不同植物对土壤中敌草隆降解的影响及其差异性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨植物修复在农药污染土壤中的可能性,本文以黑麦草(Lolium multiflorum Lam.)、苦荬菜(Lxeris sonchifolia Hance)、绿豆(Vignarodiata Wilczek)为材料,通过盆栽试验和培养试验研究了三种植物对敌草隆降解的影响及其影响因素。主要研究结果如下:
     1、在含1-2 mg/kg敌草隆的土壤上种植黑麦草、苦荬菜、绿豆30-60d后,土壤中的敌草隆残留量降低了30.56%-72.21%,且种植绿豆后敌草隆降解效果好于种植黑麦草的效果,而种植苦荬菜的效果低于其他植物的效果。
     2、种植植物30-60 d后土壤微生物数量和微生物生物量碳均显著高于对照(P<0.05)。种植绿豆后土壤细菌、真菌和放线菌微生物数量最多,种植黑麦草的次之,种植苦荬菜的土壤微生物数量最少。
     3、在土壤中加入1-2 mg/kg敌草隆15 d后,根际土壤中敌草隆的残留量显著低于土体的残留量(P<0.05),并且,随着培养时间的推迟根际土壤中敌草隆的残留量不断减少而土壤微生物数量有增加的趋势。敌草隆在绿豆根际土壤中的残留量最少,黑麦草的次之、苦荬菜的最高。灭菌后根际土壤中敌草隆的残留量大幅度增加。在敌草隆降解过程中,敌草隆残留量与根际微生物数量的对数呈极显著负相关(P<0.01)。
     4、在含1 mg/kg敌草隆的土壤中加入根系分泌物15 d后,土壤中敌草隆的残留量显著低于对照。根系分泌物对土壤中敌草隆降解的影响与分泌物的组成有关。绿豆根系分泌物中的水溶性氮化合物和碳水化合物丰富、C/N较低,加入到含敌草隆的土壤中后,土壤微生物大量繁殖,使敌草隆的残留量显著低于其他植物的残留量。相反,苦荬菜分泌的碳水化合物和水溶性含氮化合物较少,分泌物对土壤微生物活动及敌草隆降解的作用较弱。
     5、虽然自然阳光照射条件下敌草隆的草酸-铁能加快敌草隆的降解,但是,在黑暗条件下在草酸-铁溶液中敌草隆没有发生明显的降解。
To explore phytoremediation potentiality of soils polluted by herbicide, ryegrass (Lolium multiflorum Lam.) , lxeris (Lxeris sonchifolia Hance) and mungbean (Vigna radiata Wilczek) were used for investigating the effects of plantation of these crops on the degradation of diuron by pot experiment method and incubation experiment method. The main results were as followed:
     1. After cultivation of these plants in soils contained 1-2 mg/kg diuron for 30-60 days, the residue of diuron reduced by 30.56%-72.21%. Moreover, the effect of planting mungbean on degradation of diuron was more significantly than that in ryegrass, while the effect in lxeris was not significantly as in ryegrass and mungbean.
     2. After planting for 30-60 days, the amount of both microorganism and microbial biomass C were higher than that in control soil notably (P<0.05 ) . The population of microorganisms was the most in mungbean planting soil, next in ryegrass planting soil, and the least in lxeris planting soil.
     3. After the addition of l-2mg/kg diuron to the soils for 15 days, the residues of diuron in rhizosphere soil were all less than that in bulk soil notably (P<0.05) , Furthermore, as time was delayed, the residue of diuron in rhizosphere soil was reducing constantly. However, the population of microorganism had an increasing trend. The residue of diuron in mungbean rhizosphere soil was the least, next was ryegrass, and the most was lxeris. Furthermore, the diuron residue increased sharply after sterilization. During the degradation process, there was a notably negative relationship between the logarithm of the microorganisms population and the residues of diuron in soil (P<0.01) .
     4. After the addition of root exudates to the soils contained 1 mg/kg diuron for fifteen days, the residue of diuron in soil was notably lower than that in the control. The effect of root exudates on degradation of diuron in soil was impacted by the components of the exudates. In the root exudates of mungbean, the contents of water-soluble nitrogen and carbohydrate were higher and C/N was lower. After adding the root exudates of mungbean into soil contained diuron, the microorganisms population increased in a large amount, which resulted in notably lower residue of diuron than that in soils contained lxeris and ryegrass root exudates . On the contrary, there were few carbohydrate and water-soluble nitrogen in lxeris root exudates, so its effect on microorganism activity and diuron degradation was insignificant.
     5. The photochemistry degradation of diuron in oxalic acid-Fe system could be observed in natural light condition, while the degradation of diuron could not detected without irradiation.
引文
鲍士旦.土壤农化分析.北京:中国农业出版社,2000.56-69
    陈鹤鑫,樊德方.农药残留分析规范.中国环境科学,1983,3(1):35-39
    陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996.237-380
    邓南圣.环境光化学.北京:化学工业出版社,2003.83-97
    樊德方,陈鹤鑫.农药残留分析与检测.上海:上海科学出版社,1982.97-156
    高甲友.铁-草酸配合物光解降解对氯苯酚的研究.水处理技术,2004,08:227-230
    高彦征,凌婉婷,朱利中.黑麦草对多环芳烃污染土壤的修复作用及机制.农业环境科学学报,2005,24(3):498-502
    国家环境保护总局.我国农药污染现状、存在问题及建议.环境保护,2001,6:23-24
    国家环境保护总局.HJ/T66-2004.土壤环境监测技术规范,北京:中国环境科学出版社,2005
    何忠效.生物化学实验技术.北京:化学工业出版社,2004.76-83
    胡峰.两种基因型小麦根际土壤生物动态及根际效应.土壤通报,1998,29(3):133-135
    胡枭,樊耀波,王敏健.影响有机污染物在土壤中的迁移、转化行为的因素.环境污染治理技术与设备,1998,(7)10:14-21
    旷远文,温达志,钟传文,等.根系分泌物及其在植物修复中的作用.植物生态学报,2003,27(5):709-707
    雷红涛,孙远明.蔬菜农药残留问题.中国食物与营养,2002,4(6):17-19
    黎晓峰.铝诱导黑麦的根尖分泌有机酸.广西农业生物科学,2002,21(2):78-82.
    李洪连.根际微生物多样性与棉花品种对黄萎病抗性关系研究.植物病理学,1998,28(4):341-345
    李元,杨济龙,王勋陵,等.紫外辐射增加对春小麦根际土壤微生物种群数量的影响.中国环境科学,1999,19(2):157-160
    刘峰,温学森.根系分泌物与根际微生物关系的研究进展.食品与药品,2006,8(10):37-40
    刘惠君,刘维屏.农药污染土壤的生物修复技术.环境污染治理技术与设备,2001,2(2):74-80
    刘世亮,骆永明,丁克强.土壤中有机污染物的植物修复研究进展.土壤,2003,35(3):187-192
    刘文娜,吴文良,王秀斌,等.不同土壤类型和农业用地方式对土壤微生物量C的影响.植物营养与肥料学报,2006,12(3):406-411
    刘芷宇.土壤-根系微区养分环境的研究概况.土壤学进展,1980,8(3):1-11
    宁春燕,赵建夫.农药污染土壤的生物修复技术介绍.农业环境科学学报,2001,20(6):473-474
    陶澎.不同作物根际环境对土壤重金属形态的影响.土壤学报,2001,38(1):54-59
    涂书新,孙锦荷.植物根系分泌物与根际营养关系评述.土壤与环境,2000,9(1):64-67
    王韧.我国农药工业现状及发展形势.化工技术经济,2006,24(5):11-14
    吴辉,郑师章.凤眼莲根分泌物对Enterobacter sp.nov.苯酚代谢的影响.应用生态学报,1993,4(1):78-84
    谢武明,胡勇有,刘焕彬,等.持久性有机污染物(POPs)的环境问题与研究进展.中国环境监测,2004,20(2):58-61
    邢维芹,骆永明,李立平.持久性有机污染物的根际修复及其研究方法土壤,2004,36(3):258-263
    于颖,周启星.黑土和棕壤中甲胺磷的根际降解脱毒模拟研究.应用生态学报,2005,16(9):1761-1764
    虞云龙,陈英旭,潘学冬.降解菌HD接种和非接种根围土壤中丁草胺的降解动力学研究.土壤学报,2002,39(4):575-582
    张福锁,曹一平.根际动态过程与植物营养.土壤学报,1992,29(3):239-250
    张福锁.环境胁迫与植物根际营养.北京:中国农业出版社,1998.19-22
    张培荣.农药储存中的稳定性分类.农资科技,1995,(6)5:28-32
    张淑香,高予勤.连作障碍与根际微生态研究Ⅱ根系分泌物与酚酸物质.应用生态学报,2000,11(1):152-156
    赵进英,辛暨华,郭英娜.固相萃取富集-高效液相色谱法分离检测水中3种苯脲除草剂.分析化学,2004,32(7):939-942
    赵玲,马永军.有机氯农药残留对土壤环境的影响.土壤,2001,33(6):309-311
    郑师章,乐毅全.凤眼莲及其根际微生物共同代谢和协同降酚机理的研究.应用生态学报,1994,5(4):403-408
    中国科学院南京土壤研究所.土壤微生物研究法.南京:科学出版社,1985.139-173
    周新文.二苯醚除草剂氟磺胺草醚、乙氧氟草醚对土壤微生物酶活性的影响:[学位论文].杭州:浙江大学,1998
    朱利中.土壤及地下水有机污染的化学与生物修复.环境科学进展,1999,7:56-71
    朱兆良,文启孝.农业生态系统中化肥氮的去向和氮素管理.南京:江苏科学技术出版社,1992.51-306
    Alkorta I,and Garbisu C.Phytoremediation of organic contaminants in soils.Bioresource Technology,2001,79:273-276
    Aprill W, and Smis R C. Evaluation of the use of prairie grasses for stimulating polycyelic aromatic hydrocarbon treatment in soil. Chemosphere, 1990, 2(8): 253- 265
    Banks M K, Govindaraju R S, Sehwab A P, et al. Phytoremediation of hydroearbon contaminated soils. Boca Raton: Chemical Rubber Company Press,1995. 360-366
    Binet P, Portal J M, and Leyval C. Dissipation of 3-6-ring polycyclic aromatic hyrdrocarbons in the rhizosphere of ryegrass. Soil Biology Biochemistry, 2000, 32: 2011- 2017
    Bogaerts P, Bohatier J, Bonnemoy F, et al. Fungal biodegradation of a phenylurea herbicide diuron structure and toxicity of metabolites. Pest Management Science, 2000, 5(6): 455- 462
    Bollag J M, Mert Z T, and Otjen L. Role of microorganisms in soil bioremediation. Bioremediation through rhizosphere technology. Washington, DC: Ameriean Chemical Society, 1994, 2-10
    Boyajian J G E and Carreira L H. Phytoremediation:a clean transition from laboratory to marketplace. Nature Biotechnology, 1997, 15:127-128
    Bozzi A, Yuranova T, Mielczarski J, et al. Abatement of oxalates catalyzed by Fe-silica structured surfaces via cycle carboxylate intermediated in photo-Eenton reactions, Chemical Communications, 2002, 2202- 2203.
    Carl J M and Patrick L B. Oxygen consumption in humic-colored waters by photochemical ferrous - ferric catalytic cycle. Environmental Science and Technology, 1981, 151: 1089-1095
    Cunningham K M, Goldberg M C, Weiner E R. Mechanisms for aqueous photolysis of adsorbed benzoate, oxalate, and succinate on iron oxyhydroxide (goethite) surfaces. Environmental Science and Technology, 1988,22: 1090-1097
    
    Darrah P R. Models of the rhizosphere. Plant and Soil, 1991, 138: 147- 158
    Daughney C J and Fein J B. Sorption of 2,4,6-TCP by Bacillus subtils. Environmental Science and Technology, 1998, 32: 749- 752
    Donnelly P K, Hegde R S and Fleteher J. Growth of PCB-degrading baeteria on compounds from photosynthetic plants. Chemosphere, 1994, 28: 981- 988
    Dougherty E J. Kinetics of photodegradation of 2, 3, 7, 8- tetrachlorodibenzo- p- dioxin: the oretical maximum rate of soil decontam ination. Chemosphere, 1991, 23(5): 589- 600
    Drakeford C E, CamPer N D and Riley M B. Fate of isoxaben in a containerized plant rhizosphere system. Chemosphere, 2003, 50: 1243- 1247
    
    Faust B C and Allen J. Photochemistry of aqueous iron -polycarboxylate complexes: roles in the chemistry of atmospheric and surface water. Environmental Science and Technology, 1993, 27: 2517-2522
    Fu H B, Quan X, Liu Z Y, et al. Photoinduced transformation of (- HCH) in the presence of dissolved organic matter and enhanced photoreactive activity of humate-coated (- Fe_2O_3). Langmuir, 2004, 20: 4867-4873
    Gilbert E S and Crowley D E. Plant compounds that induce polyehlorinated biphenyl biodegradation by Arthrobacter sp strain BIB. Applied and Environment Microbiology, 1997, 63: 1933-1938
    Gilbert E S, Crowley D E. Repeated application of carvone-induced bacteria to enhance biodegradation of polyblorianted biphenyl in soil. Applied and Environment Microbiology, 1998, 48: 528- 533
    Gleba D, Borisjuk N B, Borisjuk L B, et al. Use of Plantroots for Phytoremediation and molecular farming. Processing/Natural Academy of Sciences.USA, 1999,96: 5973-5977
    Glenn C, Miller. Photolysis of octachlorodibenzo-p-dioxin on soils: production of 2, 3, 7, 8- TCDD. Chemosphere, 1989,18(6): 1265-1274
    Gunther T, Domberger U and Fritsehe W. Effeets of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere, 1996, 33: 203- 215.
    Hale M G. Factors affecting root exudation and significance for the rhizosphere. In: Swedish Natural Science Research Council. Biologieal and chemical interactions in the rhizosphere. Stockholm, 1981,43-71
    
    Haller Stolp H. Puantitative estimation of root exudation of maize. Plants and soil 1985, 86: 207- 216
    Hess D and Warren F. The Herbicide Handbook of the Weed 8~(th) Edition. New York: Science Society of America Publishers, 2002. 159-161
    Hoffland E, Gunter R, Findenegg,et al. Solubilization of rock phosphate by rape 1. evaluation of the role of the nutrient uptake pattern. Plant and soil, 1989, 113: 155- 160
    Holden P A and Firestone M K. Soil microorganisms in soil cleanup:how can we improve our understanding. Environment Quality, 1997, 26: 32- 40
    Hollowell G P, Kuykendall L D, Gillette W K, et al. Genetic transfer and expression of plasmid in Sinorhizobium meliloti, Bradythizobium japonieum and belkanii. Soil Biology and Biochemistry, 1999,31(13): 1811-1819
    Ingrid kraffezyk, Trouenier K and Beringer H. Soluble root exudates of maize:influence of potassium supply rhizosphere microorganisms. Soil Biology and Biochemistry, 1984, 16(4): 315- 322
    Jeong J and Yoon J. Dual roles of CO~(2-) for degrading synthetic organic chemicals in the photo/ferrioxalate system, Water Research, 2004, 38: 3531- 3540
    John E C and Allan W. Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biology and Biochemistry, 1999, 3(1): 677- 686
    
    Jones K C. Contaminant trends in soil and crops. Environmental Pollution, 1991, 6(9): 311- 325
    Keith H and Oades J M. Input of carbon to soil from wheat plants. Soil Biol. Biochen, 1986,18: 445- 449
    Kidd H and James D R. The Agrochemicals Handbook. London: Royal Society of Chemistry Information Services, Cambridge, UK, 1991, 59- 73
    Lee Y, Jeong J, Lee C, et al. Influence of various reaction parameters on 2, 4- D removal in photo/ ferrioxalate / H_2O_2 process. Chemosphere, 2003, 51: 901- 912.
    Lei J, Li F, Liu C, et al. The photochemical bleaching for Orange I in the lepidocrocite-oxalate complex system. Acta Scientiae Circumstantiae, 2005, 25 (10) :1385-1390
    Liljeroth E, Beath E and Mathiasson I, et al. Root exudation and rhizoplane baeterial abundance of barley in relation to nitrogen fertilization and root growth. Plant and soil, 1990, 127: 81- 89
    Lopez-Avila V. Determination of sulfonglurea hethieides by eapillany electroehromaro grahy. Chromatographic Science Series, 1999, 37: 165-170
    Lorenz M G, Wackernagel W. Baeterial gene transfer by natural genetic transformation in the environment. Microbiological Reviews, 1994, 58: 563- 602
    
    Lynch J M and Whlpps J M. Substrale flow in the rhizosphere. Plant and soil, 1990, 129: 1-10
    Lynch J M. The potential for gene exchange between rhizosphere bacteria. Madras: Chapman and Hall, 1990, 172- 181
    Mergeay M, Springael D and Top E. Gene transfer in polluted soils. Madras: Chapman and Hall, 1990, 152-171
    Mersie, W C, Seyboid A, McNamee C, et al. 1999, Effectiveness of switchgrass filter strips in removing dissolved atrazine and metolachlor from runoff. Environmental Quality, 1999, 28: 816-821
    Mill T. Predicting photoreaction rates in surface waters. Chemosphere, 1999, 38(6): 1379-1390
    Newnan L A and Wang X. Remediation of triehloroethylene in an Artifical Apuifer with trees: A controlled field study. Environmental Science and Technology, 1999, 33: 2257- 2265
    Nichol T D. Rhizosphere microbial populations in contaminated soils. Water,Air and Soil Pollution, 1997,95(14): 165-176
    
    Nye P H. Acid-base changes in the rhizosphere.In advance in Plant Nutrition, 1985,12:129-153
    Reilley K A, Banks M K and Schwab A P. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. Environmental Quality, 1996, 2(5): 212-219
    Richard G, ZeepBruce C, Faust J H. Hydroxyl radical formation in aqueous (pH 3- 8) of Iron with hydrogen peroxide the photo- fenton reaction. Environmental Science and Technology, 1995, 26(2): 313-319
    Rouatt J W and H Katznelson. A study of the baeteria on the roots surface and in the rhizosphere soil of crop plants. Applied Biochemistry and Biotechnology, 1996, 24: 164-171
    Rovira A D. Note on terminology. Origin,nature and in the nomenelation of the organie materials in the rhizosphere. The soil root interface Acadenic Press London New York, 1979, 1- 4
    Rugh C L. Development of transgenic yellow poplar for met-cury phytoremediation. Nature Biotechnology, 1998, 16(10): 925-928
    Ryan K and Mary K F. Phenanthrene-Degrader community dynam ics in rhizosphere soil from a common annual grass. Environmental Quality, 2000, 2(9): 584- 592
    Sabine H, Edward T, Abdellah Y, et al. Dependence of accelerated degradation of atrazine on soil pH in france and Canadian soils. Soil, Biology Bioehemistry, 2000, 32: 615- 625
    Saeki Y T and Yamakawa M. Effects of root exudates of genotype soybean on growth and chemotaxis of bradyrhizobhtm japonicum. Soil Science and Plant Nutrient, 1996, 42: 413- 417
    Sarand I, Timonen S, Nunniaho-Lassila EL, et al, Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in scots pine myeorrhizospheres developed on petroleum contaminated soil. Microbial Ecology, 1998, 27(2): 115- 126
    Schoonen M A A and Xu Y, Strongin D R. An introduction to geocatalysis. Geochemistry Exploration, 1998,62:201-215
    Schwab A P and Banks M K. Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. Bioremediation through rhizosphere technology, 1994, (1): 132- 141
    Sehnoor J L, Lieht L A, Mccutcheon S C, et al. Phytoremediation of organie and nutrient contaminants. Environ. Sei. Technol, 1995,29: 318 A
    Semenov A M, Van-Bruggen A H C,Zelenev V V. Moving waves of baeterial populations and total organic carbon along roots of wheat. Microbial Ecology, 1999, 37(2): 116-128
    Shen H, Yan X L, Zhao M, et al. Exudation of organic acids in common bean as related to mobilization of aluminum- and iron- bound phosphates, Environmental and Experimental Botany, 2002, 48:1- 9
    Siciliano S D, Fortin N and Mihoe A. Selection of specific endophytic baeterial genotypes by Plants in response to soil contamination. Applied and Environment Microbiology, 2001,67: 2469- 2475
    Spurlock F and Biggar J W. Thermodynamics of organic chemical partition in soil nonlinear partition of substituted phenylureas from aqueous solution. Environment.Science. Technology, 1994, 2(8): 996- 1002
    Stoeekel D M, Mudd E C and Entry J A. Degradation of persistent herbieides in riparian wetlands. Phytoremediation of soils and water eontaminants. Washington, DC :Ameriean Chemieal Soeiety, 1997,114-132
    Troiano J, Weaver D, Marade J, et al. Summary of well water sampling in California to detect pesticide residues resulting from nonpoint-source applications. Environmental Quality, 2001, 30: 448- 459
    Troxler J, Aselvandre P, Zala M, et al. Conjugative transfer of chromosomal genes between fluoreseent pseudomonads in the rhizosphere of wheat. Appl.Environ.Microbial. 1997,63(1): 213-219
    Van Elas J D and Trevors JT. Plasmid transfer to indigenous bacteria in soil and rhizosphere: Madras: Chapman and Hall. 1990. 188-199
    Vander Meer J R., De Vos W M, Harayama S, et al. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiological Reviews, 1990, 56: 677- 694
    Vincent R H and Glenn C M. Depth dependence of direct and indirect photolysis on soil surfaces. Agricultural and Food Chemistry, 1990, 38: 913- 918
    Wagner S C and Zablotowicz R M. Utilization of plant material for remediation of herbieide contaminated soils .Phytoremediation of soil and water contaminants. Washington, D C: Ameriean Chemieal Society, 1997.65- 76
    Waite T D. Challenges and opportunities in the use of iron in water and wastewater treatment. Reviews in Environmental Science and Biotechnology, 2002, 1:9- 15
    Walton B A and T A Anderson. Mierobial degradation of triehloroethylene in the rhizosphere. Potential application to biological remediation of waste site. Applied and Environment Microbiology, 1990, 56:1012-1016
    Yue G Z and Jurg H. Formation of hydrogen and oxalic acid in atmospheric water by photolysis of iron-oxalate complexes. Environmental Science and Technology, 1992,26(5): 1014-1022
    Zepp N,Lee Wolfe J A and Gordon G L.Baughman dynamics of 2,4-D esters in surface waters:hydrolysis,photolysis and vaporization.Environmental Science and Technology,1975,9:1144-1150
    Zheng S J,Feng J,Ma,J F,et al.Aluminum resistance in buckwheatl I.Al- induced specific secretion of oxalic acid from root tips.Plant Physiology and Biochemistry,1998,117:745-751
    Zou Y G.Kinetics of photochemical/chemical cycling of iron coupled with organic substances in cloud and fog droplets,Geochemical Society and the Meteoritical Society,1995,59:3123-3130