杉木人工林生长及材种结构规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以福建卫闽国有林场杉木密度试验林连续观测30年数据为依据,系统研究了杉木人工林生长和材种结构变化的立地及林分密度效应,得出如下主要结论:
     1.林分发展的初期,直径生长主要受林分初植密度的影响,随林分初植密度增加而减小;在林分发展的中后期,随着自然稀疏的发生,直径呈现加速生长现象,林分密度效应逐渐减弱,而立地效应逐渐突出,随立地指数的增加而增大,相同立地指数小区直径生长有趋于相近的趋势。基于Richards参数与林分因子的相关关系,构建的林分平均直径生长混合效应模型,拟合结果良好(R2=0.9749),并且具有明确的生物学解析性,能够准确预测林分直径的生长过程,推荐在林分直径生长模拟中应用。
     2.林龄相同时直径分布偏度值随初植密度的增加而增大;林龄不同时,随林分发展低密度小区(A密度(1667株/ha)小区及B1(3333株/ha)小区)直径分布偏度先减小后增加;高密度小区直径分布偏度则先减小后增加,生长末期再减小,30年生时分布在0.5左右。林龄相同时,林分直径分布峰度值随林分密度的增加而减小。林龄不同时,随林分发展峰度先增加后减小。而与之相反,随林分发展变异系数则先减小后增加,同时研究发现林分直径的变异系数与直径生长速率关系密切。基于林分平均直径、偏度值、峰度值的Weibull直径分布参数预估模型,预测结果良好(决定系数R2均在0.9以上),为杉木人工林直径分布结构预测提供了理论依据。
     3.林龄相同时,枯损量随初植密度及立地指数的增加而增加。初植密度为A密度的小区以及B密度小于16m立地指数小区,30年生时不发生枯损。30年生时,立地指数相同小区立木株数有趋于相近的趋势,其中14m及16m立地指数小区立木株趋于B密度,而高于16m立地指数的小区立木株数趋于A密度,这一发现对杉木人工林经营具有重要的指导作用。本研究中基Richards直径生长混合效应模型与Yoda最大密度线方程构建的林分立木株变化方程:ln N=13.411-1.913ln+13.8272-0.4560SI-17.3264PD0.3553ln1-exp-3.4573PD0.7041t,预测结果良好(R2=0.9689),同时具有生物学解析性,能够准确描述既定初植密度及立地指数林分中立木株数的变化,为杉木人工林经营过程中不同时期保留密度的确定提供了理论基础。
     4.林分蓄积及总材积整个林分发展过程中呈现出“S”曲线,林龄相同时,林分蓄积及总材积随立地指数的增加而增加。林分发展后期,立地指数相同小区蓄积量差异逐渐减小,有趋于相近的趋势,而林分总材积则未表现出趋近的现象。初植密度相同时,林分蓄积及总材积年平均生长量峰值林龄在低密度和高密度林分(A、D、E密度),随立地指数的增加而增加。但在B、C密度小区内峰值林龄随立地指数的增加而减小。
     5.材种出现时间取决于林分初植密度及立地质量,相比较受立地质量影响更大,中径材、大径材出现的时间随立地指数增加而减小,而随初植密度增加各材种出现时间变化不明显。30年生时,立地指数为12m、14m小区以及16m的B1小区中径材出材量未达峰值,其它小区峰值出现时间随立地指数增加而减小。
     12m及14m立指数小区及16m立地指数的B小区30年生时仍处于中径材生长期,大径材出材量及出材率较低。大于16m立地指数的小区30年生时均处于大径材生长期,各小区中大径材出材率均在0.5以上,且在林分发展后期林分蓄积相近小区,初植密度越大,林分大径材出材量及出材率越小,小径材出材率越大。若以大径材为人工林培育目标,应选择大于16m立地指数的小区,且以低密度造林,轮伐期应在30以上,以促进大径材的生长。
In this paper,30-years continuing data of Cunninghamia lanceolata density experimentalplantation in Shaowu, Fujian Province was used. The effects of site quality and stems densityon stand growth and timber assortment structure were studied systemic. And we had theconculsions that:
     (1) At the stand developing early stage, stand diameter growth be mainly effected byplanting density, and diameter decreased with planting density increasing. At the standdeveloping middle and later stage, because of the self-thinning, the diameter growthaccelerated, the effects of planting density weakened and the effects of density strengthened,the diameter increased with site index. Mean diameter in plots with same site indexapproaching to no difference.
     The fittign results of stand mean diamter growth mixed model, which based on correlationof Richards parmeters and stand factor, is good (R2=0.9749). This mixed model with goodbiological analyticity can predict the diameter growth, in different plots with different densityand site index, so should be used to diameter growth at stand level in the future.
     (2) At the same stand age, the diameter skewness increased with planting density; and atdifferent stand age, diameter skewness in the lower site index plots (A-density plots and B1plot) decreased at early developing stage, and then increasing at later developing stage.However, in high site index plots, diameter skewness decreased at early developing stage, thenincreasing with stand age, and decreasing at later developing stage. At30years old, theskewness scattered about0.5.
     At same stand age, diameter kurtosis decreasing with planting density increasing. Atdifferent stand age, diamter kurtosis first increased and then decreased with stand developing.On the contrary, diameter variable coefficient first decreased and then increased with standdeveloping. At the same time, the results suggested that diameter variable coefficient wasclosely related to diameter growth speed.
     The fitting results he Weibull diameter distribution model, wich based on the correlationbetween parameters and mean diameter, skewness and kurtosis is good, and the R2in plotsused to testing were above0.9. This model could be used to stand diameter distribution as basicmodel, in the future.
     (3) There was no mortality or feww in plots with planting density less than1667trees/ha,or plots with3333trees/ha planting density and site index less than16m, at30years old. Thestocking stems number in plots with same site index approaching to no difference, at30yearsold, and approaching to B-planting density in plots with site index less than16m, to A-plantingdensity in the plots with site index greater than16m. This results was very important forCunninghamia lanceolata plantation management.
     The mortality models usually predicted mortality based on the previous data, and thesemodels are diffcult to used for management measure established. In this paper, the stockingtrees model:
     ln N=13.411-1.913ln13.82720.4560S I-17.3264P D0.3553ln1exp3.4573PD0.7041t,
     which based on Richards diameter growth mixed effects model and Yoda maximumsize-density line could predict the stems numbers accuracy. This models with good biologyanalyticity, could describe the dynamic changes of stem number in plots with given plantingdensity and site index, and could provid theoretical basis for retain stem number determinationat different developing stage in Cunninghamia lanceolata plantation.
     (4) At the same stand age, stand volume and gross volume increased with planting densityand site index. At later developing stage, the volume difference between plots with same siteindex lessened, and approached to no difference, but the gross volume not. In the plots withsame planting density, peak value of mean annual increment of stand volume and gross volumein lower and higher planting density (A, D, E planting density) increased with site index, anddecreased with site index in middle planting density (B, C planting density).
     (5) Different timber assortment appearance time were determined by planting density andsite index, and more by site index comparatively. Middle-size and large-size timber appearance time decreased with site index increasing, however, there was no trend in appearance time withplanting density increasing.30years old, in the plots with12and14m site index and B1plot,the middle-size timber volume didn’t reach to peak value, the middle size timber volume reachto peak value earlier in high site index plots.
     At30years old, plots with12m and14m site index and B1plot with16m site inex werestill in the period of middle size timber growth, and the large size tibmer outturn rate was verylower. But the plots with site index larger than16m all entered to large size timber growthperiod, at30years old, and middle size and large size timber outturn rate were highter than0.5.At late stand developing stage, the stand with similar volume, the proportion of large sizetimber decreased with planting density and the proportion of small size timber increased withplanting density. So, the aim of plantation is middle and large size timber, the plantation shouldbe built in the plots with site index higher than16m, planted with lower planting density, androtation shold longer than30years old.
引文
Adame, P., del Rìo, M.,Ca ellas, I. Ingrowth model for pyrenean oak stands in north-western Spain usingcontinuous forest inventory data. European Journal of Forest Research,2010,129(4):669-678.
    Adame, P., Hynynen, J., Ca ellas, I. et al. Individual-tree diameter growth model for rebollo oak (Quercuspyrenaica Willd.) coppices. Forest ecology and management,2008,255(3):1011-1022.
    Bailey, R.L. The potential of Weibull-type functions as flexible growth curves: discussion. Canadian Journalof Forest Research,1980,10(1):117-118.
    Bailey, R.L.,Dell, T. Quantifying diameter distributions with the Weibull function. Forest Science,1973,19(2):97-104.
    Bertalanffy, L. Unterschungen uber die Gesetzlich beit des Wachstums. VII. Stoffwechseltypen undWachstumstypen. Biol. Zbl,1941,61:510-532.
    Bliss, C.,Reinker, K. A lognormal approach to diameter distributions in even-aged stands. Forest Science,1964,10(3):350-360.
    Boyden, S.B., Reich, P.B., Puettmann, K.J. et al. Effects of density and ontogeny on size and growth ranks ofthree competing tree species. Journal of Ecology,2009,97(2):277-288.
    Bravo-Oviedo, A., Sterba, H., del Río, M.et al. Competition-induced mortality for Mediterranean Pinuspinaster Ait. and P. sylvestris L. Forest ecology and management,2006,222(1):88-98.
    Bravo, F., álvarez González, J.G., Rio, M.d. et al. Growth and yield models in Spain: historical overview,contemporary examples and perspectives. Forest Systems,2011,(20):315-328.
    Bravo, F., Hann, D.W.,Maguire, D.A. Impact of competitor species composition on predicting diametergrowth and survival rates of Douglas-fir trees in southwestern Oregon. Canadian Journal of ForestResearch,2001,31(12):2237-2247.
    Buchman, R.G., Pederson, S.P.,Walters, N.R. A tree survival model with application to species of the GreatLakes region. Canadian Journal of Forest Research,1983,13(4):601-608.
    Buckman, R.E. Growth and yield of red pine in Minnesota. US Dept. of Agriculture,1962.
    Cao, Q.V. Predicting parameters of a Weibull function for modeling diameter distribution. Forest Science,2004,50(5):682-685.
    Chen, W. Tree size distribution functions of four boreal forest types for biomass mapping. Forest Science,2004,50(4):436-449.
    Clutter, J.L. Compatible growth and yield models for loblolly pine. Forest Science,1963,9(3):354-371.
    Corral-Rivas, J.J., Dieguez-Aranda, U., Corral Rivas, S. et al. A merchantable volume system for major pinespecies in El Salto, Durango (Mexico). Forest Ecology and Management,2007,238(1-3):118-129.
    Crecente-Campo, F., Marshall, P.,Rodríguez-Soalleiro, R. Modeling non-catastrophic individual-treemortality for Pinus radiata plantations in northwestern Spain. Forest ecology and management,2009,257(6):1542-1550.
    Crecente-Campo, F., Soares, P., Tomé, M. et al. Modelling annual individual-tree growth and mortality ofScots pine with data obtained at irregular measurement intervals and containing missing observations.Forest ecology and management,2010,260(11):1965-1974.
    Curtis, R.O. A new look at an old question: Douglas fir culmination age. Western journal of applied forestry,1992,7.
    Curtis, R.O. Extended rotations and culmination age of coast Douglas-fir: old studies speak to current issues.Research Paper PNW-RP-485. USDA Forest Service, Portland, OR,1995.
    Daniel, T.W., Helms, J.A.,Baker, F.S. Principles of silviculture.1979, McGraw-Hill Book Company.
    Fang, Z.,Bailey, R.L. Nonlinear mixed effects modeling for slash pine dominant height growth followingintensive silvicultural treatments. Forest Science,2001,47(3):287-300.
    Fownes, J.H.,Harrington, R.A. Modelling growth and optimal rotations of tropical multipurpose trees usingunit leaf rate and leaf area index. Journal of Applied Ecology,1990:886-896.
    Ginrich, S.F. Measuring and evaluating stocking and stand density in upland hardwood forests in the CentralStates. Forest Science,1967,13(1):38-53.
    Goudriaan, J. Using the expolinear growth equation to analyze resource capture. Resource capture by crops.Nottingham: Nottingham University,1994:99-110.
    Haight, R.G.,Monserud, R.A. Optimizing any-aged management of mixed-species stands. I. Performance ofa coordinate-search process. Canadian Journal of Forest Research,1990,20(1):15-25.
    Hamilton, D.A. A logistic model of mortality in thinned and unthinned mixed conifer stands of northernIdaho. Forest science,1986,32(4):989-1000.
    Hann, D.W.,Hanus, M.L. Enhanced mortality equations for trees in the mixed conifer zone of southwestOregon.2001.
    Hann, D.W., Marshall, D.D.,Hanus, M.L. Equations for predicting height-to-crown-base,5-yeardiameter-growth rate,5-year height-growth rate,5-year mortality rate, and maximum size-densitytrajectory for Douglas-fir and western hemlock in the coastal region of the Pacific Northwest.2003.
    Hann, D.W.,Wang, Chao h. Mortality equations for individual trees in the mixed-conifer zone of southwestOregon.1990.
    Harrington, T.B., Harrington, C.A.,DeBell, D.S. Effects of planting spacing and site quality on25-yeargrowth and mortality relationships of Douglas-fir (Pseudotsuga menziesii var. menziesii). ForestEcology and Management,2009,258(1):18-25.
    Huang, S.,Titus, S.J. An index of site productivity for uneven-aged or mixed-species stands. CanadianJournal of Forest Research,1993,23(3):558-562.
    Hummel, S. Height, diameter and crown dimensions of Cordia alliodora associated with tree density1. Forestecology and management,2000,127(1-3):31-40.
    Hynynen, J., Models for predicting stand development in MELA System. Vantaa Research Center,2002.
    Jayaraman, K.,Rugmini, P. Optimizing management of even-aged teak stands using growth simulation model:a case study in Kerala. Journal of Tropical Forest Science,2008,20(1):19-27.
    Knowe, S.,Hibbs, D. Stand structure and dynamics of young red alder as affected by planting density. ForestEcology and Management,1996,82(1-3):69-85.
    Knowe, S.A., Foster, G.S., Rousseau, R.J. et al. Eastern cottonwood clonal mixing study: predicted diameterdistributions. Canadian Journal of Forest Research,1994,24(2):405-414.
    Knowe, S.A.,Stein, W.I. Predicting the effects of site preparation and protection on development of youngDouglas-fir plantations. Canadian Journal of Forest Research,1995,25(9):1538-1547.
    Kv, G.,Hui, G. Modelling forest development (Kluver, Amsterdem, the Nerthlands).1999
    Leslie, P.H. On the use of matrices in certain population mathematics. Biometrika,1945,33(3):183-212.
    Li, L., Weiner, J., Zhou, D. et al. Initial density affects biomass–density and allometric relationships in self‐thinning populations of Fagopyrum esculentum. Journal of Ecology,2013,101(2):475-483.
    Li, Y., Turnblom, E.,Briggs, D. Effects of density control and fertilization on growth and yield of youngDouglas-fir plantations in the Pacific Northwest. Canadian Journal of Forest Research,2007,37(2):449-461.
    Liu, C., Zhang, S., Lei, Y. et al. Evaluation of three methods for predicting diameter distributions of blackspruce (Picea mariana) plantations in central Canada. Canadian Journal of Forest Research,2004,34(12):2424-2432.
    Lynch, T.B.,Zhang, D. On Relative Maxima of Diameter Growth, Basal Area Growth, Volume Growth, andMean Annual Increment for Individual Trees. Forest Science,2011,57(4):353-358.
    MacKinney, A.,Chaiken, L. Volume, yield and growth of loblolly pine in the mid-atlantic coastal region.USDA For. Serv. Tech. Note,1939,33(3):10-16.
    Marshall, D.D., Curtis, R.O.,Service, U.S.F., Levels-of-growing-stock cooperative study in Douglas-fir:report no.15-Hoskins:1963-1998. United States Department of Agriculture, Forest Service,2002.
    Martin, T.A.,Jokela, E.J. Stand development and production dynamics of loblolly pine under a range ofcultural treatments in north-central Florida USA. Forest Ecology and Management,2004,192(1):39-58.
    Monserud, R.A.,Sterba, H. Modeling individual tree mortality for Austrian forest species. Forest ecology andmanagement,1999,113(2):109-123.
    Moser, J.W.,Hall, O.F. Deriving growth and yield functions for uneven-aged forest stands. Forest Science,1969,15(2):183-188.
    Murphy, P.A.,Farrar, R.M. Interim models for basal area and volume projection of uneven-agedloblolly-shortleaf pine stands. Southern Journal of Applied Forestry,1982,6(2):115-119.
    Nelson, T.C. Diameter distribution and growth of loblolly pine. Forest Science,1964,10(1):105-114.
    Newnham, R.,Smith, J. Development and testing of stand models for Douglas fir and lodgepole pine. TheForestry Chronicle,1964,40(4):494-504.
    Newnham, R.M. The development of a stand model for Douglas fir,1964.
    Newton, P., Lei, Y.,Zhang, S. Stand-level diameter distribution yield model for black spruce plantations.Forest Ecology and Management,2005,209(3):181-192.
    Nishizono, T. Effects of thinning level and site productivity on age-related changes in stand volume growthcan be explained by a single rescaled growth curve. Forest Ecology and Management,2010,259(12):2276-2291.
    Nishizono, T., Tanaka, K., Hosoda, K. et al. Effects of thinning and site productivity on culmination of standgrowth: results from long-term monitoring experiments in Japanese cedar (Cryptomeria japonica D.Don) forests in northeastern Japan. Journal of Forest Research,2008,13(5):264-274.
    Nord-Larsen, T.,Cao, Q.V. A diameter distribution model for even-aged beech in Denmark. Forest ecologyand management,2006,231(1):218-225.
    Pinheiro, J.C.,Bates, D.M., Mixed-effects models in S and S-PLUS.2000Springer Verlag.
    Pretzsch, H., Forest dynamics, growth and yield: from measurement to model. Springer Verlag,2009.
    Pretzsch, H.P.H.,Biber, P.B.P. Size-symmetric versus size-asymmetric competition and growth partitioningamong trees in forest stands along an ecological gradient in central Europe. Canadian Journal of ForestResearch,2010,40(2):370-384.
    Pukkala, T., L hde, E.,Laiho, O. Growth and yield models for uneven-sized forest stands in Finland. Forestecology and management,2009,258(3):207-216.
    Pukkala, T.,Miina, J. Tree-selection algorithms for optimizing thinning using a distance-dependent growthmodel. Canadian Journal of Forest Research,1998,28(5):693-702.
    Reineke, L.H., A Modification of Bruce's Method of Preparing Timber-yield Tables. USGPO,1927.
    Reineke, L.H., Perfecting a stand-density index for even-aged forests. US Government Printing Office,1933.
    Rennolls, K.,Wang, M. A new parameterization of Johnson's SB distribution with application to fitting foresttree diameter data. Canadian Journal of Forest Research,2005,35(3):575-579.
    Richards, F. A flexible growth function for empirical use. Journal of experimental Botany,1959,10(2):290.
    Roise, J. An approach for optimizing residual diameter class distributions when thinning even-aged stands.Forest Science,1986,32(4):871-881.
    Sarkkola, S., Hokka, H., Laiho, R. et al. Stand structural dynamics on drained peatlands dominated by Scotspine. Forest Ecology and Management,2005,206(1-3):135-152.
    Schreuder, H., Hafley, W.,Bennett, F. Yield prediction for unthinned natural slash pine stands. Forest Science,1979,25(1):25-30.
    Scolforo, J.R.S., Tabai, F.C., Acerbi, F.W. et al. SB distribution's accuracy to represent the diameterdistribution of Pinus taeda, through five fitting methods. Forest Ecology and Management,2003,175(1-3):489-496.
    Sorrensen-Cothern, K.A., Ford, E.D.,Sprugel, D.G. A model of competition incorporating plasticity throughmodular foliage and crown development. Ecological Monographs,1993:277-304.
    Subedi, N., Sharma, M. Individual-tree diameter growth models for black spruce and jack pine plantations innorthern Ontario. Forest Ecology and Management,2011,261(11):2140-2148.
    Temesgen, H.,Mitchell, S.J. An individual-tree mortality model for complex stands of southeastern BritishColumbia. Western Journal of Applied Forestry,2005,20(2):101-109.
    Tham,. Structure of mixed Picea abies (L) Karst, and Betula pendula Roth and Betula pubescens Ehrh.stands in South and middle Sweden. Scandinavian Journal of Forest Research,1988,3(1-4):355-370.
    UMEKI, K. Effect of crown asymmetry on size-structure dynamics of plant populations. Annals of Botany,1997,79(6):631.
    Usher, M.B. A matrix approach to the management of renewable resources, with special reference toselection forests. Journal of Applied Ecology,1966:355-367.
    Vanclay, J.K. Modelling forest growth and yield: applications to mixed tropical forests. School ofEnvironmental Science and Management Papers,1994:537.
    Vanclay, J.K.,2002. Growth modelling and yield prediction for sustainable forest management. In, pp.11-21.
    Vincenot, C.E., Giannino, F., Rietkerk, M. et al. Theoretical considerations on the combined use of SystemDynamics and individual-based modeling in ecology. Ecological Modelling,2011,222(1):210-218.
    Von Bertalanffy, L. Quantitative laws in metabolism and growth. The Quarterly Review of Biology,1957,32(3):217-231.
    Von Gadow, K.,Hui, G., Modelling forest development. Kluwer Academic Print on Demand,2001.
    Wang, M.,Rennolls, K. Tree diameter distribution modelling: introducing the logit logistic distribution.Canadian Journal of Forest Research,2005,35(6):1305-1313.
    Weiskittel, A.R., Hann, D.W., Kershaw, J. et al., Forest growth and yield modeling., Wiley Online Library,2011.
    Westoby, M.,Howell, J. Self-thinning: the effect of shading on glasshouse populations of silver beet (Betavulgaris). The Journal of Ecology,1981:359-365.
    Wikstr m, P. Effect of decision variable definition and data aggregation on a search process applied to asingle-tree simulator. Canadian Journal of Forest Research,2001,31(6):1057-1066.
    Yang, Y., Titus, S.J.,Huang, S. Modeling individual tree mortality for white spruce in Alberta. EcologicalModelling,2003,163(3):209-222.
    Yao, X., Titus, S.J.,MacDonald, S.E. A generalized logistic model of individual tree mortality for aspen,white spruce, and lodgepole pine in Alberta mixedwood forests. Canadian Journal of Forest Research,2001,31(2):283-291.
    Yin, X., Goudriaan, J., Lantinga, E.A. et al. A flexible sigmoid function of determinate growth. Annals ofBotany,2003,91(3):361-371.
    Yoda, K., Kira, T., H., O. et al. Self-thinning in overcrowed pure sands under cultivated and naturalconditions. Joural of Biology of Osaka City University,1963,(14):107-129.
    Zeide, B. Self-thinning and stand density. Forest Science,1991,37(2):517-523.
    Zeide, B. Thinning and growth: a full turnaround. Journal of Forestry,2001,99(1):20-25.
    Zeide, B. Density and the growth of even-aged stands. Forest Science,2002,48(4):743-754.
    Zeide, B. Optimal stand density: a solution. Canadian Journal of Forest Research,2004,34(4):846-854.
    Zhang, J., Oliver, W.W.,Ritchie, M.W. Effect of stand densities on stand dynamics in white fir (Abiesconcolor) forests in northeast California, USA. Forest ecology and management,2007,244(1-3):50-59.
    毕君,高洪真.林分材种出材量与立地质量及林分密度的关系.河北林业科技,1994,(1):11-14.
    陈少雄,李志辉,李天会等.不同初植密度的桉树人工林经济效益分析.林业科学研究,2008,(1):1-6.
    陈学群.不同密度30年生马尾松林生长特征与林分结构的研究.福建林业科技,1995,22:40-43.
    谌红辉,丁贵杰.马尾松造林密度效应研究.林业科学,2004,40(1):92-98.
    邓伦秀.杉木人工林林分密度效应及材种结构规律研究.中国林业科学研究院,北京,2010.
    杜纪山.落叶松林木枯损模型.林业科学,1999,35(2):45-49.
    段爱国,张建国,童书振等.杉木人工林林分直径结构动态变化及其密度效应的研究.林业科学研究,2004,17(2):178-184.
    付立华.杉木人工林最大密度线的研究.中国林业科学研究院,北京,2008.
    付小勇.云南松林分生长模型研究.昆明:西南林学院(硕士学位论文),2006.
    韩文轩,方精云.植物种群的自然稀疏规律——-3/2还是-4/3?北京大学学报:自然科学版,2009,44(4):661-668.
    黄旺志,赵剑平,王昌薇等.不同造林密度对杉木生长的影响.河南农业大学学报,1997,31(4):379-385.
    惠刚盈,罗云五.杉木中大径材成材机理的研究.林业科学研究,2000,13(2):177-181.
    贾俊平.统计学.清华大学出版社有限公司,2006.
    贾治邦.中国森林资源清查报告——第七次全国森林资源清查.中国林业出版社,北京,2009.
    李昌荣,项东云,周国福等.栽培密度与施肥对尾巨桉中大径材生长的影响.广西林业科学,2007,36(1):31-35.
    林开敏,俞新妥.29年生杉木不同造林密度生长进程分析研究.福建林学院学报,1996,16(4):293-298.
    林武星,叶功富,徐俊森等.木麻黄防护林不同造林密度综合评价研究.防护林科技,2004,(3):1-3.
    刘大海,李宁,晁阳. SPSS15.0统计分析从入门到精通.清华大学出版社,北京,2008.
    刘景芳,童书振.杉木林经营新技术.世界林业研究,1996,9:36-44.
    龙滕周,项东云,孟永庆等.桉树人工林栽培密度效应研究进展.广西林业科学,2008,37(2):71-75.
    鲁绍伟,刘凤芹,余新晓等.北京山区不同密度油松结构与功能研究.水土保持研究,2008,15(1):117-121.
    孟宪宇,测树学.中国林业出版社,北京,2006,
    盛炜彤,惠刚盈,张守攻等.杉木人工林优化栽培模式.中国科学技术出版社,北京,2004.
    盛炜彤,童书振,段爱国.杉木丰产栽培实用技术.中国林业出版社,北京,2011.
    盛炜彤.杉木人工林优化栽培模式.中国科学技术出版社,北京,2004.
    佟金权.不同地位指数不同密度杉木人工林生产力的比较.福建农林大学学报:自然科学版,2008,37(4):369-373.
    吴承祯,洪伟.杉木数量经营学引论.中国林业出版社,北京,2000.
    相聪伟,张建国,段爱国.山地杉木人工林优势木选择方法的研究.西北农林科技大学学报:自然科学版,2012,40(9):51-58.
    叶传界.马尾松大径材林分密度的探讨.林业勘察设计,2008,(1):58-60.
    张建国,段爱国,童书振等.冰冻雪压对杉木人工林近成熟林分危害调查.林业科学,2008,1:1.
    张建国,段爱国,童书振.林分直径结构模拟与预测研究概述.林业科学研究,2004,17(6):787-795.
    张建国,段爱国.理论生长方程与直径结构模型的研究.科学出版社,2004.
    张建国,李吉跃,彭祚登.人工造林技术概论.科学出版社,北京,2007.
    张雄清,雷渊才.北京山区天然栎林直径分布的研究.西北林学院学报,2009,24(6):1-5.