [23]鲍玉胜.TiO2薄膜在海水中的耐腐蚀性能[D].中国海洋大学,2008,P36.
    [1]Ohko Y, Saitoh S, Tatsuma T, et al. Photoelectrochemical anticorrosion and selfcleaning effects of a TiO2 coating for type 304 stainless steel [J]. J. Electrochem. Soc,2001,148(1):B24-B29.
    [2]Sakata Y, Yamamoto T, Okazaki T, Imamura H, Tsuchiya S. Generation of visible light response on the photocatalyst of a copper ion containing TiO2[J]. Chem.Lett,1998,12: 1253-1259.
    [3]Iwasak M, Hara M, Kawad H, Tada H, Ito S. Cobalt ion-doped TiO2 photocatalyst response to visible light[J]. J. Colloid. Interface. Sci,2000,224:202-204.
    [4]Wang X H, Li J G, Kamiyama H, Moriyoshi Y, Ishigaki T. Wavelength-sensitive photoeatalytic degradation of methyl orange in aqueous suspension over Iron(Ⅲ)-doped TiO2 nanopowders under UV and visible light irrediation[J]. J. Phys. Chem.B.,2006,110:6804-6809.
    [5]于书平.光电催化降解有机染料的研究[D].华南理工大学博士学位论文,2004.
    [6]Vinogopal K, Kamat P V. Enhanced rates of photocatalytic degradation of an aso dye using SnO2/TiO2 coupled semiconductor thin films[J]. Environ. Sci. Technol.,1995,29:814-846.
    [7]Litter M I, Navio J A. Photocatalytic properties of iron doped titania semiconductors[J]. Photochem. Photobio.a:chem.1996,98(3):171-181.
    [8]Macak J M, Tsuchiya H, Ghieov A, Sehmuki P. Dye-sensitized anodie TiO2 nanotobes[J]. Electrochem.Commun,2005,7:1133-1137.
    [9]Xiao J R, Peng T Y, Li R, et al. Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles[J]. Journal of Solid State Chemisty,2006,179: 1161-1170.
    [10]Shen X Z, Liu Z C, Xie S M, et al. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen under visible light illumination[J]. Journal of Hazardous Material,2009, 162:1193-1198.
    [11]Munro B, Contad S, Kramer S, et al. Development of electrochromic cells by the sol-gel process[J]. Solar Energy Materials and Solar Cells,1998,54:131-137.
    [12]Zhao L L, Bing G, Liang H, et al. Preparation and characterization of cerium oxide doped TiO2 nanaoparticles[J]. J. Physics and chemistry of solids,2005,66:161-167.
    [13]Keomany D, Petit J P, Deroo D. Electrochemical insertion in sol-gel made CeO2-TiO2 from lithium conducting polymer electrolyte:Relationshipwith the material structure[J]. Solid Energy Materials and Cells,1995,36:397-408.
    [14]Xu Y H, Chen H R, Zeng Z X, et al. Investigation on mechamism of photocatalytic activity enhancement of nanometer cerium-doped titania[J]. Applied Surface Science.,2006,252: 8565-8570.
    [15]Liu B S, Zhao X J, Zhang N Z, et al. Photocatalytic mechanism of TiO2-CeO2 films prepared by magnetron sputtering under UV and visible light[J]. Surface Science,2005,595:203-211.
    [16]Mohammed A, Gray K C, Ralph W. Effect of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide[J] J. Phys. Chem,1990,94(17):6820-6825.
    [17]胡燕,郑经堂,石建稳.Ce掺杂TiO2纳米粒子及其光催化活性研究[J].应用化工,2006,35(8):591-593.
    [18]Muroma A. Studies on the bactericidal action of salts of certain rare earth elements [J]. Ann. Med. Exp. Biol. Fenn.,1958,36:1-54.
    [19]井立强,张新,屈宜春等.掺杂镧的TiO2纳米粒子的光致发光及其光催化性能[J].中国稀土学报,2004,22(6):746-750.
    [20]吴玉程,挺松,解挺.纳米TiO2稀土元素掺杂改性与光催化性能研究[J].功能材料,2005,36(1):124-126.
    [21]Zhang Y H, Zhang H X, Xu Y X, et al. Significant effect of Lanthanide doping on the texture and properties of nano-crystalline mesoporous TiO2[J] J. Sol. Stat. Chem,2004,177(10): 3490-3498.
    [22]高镰,邓珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [23]曹楚南.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [24]沈广霞,陈艺聪,琳昌健.TiO2/316不锈钢薄膜电极在NaCl溶液中的耐腐蚀性能[J].电化学,2005,11(1):21-25.
    [25]Toshiaki Ohtsuka,Tetsuo Otsuki.Effect of ultra-violet light irradiation on anodic oxide films on titanium in sulfuric acid solution[J]. Journal of Electroanalysis Chemistry,1999,473:272-278.
    [26]秦丽雁,宋诗哲,卢玉琢.304不锈钢晶间腐蚀过程中的电化学阻抗谱特征[J].中国腐蚀与防护学报,2007,27(2):74-79.
    [27]王作辉.玻璃表面纳米TiO2薄膜的制备及其自清洁性能的研究[D].四川大学,2007.
    [28]Zhao L L, Bing G, Liang H, et al. Preparation and characterization of cerium oxide doped TiO2 nanoparticles[J]. Journal of Physics and Chemistry of Solids,2005,66:161-167.
    [29]Yan Q Z, Bing G, Su X T, Huang Z Y, et al. Sol-gel auto-igniting synthesis and structural property of cerium-doped titanium dioxide nanosized powders[J]. Journal of the European Ceramic Society,2006,26:915-921.
    [30]Rodriguez T. R, Vargas S, Aarroyomurillo R, et al. Modification of the phase transition temperatures in titania doped with various cations[J]. J. Mater. Res,1997,12:439-443.
    [31]高远,徐安武,祝静艳等RE/TiO2用于NO2-光催化氧化的研究[J].催化学报,2001,22(1):53-56.
    [32]Xie Y B, Yuan C W. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photo-degradation[J]. Appl Catal B:Environ,2003,46(2):251-259.
    [33]梁金生,金宗哲,王静.稀土/纳米TiO2的表面电子结构[J].中国稀土学报,2002,20(1):74-76.
    [1]Hadlen R F. Microbiological anaerobic corrosion of steel pipeline[J]. Oil and Gas Jour.,1939, 38(19):92-96.
    [2]Minchin L T. Cathodic characteristics of mild steel in suspension of sulfate-reducing bacteria[J]. Coke and Gas,1956,18(12):495-504.
    [3]Butlin K R, Vemon W H, Whiskin L C. Investigation on underground corrosion[M]. Wat. Sanit. Engr.,1952.
    [4]Iverson W P. Advance reasearch in corrosion science and technology[J]. International Biodeterioration,1972,5(2):1-42.
    [5]胥聪敏,张耀亨,程光旭等.316L不锈钢在硫酸盐还原菌和铁氧化菌共同作用下的腐蚀行为[J].材料热处理学报,2006,27(5):64-69.
    [6]刘建华,杨应广,李松梅.A3钢在厌氧环境中的微生物腐蚀电化学特性研究[J]. Materials Protection,2000,33(1):32-33.
    [7]Angell P, Machowski W J, Paul P P, et al. A multiple chemostat system for consortia studies on microbially influenced corrosion[J]. J. Microbil. Methods,1997,30:173-178.
    [8]Chen S, Yin Y S, Chen S G, et al. Microbially influenced corrosion of 303 stainless steel by marine bacterium Vibrio natriegens:(Ⅱ) Corrosion mechanism[J]. Materials Science and Engineer C,2009,29:756-760.
    [9]Fleming H C. Economical and technical overview in microbiological science[M]. Springer Verlag, Berlin:Heidel,1996.
    [10]王鹤峰,李秀燕,张洪涛.不锈钢表面TiO2改性层在H2SO4溶液中的电化学行为研究[J].材料热处理,2007,36(6):15-17.
    [11]杜玉成,李岩凌,李洪义等.环氧改性丙烯酸自清洁防腐涂料制备与应用研究[J].Technology Research and Development,2007,22(11):15-18.
    [12]桂泰江.海洋防污涂料的现状及发展趋势[J].现代涂料与涂饰,2005,(5):28-29.
    [13]刘东坡.TiO2的光电化学稳定性及对金属的光电化学防腐蚀研究[D].浙江大学,2007.
    [14]Trzaskoma-Paulette P P, Nazeri A. Effect of sol-gel coatings on the localized corrosion behavior of 304 stainless steel[J]. Journal Electrochem Soc,1997,144(4):1307-1310.
    [15]Boschloo G K, Goossens A, Schoonman J. Photoelectrochemical study of thin anatase TiO2 films prepared by metallorganic chemical vapor deposition[J]. Journal Electrochem Soc,1997, 144(4):1311-1317.
    [16]刘守新,刘鸿.光催化及光电催化基础与应用[M].化学工业出版社,2006.
    [17]肖庆峰.TiO2薄膜的电化学沉积及耐蚀性能研究[D].郑州大学,2007.
    [18]U.Kamaehi Mudali, N.Bhuvaneswaran, P. Shankar, et al. Corrsion behaviour of intermetallic aluminide coatings on nitrogen-containing austenitic stainless steels[J]. Corros.Sci.,2004,46: 2867-2892.
    [19]鲍玉胜.TiO2薄膜在海水中的耐腐蚀性能[D].中国海洋大学,2008,P34-P37.
    [20]曹楚南.电化学阻抗谱导论[M].北京:科学出版社,2002,P175.