硫酸盐还原菌生物膜下钢铁材料腐蚀行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对海洋资源的深入开发和有效利用,海洋环境中金属结构建筑物的微生物腐蚀(microbiologically influenced corrosion, MIC)已引起了人们的高度重视和广泛研究。在众多的微生物中,硫酸盐还原菌(sulfate-reducing bacteria, SRB)是最主要的腐蚀性细菌之一。
     本文从青岛附近海域的海泥中分离纯化得到SRB菌株,采用调整过的Postgate’s C培养基培育细菌并以此作为腐蚀介质。监测了SRB的生长过程对海水介质性质的影响,并重点利用电化学方法(如腐蚀电位Ecorr~t曲线,电化学阻抗谱以及极化曲线)和表面分析手段(如扫描电镜,原子力显微镜以及光电子能谱等)研究了海水介质中SRB对碳素结构钢(Q235)、低镍合金高强度钢(简称“高强钢”)以及18-8不锈钢(18-8SS)腐蚀行为的影响,探讨了SRB介质中铁的阳极活性溶出机制和不锈钢钝化层表面点蚀萌发与生长机制。
     研究表明,对于SRB介质中的碳钢,在浸泡初期碳钢表面会生成一层保护性硫化亚铁层(FeS),它使腐蚀速度大大降低;随着浸泡时间的延长,保护性FeS层会出现局部破裂,此后,局部破裂处将以很快的活性溶出速度发生腐蚀。而浸泡在SRB介质中的高强钢,虽然在腐蚀形貌上与碳钢有所差异,但腐蚀电化学特征几乎相同,表明腐蚀机制与碳钢一致。进一步研究表明,SRB的含硫代谢产物是加速碳钢阳极活性溶解的主要因素,据此,本文提出“SRB的含硫代谢产物通过对铁的吸附加速了碳钢/高强钢阳极活性溶解”的腐蚀机制,并在理论上依据吸附态E—pH图判断:在很宽泛的pH值和电位范围内,硫在铁上都能以稳定的吸附态存在。
     SRB介质中18-8SS的点蚀过程则异常复杂,很多因素都会影响到点蚀的萌发与生长。18-8SS在SRB介质中很快就会萌发点蚀,由不锈钢表面钝化层在SRB介质中发生硫化转变所形成的局部自由氧是导致钝化层发生破坏而萌发点蚀的主要因素,因为18-8SS在SRB介质中的点蚀电位Epit比SRB介质的氧化-还原电位Eh正;微观腐蚀孔的扩展深度随浸泡时间大致呈线性增加。从腐蚀过程的阴极去极化行为看,很多因素都会影响18-8SS点蚀的生长,然而受18-8SS再钝化行为的影响(18-8SS在SRB介质中的再钝化电位Erep比氢电极的平衡电位正),SRB介质中的单质硫或多态硫的还原是促使点蚀生长的主要因素。此外,由于SRB的代谢活动能明显改变介质的性质,所以它不仅随时会影响18-8SS点蚀的萌发与生长,还会改变处于SRB介质中的18-8SS表面钝化层的结构与性能,进而影响18-8SS的点蚀行为。
     本文就SRB介质中钝化层的硫化转变及其对18-8SS点蚀行为的影响进行了详细的研究。研究表明,钝化层的硫化转变降低了18-8SS的钝化性能,而短期硫化对钝化层的危害比长期硫化更大;但是,硫化转变却在一定程度上增大了阴极极化,从而也能阻碍点蚀的生长。18-8SS表面钝化层的性质分析表明,主要是铁的氧化物发生了硫化转变,转变后主要以FeS和FeS_2的形态存在,而元素Cr和Ni则仍然以氧化物/氢氧化物的形态存在,这可以明确地解释为什么短期硫化对钝化层的危害比长期硫化更大,因为,钝化层中铁的氧化物在短时间内发生硫化转变后形成的自由氧在一段时间后可能与其他合金元素重新结合形成不能发生硫化转变的其他金属氧化物/氢氧化物。另一方面,研究中还发现,18-8SS表面在SRB介质中能形成一层具有一定保护性能的生物膜,因此它能在一定程度上阻碍点蚀的萌发和生长。
With increasingly intensive exploitation and effective utilization of marine resources, problems due to microbiologically influenced corrosion (MIC) of metal constructions/components had aroused people’s high concern and extensive study, and among them sulfate-reducing bacteria (SRB) are of the most dangerous culprits.
     In this thesis, SRB strain was isolated from seamud in Qingdao nearby, incubated in the modified Postgate's C culture medium which was also prepared for the corrosion medium. Changes of seawater-based medium state due to bacterial activities were detected. As the main objectives, effects of SRB on the corrosion behaviors of carbon steel, low-nickel alloyed high-strength steel and 18-8 stainless steel (18-8SS) in seawater-based media were investigated by electrochemical methods (Ecorr~t curve, electrochemical impedance spectroscopy and polarization curve) and surface analyses techniques (scanning electronic microscopy, atomic force microscopy and X-ray photoelectron spectroscopy). Mechanisms related to both anodic active dissolution of iron and pit-initiation/pit-growth of stainless steel were discussed in detail.
     Specifically, when carbon steel is immersed in the cultures of SRB, a protective surface ferrous sulfide (FeS) film would form during the early days of immersion; but some time later the protective FeS film would suffer breakdown locally, and then the localized corrosion rate would be very high in a mode of active dissolution. In the case of high-strength steel immersed in the culture of SRB, the electrochemical nature of corrosion is almost the same as carbon steel although the corrosion morphology is a little different. With further investigation, it was found that sulfur-containing metabolites by SRB are the main factor enhancing the anodic active dissolution of carbon steel. Thus, such a corrosion mechanism was proposed that sulfur-containing bacterial metabolites in the form of adsorbed sulfur on iron enhance anodic active dissolution of carbon steel or high-strength steel. Thereticaly, judged from the E—pH diagrams for adsorbed sulfur on iron, adsorbed sulfur on iron remains very stable in a wide range of pH values as well as potentials values.
     As for 18-8SS, pitting corrosion of 18-8SS in the cultures of SRB is very complex process, in which many factors affect pit-initiation/pit-growth. Pit-initiation of 18-8SS can occur in a very short term, and the localized free oxygen resulted from sulfidation of passive film should be the main factor that cause the breakdown of passive film because Epit of 18-8SS in the cultures of SRB is more positive than Eh of the media; Meanwhile, the depth of micro-pits increases approximately linearly with the immersion time. From standing point of cathodic depolarization of corrosion, there are many factors that affect the pit-growth of 18-8SS in the cultures of SRB; However, controlled by the repassivation behaviors of 18-8SS (Erep is more positive than the equilibrium potential of hydrogen electrode), sulfur element or polysulfide is the main factor that sustains the pit-growth instead. Additionally, due to the changes of the medium state parameters under influences of SRB, bacterial activities not only instantaneously affect the pit-initiation and the pit-growth, but also induce the modification of passive film in structure/properties and in turn affect the pitting corrosion as well.
     In this thesis, sulfidation of passive film of 18-8SS in the cultures of SRB and its effects on the pitting corrosion were thorougly investigated. Results shows that sulfidation of passive film in the cultures of SRB causes a loss of passivity of 18-8SS, but sulfidation happened in the short term is more detrimental to the passive film than that in the long term. However, sulfidation polarizes the cathodic reactions to a greater extent, indicating that sulfidation can impede the pit-growth. Surface properties analyses of 18-8SS show that almost only iron oxides in the passive film were converted into sulfides in forms of FeS or FeS_2, while element Cr and Ni still remained essentially as oxides/hydroxides, which can explain definitely why sulfidation happened in the short term is more detrimental to the passive film than that in the long term, because the free oxygen resulted from sulfidation of iron oxides in the passive film probably can later recombine with other alloy elements to form other forms of unsulfidable oxides/hydroxides. On the other hand, it was also found that protective SRB biofilms can be formed in the cultures of SRB, which can impede pit-initiation /pit-growth of 18-8SS to some extent.
引文
1 G.H. Koch, M.P.H. Brongers, N.G. Thompson, et al. Corrosion Cost and Preventive Strategies in the United States. FHWA-RD-01-156, 2002: 773
    2 E. Heitz, H.C. Flemming, W. Sand (Eds). Economical and Technical Overview. Microbially Influenced Corrosion of Materials. Berlin/Heidelberg, Springer-Verlag, 1996: 6
    3 H. Ghassem, N. Adibi. Bacterial Corrosion of Reformer Heater Tubes. Mater. Performance. 1997, 3 (34): 47~48
    4 J.H. Garrett. The Action of Water on Lead: Being an Inquiry into the Cause and Mode of the Action and its Prevention. London, H K Lewis, 1891: 32
    5 R.H. Gaines. Bacterial Activity as a Corrosive Influence in the Soil. Eng. Ind. Chem. 1910, 2(4): 128~130
    6 C.A.H. von Wolzogen Kuehr, I.S. van der vlugt. De Graphiteering Van Gietijzer Ais Electrobiochemisch Proces in Anaerobe Gronden. Water. 1934, 18: 147~165
    7 W.G. Characklis. Which Provide Structure to the Assemblage Termed a Biofilm. Biofilm Processes. New York, NY: John Wiley&Sons, 1990: 227
    8王伟.海洋环境中微生物膜与金属电化学状态相关性研究.中科院海洋所博士学位论文. 2003: 1~2
    9侯保荣.海洋腐蚀环境理论及其应用.北京:科学出版社, 1998: 6
    10 G.G. Geesey. Introduction Part II—Biofilm Formation. Microbiologically Influenced Corrosion. Houston TX: NACE international, 1993: 56
    11 G. Schaule, H.C. Flemming. Microbial Deterioration of Materials-biofilm and Biofouling. Quantification of Respirtory Active in Water and in Biofilms by Means of Fluorescent Redox Dye. (German) Werkstoffe and Korrosion. 1994, 45(1): 54~57
    12 G. Bradley, D.T. Pritchard. Surface Charge Characteristics of Sulfate-Reducing Bacteria and the Initiation of Biofilm on Mild Steel Surfaces. Biofouling. 1990, 2(4): 299~310
    13 H.A. Videla, S.G. Gezdesaravia, M.F. LdeMele, et al. Bioelectrochemical Assessment of Biofilm Effects on MIC of Two Different Steels of Industrial Interest. Corrosion/90, Houston TX: NACE international,1990: 123
    14王庆飞.模拟生物腐蚀方法研究典型金属材料的海水腐蚀行为.天津大学博士学位论文, 2000: 2
    15 G. Hernandez, V. Kucera, D. Thierry, et al. Corrosion Inhibition of Steel by Bacteria. Corrosion. 1994, 50 (8): 603~608
    16樊友军,皮振邦,华萍.微生物腐蚀的作用机制与研究方法现状.材料保护. 2001, 34(5): 28~30
    17 H. Castaneda, X.D. Benetton. SRB-biofilm Influence in Active Corrosion Sites Formed at the Steel-electrolyte Interface When Exposed to Artificial Seawater Conditions. Corros. Sci. 2008, 50: 1169~1183
    18 G.G. Geesey. Role of Bacterial Exopolymer in the Deterioration of Metallic Copper Surfaces. Mater. Performance. 1980, 25(2): 37~40
    19 G. Chen, S.V. Kagwade, G.E. French, et al. Metal Ion and Exopolymers Interaction: A Surface Analytical Study. Corrosion. 1996, 52(12): 891~899
    20 B.Little, P. Wagner, F. Mansfeld. Review—Microbiologically Influenced Corrosion of Metals and Alloys. Int Mater Re. 1991, 36(6): 253~272
    21 D.H. Pope, D. Duquette, P.C. Wayner, et al. Microbiologically Iinfluenced Corrosion: A-tate-of-the-art Review. Columbus, OH: Materials Technology institute of the Chemical Process Industries, 1984: MTI no.13
    22 T.S. Rao, Aruna Jyothi Kora, B. Anupkumar, et al. Pitting Corrosion of Titanium by a Fresh Water Strain of Sulphate Reducingbacteria (Desulfovibrio vulgaris). Corros. Sci. 2005, 47: 1071~1084
    23 J. Liu, X. Liang, S. Li. Effect of Sulphate-reducing Bacteria on the Electrochemical Impedance Spectroscopy Characteristics of lCrlSNi9Ti, J. Univ. Sci. Technol. B. 2007, 14( 5): 425
    24 P. M. Natishan, J. Jones-Meehan, G. I. Loeb, et al. Corrosion Behaviour of Some Transition Metals and 4340 Steel Metals Exposed to Sulfate-reducing Bacteria. Corrosion. 1999, 55(11): 1062~1068
    25 M.B. McNeil, A.L. Odom. Microbiologically Influenced Corrosion Testing. ASTM, STP1232. Philadelphia, PA: ASTM, 1994: 173
    26 M.B. McNeil, J.M. Jones, B.J. Little. Production of Sulfide Minerals by Sulfate-Reducing Bacteria during Microbiologically Influenced Corrosion of Copper. Corrosion. 1991, 47: 674
    27 J. Liu, X. Liang, S. Li. Study of Microbiologically Induced Comsion Action on A1-6Mg-Zr and A1-6M g-Zr Sc. J. Rare Earth. 2007, 25: 609 ~ 614
    28 J.A. Hardy, J.L. Bown. The Corrosion of Mild Steel by Biogenic Sulfide films Exposed to Air. Corrosion. 1984, 40(12): 650~654
    29 R.A. King, J.D.A. Miller, D.S. Wakerly. Corrosion of Mild Steel in Cultures of Sulphate Reducing Bacteria: Effect of Changing the Soluble Iron Concentration During growth. Brit. Corros. J. 1973, 8: 89
    30 G. Chen, S.V. Kagwade, G.E. French, et al. Metal Ion and Exopolymer Interaction: a Surface Analytical Study. Corrosion. 1996, 53: 891
    31王升坤.硫酸盐还原菌检测技术综述.石油与天然气化工. 1998, 27(3): 192~193
    32刘宏芳.不同种类硫酸盐还原菌的鉴定方法探讨.华中理工大学学报. 1999, 27(7): 111~112
    33 E.F. DeLong, G.S. Wickham, N.R. Pace. Phylogenetic Stains: Ribosomal RNA-based Probes for the Identification of Single Microbial Cells. Science. 1989, 243: 1360~1363
    34 B.J. Little, R. Ray. Electrochemical Behavior of Stainless Steels in Natural Seawater. Corrosion/1990, Houston, TX: NACE: 150
    35 S.C. Dexter, D.J. Duquette, O.W. Siebert, et al. Use and Limitations of Electrochemical Techniques for Investigating Microbiological Corrosion. Corrosion.1991, 47(4): 308~318
    36 F. Mansfeld, B.J. Little. A Technical Review of Electrochemical Techniques Applied to Microbiologically Influenced Corrosion. Corros. Sci. 1991, 32(3): 247~272
    37 G. Schmitt. Sophisticated Electrochemical Methods for MIC Investigation and Monitoring. Mater. Corros. 1997, 48(9): 586~60
    38张远声.电化学技术在微生物腐蚀研究中的应用.化工腐蚀与防护. 1993, 1: 2~9
    39 R.F. Hadley. The Influence of Sporovibrio Desulfuricans on the Current and Potential Behaviour of Corroding Iron. Nature. 1952, 169: 928~929
    40 J. Horvath. Corrosion of iron by Sulfate-reducing bacteria. Acta Chimica Hungarica. 1960, 25: 65~78
    41曹楚南.腐蚀电化学(第二版).北京:化学工业出版社, 2002: 50~70
    42 J.R. Scully. Polarization Resistance Method for Determination of Instantaneous Corrosion Rates. Corrosion. 2000, 56(2): 199~218
    43 E. Miranda, M. Bethencourt, F.J. Botana, et al. Biocorrosion of Carbon Cteel Alloys by an Hydrogenotrophic Sulfate-reducing Bacterium Desulfovibrio Capillatus Isolated from a Mexican Oil Field Separator, Corros. Sci. 2006, 48: 2417~2431
    44 G.H. Booth, A.K. Tiller. Polarization studies of mild steel in suspensions of sulfate-reducing bacteria Trans. Faraday Soc. 1960, 56:1689~1696
    45 P.J. Antony, S. Chongdar, P. Kumar, et al. Corrosion of 2205 Duplex Stainless Steel in Chloridemedium Containing Sulfate-reducing Bacteria. Electrochim. Acta. 2007, 52: 3985~3994
    46 A.B. Crist′obal, M.A. Arenas, A. Conde, et al. Corrosion of Stainless Steels Covered by Exopolymers. Electrochim. Acta. 2006, 52: 546~551
    47 R.Zuo, E.Kus, F. Mansfeld, et al. The Importance of Live Biofilms in Corrosion Protection. Corros. Sci. 2005, 47( 2): 279~287
    48 E. Juzeliūnas, R. Ramanauskas, A. Lugauskas, et al. Microbially Influenced Corrosion Acceleration and Inhibition: EIS Study of Zn and Al Subjected for Two Years to Iinfluence of Penicillium frequentas, Aspergillus Niger and Bacillus Mycoides. Electrochem. Commun. 2005, 7( 3): 305~311
    49 E.J. Pe′rez, R. Cabrera-Sierra, I. Gonza′lez, et al. Influence of Desulfovibrio sp. Biofilm on SAE 1018 Carbon Steel Corrosion in Synthetic Marine Medium. Corros. Sci. 2007, 49(9): 3580~3597
    50 B.J. Little, P. Wagner, D. Duquette. Microbiologically Induced Cathodic Depolarization. Corrosion/87, Houston, TX: NACE, 1987: 370
    51郭公玉,张经磊.钢在中国北部海区海泥中的腐蚀.电化学. 2001, 7(4): 459~464
    52 A. Jayaraman, D. Ornek, D.A. Duarte, et al. Axenix Aerobic Biofilms Inhibit Corrosion of Copper and Aluminum. Appl. Microbiol. Biotechnol. 1999, 52 (6): 787~790
    53 B.J. Little. The Impact of Sulfate-reducing Bacteria on the Welded Copper-nickel Seawater Piping Systems. Mater. Performance. 1988, 27 (8): 57~61
    54 W.P. Iverson. Transient Voltage Changes Produced in Corroding Metals and Alloys. J. Electrochem. Soc. 1968, 115(6): 617~618
    55 R. A. Cottis. Interpretation of Electrochemical Noise Data. Corrosion. 2001, 57(3): 265~285
    56 S. Turgoose, R.A. Cottis. Corrosion Made East: Electrochemical Impedance and Electrochemical Noise. Houston, TX: NACE International, 2000: 90
    57 J. Stewart, D.E. Williams. The Initiation of Pitting Corrosion on Austenitic Stainless Steel: on the Role and Importance of Sulfphide Inclusion. Corros. Sci. 1992, 33(3): 457~474
    58 W.P. Iverson, O.J. Oson, L.F. Heverly. The Role of Phosphorous and Hydrogen Sulfide in the Anaerobic Corrosion of Iron and the Possible Detection of this Corrosion by an Electrochemical Noise Technique. Proc. Biologically Induced Corrosion, Houston, TX: NACE, 1986:154~161
    59 A. Padilla-Viveros, E. Garcia-Ochoa, D. Alazard. Comparative Electrochemical Noise Study of the Corrosion Process of Carbon Steel by the Sulfate-reducing Bacterium Desulfovibrio alaskensis under Nutritionally Rich and Oligotrophic Culture Conditions. Electrochim. Acta. 2006, 51: 3841~3847
    60 M.J.H. Gayosso, G.Z. Olivares, N.R. Ordaz, et al. Microbial Consortium Influence upon Steel Corrosion Rate, Using Polarisation Resistance and Electrochemical Noise Techniques. Electrochim. Acta. 2004, 49: 4295~4301
    61 A. Nagiub, F. Mansfeld. Evaluation of Microbiologically Influenced Corrosion Inhibion (MICI) with EIS and ENA. Electrochim. Acta. 2002, 47(13-14): 2319~2333
    62 M. Stratmann, H. Streckel. On the Atmospheric Corrosion of Metals Which Are Covered with Thin Electrolyte Layers––I.Verification of the experimental technique. Corro.Sci. 1990,30 (6-7): 681~696
    63王佳,水流澈.使用Kelvin探头参比电极技术进行薄液层下电化学测量.中国腐蚀与防护学报. 1995, 15(3): 173~179
    64 M.A.V. Devanathan, Z.Stachurski. Adsorption and Diffusion of Electrolytic Hydrogen in Palladium. Pro. Roy. Soc. London (A). 1962, 270: 90~110
    65 M.F. de Romero, Z. Duque, O.T. de Rincon, et al. Microbiological Corrosion: Hydrogen Permeation and Sulfate-Reducing Bacteria. Corrosion. 2002, 58: 429
    66 Y. Zhu, Y. Huang, C. Zheng, et al. The Hydrogen Permeation Investigation of API X56 Steel in Sea Mud. Mater. Corros. 2007, 58(6): 447~451
    67 J.J. Podesta, C.N. Estrella, M.A. Esteso. Evaluation of the Absorption on Mild Steel of Hydrogen Evolved in Glucose Fermentation by Pure Cultures of Clostridium acetobutylicum and Enterobacter. Sensor. And Actuat. B-Chem. 1996, 32: 27~31
    68 J. Schmitt, H.C. Flemming. FTIR-Spectroscopy in Microbial and Material Analysis. Int. Biodeter. & Biodeg. 1998, 41(1): 1~11
    69 H.T. Dinh, J. Kuever, M. Mubmann, et al. Iron corrosion by Novel Anaerobic Microorganisms. Nature. 2004, 427:829~832
    70 G. Kobrin, ed. A Practical Manual on Microbially Influenced Corrosion, vol.1. Houston, TX: NACE, 1993: 33
    71 J.G. Stoecker, ed. A Practical Manual on Microbially Influenced Corrosion, vol.2. Houston, TX: NACE, 2001: 38
    72 D.H. Hope, D. Duquette, P.C. Wayner, et al. Microbiologically Influenced Corrosion: A state-of the–art Review. Columbus. OH: Materials Technology institute of the Chemical Process Industries, 1984: MTI no.13
    73 A. Jayaraman, E.T. Chang, J.C. Earthman, et al, Axenic Aerobic Biofilms Inhibit Corrosion of SAE 1018 Steel through Oxygen Depletion, J. Ind. Microbiol. Biotechnol. 1997, 48(1): 11~17
    74 B. C. Syrett, T. K. Wood, F. Mansfeld, et al. Corrosion Control using Regenerative Biofilms (CCURB)-an Overview, Corrosion/2001. Houston, TX: NACE, 2001:272
    75 A. Pedersen, S. Kjelleberg, M. Henmansson. A Screening Method for Bacterial Corrosion of Metals. J. Microbiol. Methods. 1988, 8(4): 91~198
    76 H.A. Videla, P. Guiamet. Protection Action of Serratia Marcescens in Relation to the Corrosion of Aluminum and its Alloys. Biodeterioration Research. New York, NY: Plenum Press, 1986: 75
    77 J. Duan, S. Wu, X. Zhang, et al. Corrosion of Carbon Steel Influenced by Anaerobic Biofilm in Natural Seawater. Electrochim. Acta. 2008, 54: 22~28
    78 F. Mansfeld. Evaluation of MIC and its Inhibition with EIS and ENA. Proc. ISMCC-2000 Int. Symp. For Marine Corrosion and Control. Qingdao, China: Ocean Press, 2000: 98
    79 G.G. Geesey, L. Jang. Binding of Metal Ions by Extracellular Polymers. Metals Ions and Bacteria. New York, NY: John Wiley&Sons, 1988: 325
    80 A. Jayaraman, A.K. Sun, T.K. Wood. Characterization of Axenic Pseudomonas Fragi and Escherichia Coli Biofilms That Inhibit Corrosion of SAE 1018 Steel, J. Appl. Microbiol. 1998, 84(4): 485~492
    81 A. Jayaraman, C.-C. Lee, M.W. Chen, et al. Inhibiting Sulfate Reducing Bacteria in Biofilms by Expressing the Antimicrobial Peptides Indolicidin and Bactenecin. J. Ind. Microbiol. Biotechnol. 1999, 22(3): 167~175
    82 M. Eashwar, S. Maruthamuthu, S. Sathiyanarayanan, et al. The Ennoblement of Stainless Alloys by Marine Biofilms: the Neutral pH and Passivity Enhancement Model. Corros.Sci. 1995, 37(8): 1169~1176
    83 E. McCafferty, J.V. McArdle. Corrosion Inhibition by Biological Siderophore. Proc. 182nd Society Meeting. Toronto, Canada: The Electrochemical Society, 1992: 185~186
    84 B.J. Webster, R.C. Newman. ASTM STP 1232- Producting Rapid Sulfate-Reducing Bacteria-Influenced Corrosion in the Laboratory. Microbiologically Influenced Corrosion Testing.West Conshohocken. PA: ASTM, 1994: 28~41
    85 B. Little, R.Ray. A Perspective on Corrosion Inhibition by Biofilms. Corrosion. 2002, 58 (5): 424~428
    86 D. de Beer, P. Stooldley, et al. Effects of Biofilm Structures on Oxygen Distribution and Mass Transport. Biotechnol. Bioeng. 1994, 43(11): 1131~1138
    87 D.E. Caldwell, D.R. Korber, J.R. Lawrence. Confocal Laser Microscopy and Computer Image Analysis in Microbial Econogy. Advances in Microbial Ecology. New York: Plenum Press,1992: Vol.12
    88 F.L. Roe, Lewandowski, T. Funk. Simulating Microbiologically Induced Corrosion by Depositing Estracellular Biopolymers on Mild Steel Surface. Corrosion. 1996,52(10): 744~752
    89托马晓夫(著),陈俊明(译).氧退极化引起的金属腐蚀.科学出版社, 1959: 128
    90 P. Chandrasekaram. Mechanism of Potential on Passive Metals Due to Biofilms in Seawater. Ph.D dissertation of Uninersiry of Delaware, Newark, DE, USA, 1995: 89
    91 V. Scotto, M.E. Lai. Ennoblement of Stainless Steels in Seawater: a Likely Explanation Coming From the Field. Corros. Sci. 1998, 40(6): 1007~1018
    92 M. Faimali, E. Chelossi, F. Garaventa, et al. Evolution of Oxygen Reduction Current and Biofilm on Stainless Steels Cathodically Polarised in Natural Aerated Seawater. Electrochim. Acta. 2008, 54: 148~153
    93 C.M. Cordas, L.T. Guerra, C. Xavier, et al. Electroactive Biofilms of Sulphate Reducing Bacteria. Electrochim. Acta. 2008, 54: 29~34
    94 C. Dumas, R. Basseguy, A. Bergel. Electrochemical Activity of Geobacter sulfurreducens Biofilmson Stainless Steel anodes. Electrochim. Acta. 2008, 53: 5235~5241
    95 W.P. Iverson. Microbiany Influenced Corronion on Stainless Steel in Waste Water Treatment Plants: part1. BCJ, 2001, 36(4):277~283. part2, BCJ, 2001, 36(4): 284~291
    96 A. Mollica, A.Trevis. In Proceedings of Fourth International Congress Marine Corrosion and Fouling, Juan-Les-Pins, Antibes, France, 1976: 390
    97 B.H. Olesen, R. Avci, Z. Lewandowski. Manganese Dioxide as a Potential Cathodic Reactant in Corrosion of Stainless Steels. Corros Sci. 2000, 42(2): 211~22
    98 W.H. Dickinson, Z. Lewandowski. Manganese Biofouling of Stainless Steel: Deposition Rates and Influence on Corrosion Processes. Corrosion/1996, Houston, TX: NACE, 1996: No. 291
    99 H. Booth, A.K. Tiller. Polarization Studies of Mild Steel in Cultures of Sulphate-reducing Bacteria. Trans. Faraday Soc. 1960, 56: 1689~1696
    100 W.P. Iverson. Direct Evidence for the Cathodic Depolarization Theory of Bacterial, Corros. Sci. 1966, 151: 986~ 988
    101 C. Chatelus. Hydrogenase Activity in Aged, Nonviable Desulfovibrio Vulgaris Cultures and its Significance in Anaerobic Biocorrosion. Appl. Environ. Microbiol. 1987, 53: 1708~1710
    102 R.D. Bryant, E.J. Laishley. The Role of Hydrogenase in Anaerobic Biocorrosion. Can. J. Microbiol. 1990, 36: 259~264
    103 S. Da Silva, R. Bsseguy, A. Bergel. The Role of Hydrogenases in the Anaerobic Microbiologically Influenced Corrosion of Steels. Bioelectrochemistry. 2002, 56:77~79
    104 S. Da Silva, R. Basseguy, A. Bergel. Electrochemical Deprotonation of Phosphate on Stainless Steel. Electrochim. Acta. 2004, 49: 4553
    105 L.D.S. Munoz, A. Bergel, R. Basse′guy. Role of the Reversible Electrochemical Deprotonation of Phosphate Species in Anaerobic Biocorrosion of Steels. Corros. Sci. 2007, 49(10): 3988~4004
    106 R.A. King, J.D.A. Miller. Corrosion by Sulphate-reducing Bacteria. Nature. 1971, 233: 491
    107 W.P. Iverson. The Corrosion of Mild Steel by a Marine Strain of Desulfovibrio. Proceedings Third International Congress Marine Corrosion and Fouling. 1973: 61~82
    108 W.P. Iverson. Corrosion of Iron and Formation of Iron Phosphide by Desulfovibrio Desulfuricans. Nature. 1968, 217(5135): 1265~1267
    109无锡轻工大学编.微生物学(第二版).北京:中国轻工业出版社, 1997: 155~159
    110 R.L. Starkey. The general physiology of the sulfate-reducing bacteria in relation to corrosion. Producers Monthly, 1958, 22: 12~16.
    111 J.R. Postgate. The Sulfate Reducing Bacteria, 2nd ed. Cambridge: Cambridge University Press, 1984: 208
    112林晶.海水中微生物膜下金属材料初期腐蚀行为.哈尔滨工程大学博士论文. 2006: 20~30
    113 APHA. Standard Methods for the Examination of Water and Wastewater, 17th ed. APHA, Washington, USA, 1989: 1~100
    114 F. Widdel. Biology of Anaerobic Organisms. New York, NY: Academic Press, 1988: 114~115
    115黄魁元.硫酸盐还原菌抑制剂的研究与应用概况.工业水处理. 1984, 4: 19~23
    116 A.K. Tiller. Polarization Studies of Mild Steel in Suspensions of Sulfate-Reducing Racteria. Trans. Faraday. Soc. 1960, 56: 1689~1696
    117 M.C.方坦纳.腐蚀工程.北京:科学出版社, 1978:278
    118吕人豪.工业循环冷却水中微生物腐蚀及其控制. 1979年腐蚀与防护学术报告论文集(海水、工业水、微生物部分).北京:科学出版社, 1982: 358~359
    119 J.R. Postgate. Recent Advances in the Study of the Sulfate-Reducing Bacteria. American Society for Microbiology. 1965, 29: 425~441
    120魏宝明.金属腐蚀理论及应用.化学工业出版社, 1984: 356
    121 R.E.布坎南, N.E.古本斯.伯杰细菌鉴定手册,第八版.科学出版社, 1994: 163~169
    122 R.E. Tatnall. A Practical Manual on Microbiologicallly-Influenced Corrosion.Houston TX: NACE, 1995: 163
    123 J.F.D. Stott. Assessment and Control of Microbially Induced Corrosion. Metals and materials. 1998, 4: 224~265
    124樊毓斐. SRB生长规律及石油管材微生物腐蚀防护的研究.西北大学硕士学位论文, 1998: 6
    125 R.E. Tatnall. Introduction in Kobrin, A pratical Manual on Microbiologically Influenced Corrosion. Corrosion /1995, Houston,TX: NACE, 1995: 89
    126 W.P. Iverson. Microbes Plays a Considerable Role in Corrosion Proc. Conf. Biol. Corrosion, 1985, 10(32): 327~330
    127上海钢铁研究院.海洋用钢腐蚀研究.上海:上海科技出版社, 1978: 11~13
    128俞敦义等.环境对微生物腐蚀的影响.材料保护. 1996, 29(2):1~2
    129 J. Jan Roblero, J.M. Romero, M. Amaya, et al. Phylogenetic Characterization of a Corrosive Consortium Isolated from a Sour Gas Pipeline. Appl. Microbiol. Biotechnol. 2004, 64: 862
    130唐和清.微生物腐蚀中游离氧的作用.材料保护. 1992, 25(4): 23-25
    131 B.J. Webster, R.C. Newman. A Novel Electrode Assembly for Studying Corrosion of Stainless Steels by Sulphate-reducing Bacteria. Corros. Sci. 1993, 35(1-4): 675~682
    132 J.A. Hardy, J.L.Bown. The Corrosion of Mild Steel by Biogenic Sulfide Films Exposed to Air. Corrosion. 1984, 40(12): 650~654
    133 H.S Von, W. Rege. Simulation of Metal-MIC for Evaluation of Counter-Measures.Werkstoffe and Korrosion. 1996, 47(9): 486~494
    134 J.S. Smith, J.D.A. Miller. Nature of Sulphides and Their Corrosoive Effect on Ferrous Metals: a Review. Br. Corros. J. 1975, 10: 136
    135 R.A. King, C.K. Dittmer, J.D.A. Miller. Effect of Ferrous Ion Concentration on the Corrosion of Iron in Semicontinuous Cultures of Sulphate-reducing Bacteria. Br. Corros. J. 1976, 11(2): 105~107
    136 W. Lee, W.G. Characklis. Corrosion of Mild Steel under Anaerobic Biofilm. Corrosion. 1993, 49(3): 186-198
    137 W.C. Lee, W.G. Characklis. Corrosion f Mild Steel under an Anaerobic Biofilm. Corrosion/90, Houston, TX: NACE, 1990: No. 126
    138 D. Thierry, W. Sand. In“Corrosion Mechanisms in Theory and Practice”, P. Marcus and J. Oudar, Editors. New York: Marcel Dekker Inc, 1995: 457~500
    139 J.A. Costello. Cathodic Depolarization By Sulphate-reducing Bacteria. S. Afr. J. Sci. 1974, 70: 202~204
    140曹楚南.腐蚀电化学原理.北京:化学工业出版社(第二版), 2004: 85
    141 F. Kuang, J. Wang, L. Yan, et al. Effects of Sulfate-reducing Bacteria on theCorrosion Behavior of Carbon steel. Electrochim. Acta. 2007, 52: 6084~6088
    142 M. Robert, J. Berthelin. Role of Biological and Biochemical Factors in Soil Mineral Weathering. Interactions of Soil Minerals with Natural Organics and Microbes. Madison, WI: Soil Science Society of American, 1986: 453~495
    143 A.K. Lee, M.G. Buehler, D.K. Newman. Influence of a Dual-species Biofilm on the Corrosion of Mild Steel. Corros. Sci. 2006, 48: 165
    144 J.E.G. Gonzalez, F.J.H. Santana, J.C. Mirza-Rosca. Effect of Bacterial Biofilm on 316SS Corrosion in Natural Seawater by eis. Corros. Sci. 1998, 39(1): 2141~2154
    145 E. Miranda, M. Bethencourt, F.J. Botana, et al. Biocorrosion of Carbon Steel Alloys by a Hydrogenotrophic Sulfate-reducing Bacterium Desulfovibrio capillatus Isolated from a Mexican Oil Field Separator. Corros. Sci. 2006, 48: 2417~2431
    146 R. Cottis, S. Turgoose. Analysis of Electrochemical Impedance Spectroscopy Data. Corrosion Testing Made Easy:Electrochemical Impedance and Noise Analysis. Houston, TX: NACE International, 1999: 35
    147 F. Mansfeld. The Use of Electrochemical Techniques for the Investigation and Monitoring of Microbiologically Influenced Corrosion and its Inhibition-a Review. Mater. Corros. 2003, 54: 489~502
    148 R.B. Herbert Jr, S.G. Benner, A.R. Pratt, et al. Surface Chemistry and Morphology of Poorly Crystalline Iron Sulfides Precipitated in Media Containing Sulfate-reducing Bacteria. Chem. Geol. 1998, 144: 87~89
    149 V.L. Rainha, I.T.E. Fonseca. Kinetic Studies on the SRB Influenced Corrosion Corrosion of Steel: a First Approach. Corros. Sci. 1997, 39(4): 807~813
    150 R.J. Chin, K. Nobe. Electrodissolution Kinetics of Iron in Chloride Solutions. J. Electrochem. Soc. 1972, 119: 1457
    151 D.R. MacFarlane. The Dissolution Mechanism of Iron in Chloride Solutions. J. Electrochem. Soc. 1986, 133: 2240~2244
    152 P. Marcus, J. Oudar. In“Fundamental Aspects of Corrosion Protection by Surface Modification”(E.Mc Cafferty, C.R. Clayton, and J. Oudar, ed.). Pennington, NJ: The Electrochemical Society, 1984: 173
    153 P. Marcus, A. Teissier, J. Oudar. Adsorption of Sulphur on the (110), (100) and (111) Faces of 75at%Ni-25at%Fe Alloy. Surf. Sci, 1983, 129: 432~446
    154 P. Marcus, A. Teissier, J. Oudar. The Influence of Sulphur on the Dissolution and the Passivation of a Nickel-iron Alloy—I. Electrochemical and Radiotracer Measurements. Corros. Sci. 1984, 24: 259~268
    155 P. Marcus, E. Protopopoff. Potential-pH Diagrams for Adsorbed Species. J. Electrochem.Soc. 1990, 137: 2709~2712
    156 R.A. Oriani. The Physical and Metallurgical Aspects of Hydrogen in Metals, Fourth International Conference on Cold Fusion, 1993, Lahaina, Maui: Electric Power Research Institute, 1993: 32
    157 R.Z. Sugam, W. Chow. Ozone for Biofouling Control: Comparative Field Test Results. Proc Am Power Conf. 1985(47): 1053~1057
    158段继周.海水和海泥环境中厌氧细菌对海洋用钢微生物腐蚀行为的影响.中科院海洋研究所博士论文. 2003: 95
    159 P. Marcus, J. Oudar (eds.). Corrosion Mechanisms in Theory and Practice. New York: Marcel Dekker, Inc, 1995: 201~239&265~311
    160 X. Sheng, Y.P. Ting, S.O. Pehkonen. The Influence of Ionic strength, Nutrients and pH on Bacterial Adhesion to Metals, J. Colloid Interf. Sci. 2008, 321: 256~264
    161 Kobrin, G. (ed.) A Practical Manuel on Microbiologically Influenced Corrosion. Houston, TX: NACE International, 1993: 96
    162 J. Landoulsi, K. Elkirat, C. Richard, et al. Enzymatic Approach in Microbial-Influenced Corrosion: a Review Based on Stainless Steels in Natural Waters. Environ. Sci. Technol. 2008, 42: 2233~2242
    163 E. Schaschl. Elemental Sulfur as a Corrodent in Deaerated Nuatural Aqueous Solution, Mater. Performance. 1980, 19 (7): 9~12
    164 S.D. Silva, R. Basseguy, A. Bergel. Electrochemical Deprotonation of Phosphate on Stainless steel. Electrochim. Acta. 2004, 49: 4553~4561
    165 J. Liu, X. Liang, S. Li. Corrosion Action of Sulfate-reducing Bacteria on Two Stainless Steels. Acta Metallurgica Sinica. 2005, 45(5): 545~550
    166 R.C. Newman, B.J. Webster, R.G. Kelly. The Electrochemistry of SRB Corrosion and Related Inorganic Phenomena. ISIJ Int. 1991, 31 : 201~209
    167 S.E. Werner, C.A. Johnson, N.J. Laycock, et al. Pitting of Type 304 Stainless Steel in the Presence of a Biofilm Containing Sulphate Reducing Bacteria. Corros. Sci. 1998, 40(2/3): 465~480
    168 P. Angell, J.-S. Luo, D.C. White. Microbially Sustained Pitting Corrosion of 304 Stainless Steel in Anaerobic Seawater. Corros. Sci. 1995, 37(7): 1085~1096
    169 G. Chen, C.R.Clayton. Influence of Sulfate-Reducing Bacteria on the Passivity of Type 304 Austenitic Stainless Steel. J. Electrochem. Soc. 1997, 144: 3140~3146
    170 J. Duan, B. Hou, Z. Yu. Characteristics of Sulfide Corrosion Products on 316L Stainless Steel Surfaces in the Presence of Sulfate-reducing Bacteria. Mat. Sci. Eng. C. 2006, 26: 624 ~ 629
    171 C. Cao. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besideselectrode potential. Electrochim. Acta. 1990, 35 : 831~836
    172曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社, 2002: 29~40&112~160
    173 K.E. Heusler. Der Einflub der Wasserstoffionenkonzentration aufdas electrochemische Verhalten des aktiven Eisen. Z. Elektrochem. 1958, 62: 582
    174 J.O’M Bockris, D. Drazic, A. Despic. The Electrode Kinetics of the Deposition and Dissolution of Iron. Electrochim. Acta. 1961, 4: 325~361
    175 I. Epelboin, C. Gabrielli, M. Keddam, et al. Electrochemical Methods in the Study of the Hydrodynamic Drag Reduction by High Polymer Additives. Electrochim. Acta. 1975, 20: 913~916
    176 M. Keddam, O.R. Mattos, H. Takenouti. Reaction Model for Iron Dissolution Studied by Electrode Impedance. J. Electrochem. Soc. 1981, 128: 257~266
    177 J. Bisquert, G. Garcia-Belmonte, P. Bueno, et al. Impedance of Constant Phase Element (CPE)-blocked Diffusion in Film Electrodes. Electroanal. Chem. 1998, 452: 229~234
    178 C. Criado, P. Galan-Montenegro, P. Velasquez, et al. Diffusion with General Boundary Conditions in Electrochemical Systems. J. Electroanal. Chem. 2000, 488: 59~63
    179 S.J. Yuan, S.O. Pehkonen. Microbiologically Influenced Corrosion of 304 Stainless Steel by Aerobic Pseudomonas NCIMB 2021 Bacteria: AFM and XPS Study. Colloid. Surface B. 2007, 59: 87~99
    180 T. Shibata, T. Takeyama. Stochastic Theory of Pitting Corrosion. Corrosion. 1977, 33: 243~251
    181 I.G. Chamriski, G.R. Burns, B.J. Webster, et al. Effect of Iron-oxidizing bacteria on Pitting of Stainless Steel. Corrosion. 2004, 60(7): 658~669
    182 P. Marcus, J. Oudar (eds.), Corrosion Mechanisms in Theory and Practice, New York: Marcel Dekker Inc, 1995: 239~265
    183 W.P. Iverson. Research on the Mechanisms of Anaerobic Corrosion. Int. Biodeter. Biodegr. 2001, 47: 63~70
    184 C.R. Clayton, Y.C. Lu. A Bipolar Model of the Passivity of Stainless Steel: The Role of Mo Addition. J. Electrochem. Soc. 1986, 133: 2465~2473