电镀锌板Cr~(3+)钝化及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镀锌钢板经过铬酸盐钝化处理后,可获得具有良好外观和极佳耐蚀性的钝化膜。但六价铬是剧毒性物质,对人体和环境有极大的危害。为了消除六价铬的不利影响,须找到一种锌层铬酸盐钝化的替代工艺。
     本文通过SEM、XPS、钝化膜极化电阻率测定、耐盐雾实验等方法研究了SiO_2、Ce~(1-)、Cl~-、Fe~(2-)等对锌电镀层三价铬钝化膜的影响。
     SiO_2在钝化处理液中以胶体颗粒的形式存在,其含量须与主要成膜剂三价铬盐成一定比例,才能保持溶液的稳定,形成光亮透明、颜色鲜艳、耐蚀性好的三价铬钝化膜。
     Cl~-是金属溶解的促进剂,通过加速阳极溶解使膜的生成速度加快,缩短钝化时间。另外,Cl~-通过“阴离子效应”使胶体沉淀反应匀速进行,生成均匀细小的沉淀颗粒,充分地填充在钝化膜的孔隙中,提高膜的耐蚀性。
     Ce~(4-)在酸性溶液中有很强的氧化性,可通过消除阴极反应的极化提高电化学反应速度,使Cr~(3-)钝化膜的厚度增加。Ce~(4-)离子及其还原产物与溶液中的阴离子形成复杂的不溶性化合物沉积在钝化膜的孔隙中,使钝化膜更加致密。这两个方面对钝化膜耐蚀性的提高均有显著作用。Ce~(4+)还可加深钝化膜的颜色。
     Fe~(2-)主要是通过与Ce~(4-)的协同效应改善钝化膜的颜色,对钝化膜的耐蚀性贡献不大。
     经正交实验研究出FS-3配方,并确立了FS-3配方的工艺流程和工艺参数。FS-3钝化膜的外观及耐蚀性可与六价铬钝化膜相媲美,其耐热性优于六价铬钝化膜。
     对锌电镀层FS-3钝化膜生成机理的讨论说明,FS-3钝化膜生成过程是一个电化学反应、胶体聚沉、沉淀等反应相互交织的复杂过程。XPS分析表明,钝化膜中含Zn、Cr、Si、O、F、Ce、Cl、Fe、S等元素,由多种金属化合物及其水合物构成。
Through surface passivating treatment with chromate, Zinc electrodeposited sheet can get passivation film with good external appearance and corrosion resistance. But being toxic, Cr6* has great poisonousness to human body and environment. To avoid the disadvantageous influence of Cr6+, it' s needed to find alternatives to chromate passivation.
    This paper studys the effect of SiO Ce1+ CTand Fe2+ to Cr3+ passivation film by means of SEM. XPS. measurement in polarization resistance rate and salt spray test.
    Existing in the passivation liquid as colloid granule, SiO2 s content must be in proportion to trivalent chromium, so as to retain the passivation liquid' s stabilization and get transparent trivalent chromating film with bright color and better corrosion-resistance.
    OF is the accelerant of metal deliquescence. It quickens the formation of passivation film, shortens passivation time by accelerating anode' s deliquescence. In addition, by "anion effect" , CT makes the reaction of colloid precipitation go along at even speed so as to get even fine granule. The granules fill in the holes of passivation film richly and advance the film' s corrosion-resistance.
    Ce'1+ has very strong oxidbillity in the acidity liquor and can accelerate electrochemistry reaction by reducing polarization of cathode reaction to increase the thickness of film. Ce'4+ and its deoxidization productions together with all kinds of anions in liquid form complicated infusibility compounds. The compounds settle into the holes of passivation film to make the film more compact. These two aspects improve the film' s corrosion resistance obviously.
    Fe2+ chiefly polishes up the film's color in coordination with Ce4+, doesn' t function much to corrosion resistance.
    Through orthogonal experiment , FS-3 passivation composition , the process and parameters are studied and established. FS-3 passivation film ' s external appearance and corrosion-resistance can compare with that of chromating. Moreover, the peformance of heat tolerance is more excellent.
    Above Discussion about the formation machanism of FS-3 passivation film illustrates that the formation process is a complex process composed of electrochemistry reaction . colloid polymerized . precipitation reaction, etc. Through XPS analysis, FS-3 passivation film contains multiple elements such as Zn. Cr. Si. 0. F. Ce. Cl. Fe. S, etc, composed of many metal compounds and their hydrates.
引文
[1]卢燕平.金属表面防蚀处理[M].北京,冶金工业出版社,1995
    [2]顾国成,吴文森.钢铁材料的防蚀涂层[M].北京,科学出版社,1987
    [3]沈品华,屠振密.电镀锌及锌合金[M].北京,机械工业出版社,2001
    [4]Keith Dennis. Asia Finish 98[J]. Trans IMF, 1999, 77 (1): B2~B4
    [5]M. E. Roper, J.O. Grady. Zinc Alloy Coatings-A European Perspective[J]. Trans IMF, 1996, 74(4)
    [6]M. E. Roper, J.O. Grady. Zinc Alloy Coatings-A European Perspectives[J]. Trans IMF, 1997, 74(5)
    [7]Bruce R.W. Hinton. Corrosion prevention and chromates, The End of An Era[J]. Metal finishing, 1991,9,55~61.
    [8]Bruce R.W. Hinton. Corrosion prevention and chromates, The End of An Era[J]. Metal finishing, 1991, 10, 16~19.
    [9]Report No. ATSDR/TP-88/10. July, 1989.
    [10]吴纯素。化学转化膜[M].北京,化学工业出版社,1989.
    [11]G.D. Wilcox and J.A. Wharton. A Review of Chromate-free Passivation Treatments for Zinc and Zinc Alloys[J]. Trans IMF, 1997, 75(6): B140-142
    [12]J. A. Wharton, G.D. Wilcox and K. R. Baldwin. Non-Chromate Conversion Coating Treatments for Electrodeposited Zinc-Nickel Alloys[J]. Trans, IMF, 1996, 74(6): 210-213
    [13]G.D. Wilcox and D.R. Gabe. Passivation Studies using Group VIA Anions, Part 5[J]. Br. Corros. J, 1987, 22(4): 254-257
    [14]陈锦红,卢锦堂,许乔瑜等.镀锌层无铬钝化研究的进展[J].腐蚀科学与防护技术,2003,15(5):277-281
    [15]周金宝.镀锌层无铬钝化工艺的新进展[J].电镀与环保,1991,11(5):7-9
    [16]杨宁,龙晋明.稀土钝化—金属防腐蚀表面处理新技术[J].稀土,2002,23(2):55-62
    [17]杨宁,龙晋明,陈庆华等.锌表面稀土钝化及耐蚀性研究[J].稀有金属,2002,
    
    26 (2):99-102.
    [18]P. T. Tang, G. Bech- Nielsen and P. Moller. Molybdate Based Passivation of Zinc[J]. Trans IMF, I997, 75(4): 144-148
    [19]周谟银.铝酸盐在金属表面处理中的应用(1)——应用类型及处理条件[J].材料保护,2000,33(10):45-47
    [20]周谟银.钼酸盐在金属表面处理中的应用(2)——铝酸盐转化膜的防护性能和涂装性能[J].材料保护,2000,33(11):52-55
    [21]徐涛,吴宝华.无铬酸钝化液的研制[J].哈尔滨学院学报,2001,22(5):35-38
    [22]Shigeki Kirihara, Kobe, Tsutomu Ohshima, Kakogawa, both of Japan. Method for Anticorrosive Treatment of Galvanized Steel. U.S.P (1983) 4385940
    [23]J. A. Wharton, G. D. Wilcox and K. R. Baldwin. An Electrochemical Evaluation of Possible Non-Chromate Conversion Coating Treatments for Electrodeposited Zinc-Nickel Alloys[J]. Trans IMF, 1999, 77(4): 152-158
    [24]Hinton B R W, Wilson L. The Corrosion Inhibition of Zinc with Cerous Chloric[J]. Corros Sci, 1989, 29 (9):967
    [25]K Wippermann, J W Schuitze, R Kessel, et al. The Inhibion of Zinc corrosion by Bisamminotriazole and other rriazole Derivatives[J]. Corros Sci, 1991, 32 (2): 205
    [26]Non-Chromium Passivation Method for galvanized Metal Surfaces. U.S.P (1997) 5662967
    [27]陈锦红,许乔瑜,毕君等.镀锌层有机物无铬钝化[J].电镀与环保,2000,20(6):7-10
    [28]朱传芳,胡腊生.植酸在镀锌钝化中的应用[J].精细化工,1995,12(5):54-55
    [29]张洪生.无毒植酸在金属防护中的应用[J].电镀与涂饰,1999,18(4):38
    [30]梁启民,张丽娜.镀锌层单宁酸钝化[J].电镀与精饰,1986(1):3
    
    
    [31]Ouyang, Jiangbo. Non-chromium passivation method for galvanized metal surfaces. U.S.P (1997) 5662967
    [32]Hager Harold, Blohowiak Kay. Chromate-free protective coatings. EP (1997)0792922
    [33]Schneider. Coating Solution Having Trivalent Chromium and Manganese for Coating Metal Surface. U.S.P (1976) 3932198
    [34]Bishop et al. Coating Solutions of Trivalent Chromium for Coating Zinc. U.S.P (1979) 4171231
    [35]Da Fonte, Jr. Trivalent Chromium Passivate Solution and Process. U.S.P (1982) 4359345
    [36]Lash et al. Trivalent Chromium Passivate Process U.S.P (1983) 4367099
    [37]Da Fonte, Jr. Trivalent Chromium Passivate Solution and Process for Yellow Passivate Film. U.S.P (1982) 4359346
    [38]Huvar. Trivalent Chromium Passivate Solution and Process. U.S.P (1982) 4349392
    [39]Crotty et al. Trivalent Chromium Passivate Compositin and Process. U.S.P (1983) 4384902
    [40]曾令喜,肖德平.三价铬天蓝色钝化工艺及其应用[J].材料保护,2000,33(11):15
    [41]二价铬镀锌白钝化:理论与实践[J].电镀与环保,1989,9(1):38-41
    [42]L. Roman, M. Blidariu, C. Cristescu. Study of Conversion Coatings on Zinc Depodition Obtained from Low Pollution Solutions. Trans IMF, 1996, 74 (5): 171-174
    [43]P. Upton. The Effect of Sealers on Increasing the Corrosion Resistance of Chromate Free Passivates on Zinc and Zinc Alloys [J]. Trans IMF, 2000, 78 (4) :B45-B48
    [44]P. McCluskey. Post Passivate Systems for Zinc and Zinc Alloys [J]. Trans, IMF, 1996, 74 (4) : 119-123
    [45]Guhde et al. Coating Solutions of Trivalent Chromium for Coating
    
    Zinc and Cadmium Surface. U.S.P (1981) 4263059
    [46]魏宝明.腐蚀理论及应用[M].北京,化学工业出版社,1995
    [47]中国腐蚀与防护协会.腐蚀实验方法与防腐蚀检测技术[M].北京,化学工业出版社,1996
    [48]GB-6458 盐雾实验
    [49]GB-9791-88 锌层钝化膜附着力测试方法
    [50]刘立炳,孙贺民,赵常就等.高耐蚀镀锌钝化膜的耐蚀机理分析[J].表面技术,1999,28(5):13-15
    [51]戴安邦等.配位化学[M].北京,科学出版社,1987
    [52]陈宗淇,戴闽光.胶体化学[M].北京,高等教育出版社,1984
    [53]曹锡章,宋天佑,王杏乔.无机化学(下)[M].北京,高等教育出版社,1994.
    [54]安茂忠,张景双,李文良等.电镀Zn-Co合金钝化膜的X光电子能谱分析[J].材料科学与工艺,1995,3(4):86-90
    [55]赞德纳 A W著.张强等译.表面分析方法[M].北京,国防工业出版社,1984.
    [56]沈钟,王果庭.胶体与表面化学[M].北京,化学工业出版社,1991
    [57]庄箐,蒋雄.镀锌及低铬钝化锌镀层的电化学行为[J].电镀与涂饰,1998,17(3):19-21