N-乙酰氨基葡萄糖苷酶NagY1及其对伴放线放线杆菌生物膜作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物膜(biofilm)是由细菌和其分泌的胞外基质在物体表面形成的高度组织化的多细胞结构。一旦形成生物膜,细菌将具有极强的抗生素耐药性(比浮游细菌高100~1000倍)和逃避机体免疫系统攻击的能力。生物膜无处不在,在很多方面给人类生活带来严重的影响。根据美国NIH的调查公告,80%以上的细菌性感染与生物膜有关。由于传统的抗菌药物对细菌生物膜几乎没有作用,因此,如何防治细菌生物膜已成为人类面临的巨大挑战。
     牙菌斑生物膜是牙周病的始动因素,在牙菌斑生物膜的刺激下,牙周组织细胞分泌的细胞因子在牙槽骨吸收及牙周软组织破坏的过程中发挥着重要作用。然而,目前绝大多数研究集中在浮游细菌对牙周组织细胞毒性的研究,而关于细菌生物膜与牙周病的研究极少。胞外多糖是细菌生物膜的主要成分,它决定了生物膜的结构和功能。最新研究表明,伴放线放线杆菌是侵袭性牙周炎的主要致病菌,它产生的β-1,6-N-乙酰葡聚糖胺是其生物膜的主要成份,在生物膜形成和致病性方面发挥着重要作用。因此,本论文旨在从海洋微生物中筛选降解β-1,6-N-乙酰葡聚糖胺的多糖水解酶,并研究其抗牙菌斑细菌生物膜的作用。
     以β-1,6-N-乙酰葡聚糖胺为唯一碳源的选择性培养基,从黄海海泥样品中筛选到一株高产N-乙酰葡萄糖苷酶的菌株。经16S rRNA技术鉴定,该菌株被鉴定为假交替单胞菌属,命名为假交替单胞菌(Pseudoalteromonas sp.)QY403。
     利用硫酸铵沉淀、离子交换层析和凝胶过滤层析技术,从菌株QY403的发酵液上清中分离纯化到一种N-乙酰葡萄糖苷酶NagY1。该酶的分子量为40.2 kD;酶反应的最适pH为6.0,pH稳定范围为5.0~7.2;最适反应温度为40℃,酶的活性在0~40℃之间基本稳定;Mg~(2+)、Ca~(2+)、Mn~(2+)、Ba~(2+)、Fe~(2+)、Fe~(3+)、EDTA对于酶的活性有促进作用,而Cu~(2+)、Ni~(2+)对于酶的活性有抑制作用,SDS可以使酶完全失去活性。酶的底物专一性分析结果表明该酶能特异性降解β-1,6-N-乙酰葡聚糖胺。
     在上述研究的基础上,本文进一步研究了N-乙酰葡萄糖苷酶NagY1的抗A.a生物膜作用,并且从细胞因子产生的角度观察了NagY1对A.a致病性的影响。首先,利用A.a的体外生物膜模型,评价了不同浓度的NagY1对A.a生物膜形成的抑制作用和对已形成生物膜的清除作用。结果显示,NagY1对A.a生物膜形成具有显著的抑制作用(>50%),并且对已形成生物膜的清除率为74.5%(P<0.05)。其次,研究了A.a生物膜刺激对人牙周韧带细胞产生细胞因子RANKL、IL-6、IL-1β、IL-8、IFN-γ的影响以及N-乙酰氨基葡萄糖苷酶降解A.a生物膜对牙周韧带细胞产生细胞因子的影响。将A.a生物膜与原代培养的人牙周韧带细胞共培养0-9h,用实时荧光定量PCR技术检测人牙周韧带细胞的细胞因子mRNA的表达量,分别与浮游A.a刺激组以及空白对照组进行比较分析。实验结果显示,A.a生物膜和浮游菌刺激均可以提高人牙周韧带细胞的IL-1β、IL-8、IFN-γmRNA表达量;A.a生物膜比A.a浮游菌具有更强地刺激人牙周韧带细胞产生细胞因子RANKL、IL-6、IL-1β、IL-8、IFN-γmRNA的作用(P<0.05)。N-乙酰葡萄糖苷酶NagY1降解A.a生物膜,使A.a生物膜刺激细胞人牙周韧带细胞产生细胞因子mRNA表达量较明显降低。
     综上所述,本论文筛选得到一株高产N-乙酰氨基葡萄糖苷酶的海洋交替假单胞菌,并从其发酵上清液中成功地分离纯化了一种N-乙酰氨基葡萄糖苷酶NagY1;NagY1可以有效地抑制牙周病的常见致病菌A.a的生物膜形成和清除其已形成的生物膜;并且NagY1能显著地降低A.a生物膜引起的人牙周韧带细胞细胞因子mRNA表达量。本研究结果将为NagY1的临床应用提供理论基础,为牙周病等细菌生物膜相关疾病的防治开辟新途径。
Biofilm is a height organized multicellular structure which consisted with bacterium and its secretory extracellular matrix and formed on the surface of object. Once the biofilm formed,the bacteria will become more resistant to antibiotic(100~1000 times higher than planktonic cells) and to the aggressive attack of immune system.The common existence of biofilm gives great trouble to the human beings life in many ways.According to the public announcement of NIH of America,more than 80%of bacterial infection concerned with biofilm.Because of the nearly ineffective of traditional antibacterials to the bacterial biofilm,thus,how to get rid of biofilm becomes a great challenge of human beings.
     Biofilm of dental plaque is the initiating agent of periodontal disease.At the stimulus of biofilm of dental plaque,the cytokine of periodontal tissue secretory plays an important role in the process of frontal resorption and periodontal histoclasia. However,the present majority study only focused on the cytotoxic of periodontal tissue induced by bacteriophankton.There's very few study at the role of bacterial biofilm to participate in periodontal disease.Extracellular polysaccharide is the major component of bacterial biofilm and determines the structure and function of biofilm. Actinobacillus actinomycetemcomitans(A.α) is the main pathogenic bacterium of invasive periodontitis.β-1,6-N-acetylglucosamine produced by A.αplays an important role in the structure and function of the biofilm.Therefore,this study wants to findβ-1,6-N-acetylglucosaminidase from ocean microorganisms and to study it's effects on A.αbiofilm.
     A marine bacterium strain QY403,which has a high yield ofβ-1,6-N- acetylglucosaminidase,is isolated from yellow sea mud sample using medium containingβ-1,6-N-acetylglucosamine as the sole carbon source.Strain QY403 is identified to belong to genus Pseudoalteromonas using molecular phylogenetic analysis based on the partial 16S rRNA gene sequence.
     Aβ-1,6-N-acetylglucosaminidase is purified from culture supernatants of strain QY403 after ammonium sulfate precipitation,ion exchange chromatography and gel filtration chromatography procedure.Molecular weight of this enzyme,which is named by NagY1,is 40.2 kDa.NagY1 is most active at 40℃and at pH6.0 and is stable below 40℃and over a range of pH5.0-7.2.Mg~(2+),Ca~(2+),Mn~(2+),Ba~(2+),Fe~(2+), Fe~(3+) and EDTA have the promotive effect on the enzymatic activity,while Cu~(2+) and Ni~(2+) have depressant effect,SDS has the deactivation effect.Substrate specificity analytic result of this enzyme showes that it only degradsβ-1,6-N-acetylglucosamine.
     On the foundation of the previous research,the effects of NagY1 on Actinobacillus actinomycetemcomitans(A.α) biofilm and cytokine production are investigated.At first,using the extra biofilm model of A.αto appraise the inhibition effect of different concentration of NagY1 on A.αbiofilm formation and detachment effect on the existed A.αbiofilm.The results show a prominent inhibition effect of NagY1 on A.αbiofilm formation(>50%) and a detachment rate to the existed A.αbiofilm of 74.5%(P<0.05).Then the effects of A.αbiofilm and A.αbiofilm degraded by NagY1 on the cytogenic of RANKL,IL-6,IL-1β,IL-8,IFN-γfrom the human periodontal ligament cells are investigated.The results show that both of biofilm cells and planktonic cells of A.αcan enhance the expression of IL-1β,IL-8 and IFN-γin human periodontal ligmament cells.The A.αbiofilm has more strong stimulation effect on cytogenic of RANKL,IL-6,IL-1β,IL-8 and IFN-γthan planktonic cells (P<0.05).NagY1 can degrade A.αbiofilm and decrease comparatively cytokine mRNA expression.
     In summary,this study isolates one marine strain Pseudoalteromonas sp.QY403, and purified aβ-1,6-N-acetylglucosaminidase NagY1 from culture supernatants. NagY1 can effectively restrain A.αbiofilm formation and detach the existed biofilm of periodontal disease.Further more,NagY1 can remarkably decrease the cytogenic mRNA expression of human periodontal ligament cell.The results of this study can give rationale to the clinical use of NagY1,and open up a new approach to the prevention and cure of bacterium biofilm related periodontal disease.
引文
[1]Teixeira FB,Sano CL,Gomes BP,Zaia AA,Ferraz CC,Sottza-Filho FJ.A preliminary in vitro st-udy of the incidence and position of the root canal isthmus in maxillary-and mandibular first molars.Int Endod J.2003 Apr;36(4):276-80
    [2]KinaneDF,彤ssioMP,WalkerKF,etal.Bactememiafollowing periodontal precedures[J].J Clin Periodontol,2005,32(7):708-713
    [3]Padilla C,bb0B O,Huert E,et al.Periodontal pathogens in atheromatous plaque isolated from patients with chronic periodontitis[J].J Periodontal Res,2006,41(4):350-353
    [4]Ford PJ,Gemmell E,Chart A,et al.Inflammation,heat shock proteins and periodontal pathogens in atherosderosis:an immunohiatologie study[J].Oral Mierobiol Immunol,2006,21(4):206-211
    [5]Mealey BL,Oates TW.Diabetes mellitua and periodontal diseas[J].J Periodontol,2006,77(8):1289-1303.
    [6]NJ,Da Silva I,Ipinsa J,et al.Periodontal therapy reduces the rate ofpreterm low birth weight in women with pregnancy-associated gingivitis[J].J Periodontol,2005,76(11Suppl):2144-2153
    [7]侯海玲,孟焕新,胡伏莲,等.牙周基础治疗对口腔幽门螺杆菌的影喇及其基因型关系的研究[J].实用口腔医学杂志,2004,20(3):353-357
    [8]张岱尊,钟德钰.类风湿性关节炎与牙周病的关系[J].国外医学:口腔医学分册,2004,31(4):262-264
    [9]徐全臣,钟德钰.绝经后妇女服用雌激素对牙周病的的影响[J].中华老年口腔医学杂志,2005,3(1):47-49.
    [10]Costerton JW,Lewandowski Z,DeBeer D,Caldwell D,Korber D,James G.Biofilms,the customized microniche.J Bacteriol,1994,176:2137-2142
    [11]Wren,B.Bacterial biofilms.Trends Microbiol,1998,6:6
    [12]Coserton JW,Lewandowski Z,Caldwell DE,Korber DR,Lappin-Scott HM.Microbial biofilms. Annu Rev Microbiol, 1995, 49: 711-745
    [13] Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol, 2002, 56: 187-209
    [14] Stickler D. Biofilms. Curr Opin Microbiol, 1999,2: 270-275
    [15] Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711-45
    [16] Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. Biofilms, the customized microniche. J Bacteriol. 1994 Apr; 176(8):2137-42. Review
    [17] Wimpenny J, Manz W, Szewzyk U. Heterogeneity in biofilms [J] .FEMS Microbiol Rev , 2000 , 24 (1) : 661 - 671
    [18] Helmerhorst EJ , Hodgson Rvant Hof W, et al. The effects of histatin-derived basic antimicrobial peptides on oral biofilms [J]. J Dent Res, 1999, 78 (6): 1245 - 50
    [19] Sutherland IW. The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol, 2001, 9:222-227
    [20] Branda SS, Vik A, Lisa F, Roberto K. Biofilms: the matrix revisited. Trends Microbiol, 2005, 13: 20-26
    [21] Lawrence JR, Swerhone GD, Leppard GG, Araki T, Zhang X, West MM, Hitchcock AP. Scanning transmission X-Ray, laser scanning, and transmission electron microscopy Mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol, 2003, 69: 5543-5554
    [22] Friedman L, Kolter R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol, 2004, 186: 4457-4465
    [23] Rediske AM, Roeder BL, Brown MK, Nelson JL, Robison RL, Draper DO, Schaalje GB, Robi -son RA, Pitt WG. Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob Agents Ch, 2000, 44: 771-772
    [24] Stoodley P, Wilson S, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW. Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol, 2001,67:5608-5613
    [25] Hunt SM, Werner EM, Huang B, Hamilton MA, Stewart PS. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol, 2004,70: 7418-7425
    [26] Picioreanu C, van Loosdrecht MC, Heijnen JJ. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng, 2001, 72: 205-218
    [27] Xavier JD, Picioreanu C, van Loosdrecht MC. A general description of detachment for multidimensional modelling of biofilms. Biotechnol Bioeng, 2005, 91: 651-669
    [28] Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett, 1998, 167: 179-184
    [29] Lee SF, Li YH, Bowden GH. Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect Immun, 1996, 64:1035-1038
    [30] Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol, 2002, 29:361-367
    [31] Parsek MR, Greenberg, EP. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol, 2005,13: 27-33
    [32] Kjelleberg S, Molin S. Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol, 2002, 5: 254-258
    [33] Spoering AL, Gilmore MS. Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 2005, 11:513-518
    [34] Teresa R. de Kievit, Barbara HI. Bacterial quorum sensing in pathogenic relationships. Infect Immun, 2000, 68: 4839-4849
    [35] Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S. Quorum sensing-controlled biofilm development in Serratia liquefaciens MGl. J Bacteriol, 2004, 186: 692-698
    [36] Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum sensing in Staphylococcus aureus Biofilms. J Bacteriol, 2004, 186: 1838-1850
    [37] Marketon MM, Glenn SA, Eberhard A, Gonzalez JE. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol, 2003,185: 325-331
    [38] Suntharalingam, Prashanth; Cvitkovitch, Dennis G. Quorum sensing in streptococcal biofilm formation. Trends Microbiol, 2005, 13: 36
    [39] Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol, 2002, 68: 1754-9175
    [40] Tomlin KL, Malott RJ, Ramage G, Storey DG, Sokol PA, Ceri H. Quorum-Sensing Mutations Affect Attachment and Stability of Burkholderia cenocepacia Biofilms. Appl Environ Microbiol, 2005, 71: 5208-5218
    [41] Greenberg E P. Quorum sensing in gram-negative bacteria. A SM News, 1997,63: 371
    [42] Hastings J W .et al. Quorum sensing: The explanation of a curious phenomenon reveals a common characteristic of bacteria. J Bacteriol, 1999, 181: 2667
    [43] Stroeher UH, Paton AW , Ogunniyi AD, et al. Mutation of luxS of Streptococcus pneumoniae acts virulence in a mouse model[J]. Infect Immun, 2003,71(6): 3206-3212
    [44] MerrittJ, QiF, Goodman SD, etal. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun, 2003, 71(4): 1972-1979
    [45] Budhani RK, Struthers JK. Interaction of Streptococcus pneumoniae and Moraxella catarrhalis: investigation of the indirect pathogenic role of β -lactamase-producing moraxellae by use of a continuous-culture biofilm system. Antimicrob Agents Ch, 1998, 42: 2521-2526
    [46] Hoyle BD, Alcantara J, Costerton JW. Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Ch, 1992,36: 2054-2056
    [47] Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Ch, 2000, 44: 1818-1824
    [48] Zheng Z, Stewart PS. Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Ch, 2002,46: 900-903
    [49] Jefferson KK, Goldmann DA, Pier GB. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Ch, 2005, 49: 2467-2473
    [50] Suci PA, Mittelman MW, Yu FP, Geesey GG. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Ch, 1994,38: 2125-2133
    [51] Van Delden C, Pesci EC, Pearson JP, Iglewski BH. Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun, 1998,66:4499-4502
    [52] Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect, 2003,5:1213-1219
    [53] Xu KD, McFeters GA, Stewart PS. Biofilm resistance to antimicrobial agents. Microbiology, 2000, 146:547-549
    [54] Sauer K, Camper AK. Characterization of Phenotypic Changes in Pseudomonas putida in Response to Surface2Associated Growth [J]. J Bacteriol, 2001,183 (22): 6579 - 89
    [55] Vandevivere P, Kirchman DL. Attachment Stimulates Exopolysaccharide Synthesis by a Bacterium [J]. Appl Environ Microbiol, 1993, 59 (10): 3280 - 86
    [56] Davies DG, Chakrabarty AM, Geesey GG. Exopolysaccharide production in biofilms : substratum activation of alginate gene expression by Pseudomonas aeruginosa [J] . Appl Environ Microbiol, 1993,59 (4): 1181 - 86
    [57] Costerton JW, Lewandowski Z , Caldwell DE , et al. Microbial biofilms [J] . Annu Rev Microbiol, 1995 , 49 :711 - 745
    [58] Belas R , Simon M , Silverman M. Regulation of lateral flagella gene transcription in Vbnoiparahaem olyticus [J]. J Bacteriol, 1986,167(1): 210 - 221
    [59] Wexler DL , Hudson MC , Burne RA. Streptococcus mutans fructosyl transferase and glucosyltransferase operon fusion strains in continuous culture [J]. Infect Immun, 1993,61 (1) 259-126
    [60] Nishihara T, Koseki T. Microbial etiology of periodontitis[J]. Periodontol 2000. 2004. 36: 14-26
    [61] Wilson M, Henderson B. Virulence factors of Actinobacillus actinomycetemcom -itans relevant to the pathogenesis of inflammatory periodontal diseases. FEMS Microbiol Rev, 1995,17:365-379
    [62] Meyer DH, Fives-Taylor PM. The role of Actinobacillus actinomycetemcom -itans in the pathogenesis of periodontal disease. Trends Microbiol, 1997, 6: 224-228
    [63] Fives-Taylor PM, Meyer DH, Mintz KP, Brissette C. Virulence factors of Actino -bacillus actinomycetemcomitans. Periodontology, 1999 ,20:136-167
    [64] Fine, D. H., D. Furgang, J. B. Kaplan, J. Charlesworth, and D. H. Figurski. Tenacious adhesion of Actinobacillus actinomycetemcomitans strain CU1000 to salivary-coated hydroxyapatite. Arch. Oral Biol,1999, 44:1063-1076
    [65] Fine, D. H., D. Furgang, H. C. Schreiner, P. Goncharoff, J. Charlesworth, G. Ghazwan, P. Fitzgerald-Bocarsly, and D. H. Figurski. Phenotypic variation in Actinobacillus actinom -ycetemcomitans during laboratory growth: implications for virulence. Microbiology, 1999,145:1335-1347
    [66] Haase, E. M., J. L. Zmuda, and F. A. Scannapieco. 1999. Identification and molecular analysis of rough-colony-specific outer membrane proteins of Actinobacillus actinomycetemcomitans. Infect. Immun. 67:2901-2908
    [67]Inouye,T.,H.Ohta,S.Kokeguchi,K.Fukui,and K.Kato.Colonial variation and fimb -iation of Actinobacillus actinomycetemcomitans.FEMS.Microbiol Lett,1990,69:13-18
    [68]Kachlany,S.C.,P.J.Planet,M.K.Bhattacharjee,E.Kollia,R.DeSalle,D.H.Fine,and D.H.Figurski.Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in Bacteria and A rchea.J.Bacteriol,2000,182:6169-6176
    [69]Kachlany,S.C.,P.J.Planet,R.DeSalle,D.H.Fine,D.H.Figurski,and J.B.Kaplan.flp-1,first representative of a new pilin gene subfamily,is required for nonspecific adherence of Actinobacillus actinomycetemcomitans.Mol.Microbiol,2001,40:542-554
    [70]Kagermeier,A.S.,and J.London.Actinobacillus actinomycetemcomitans strains Y4 and N27adhere to hydroxyapatite by distinctive mechanisms.Infect.Immun,1985,47:654-658
    [71]King,E.O.,and H.W.Tatum.Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus.J.Infect.Dis,1962,111:85-94
    [72]Rosan,B.,J.Slots,R.J.Lamont,M.A.Listgarten,and G.M.Nelson.Actinobacillus actinomycetemcomitans fimbriae.Oral Microbiol.Immunol,1988,3:58-63
    [73]Slots,J.,H.S.Reynolds,and R.J.Genco..Actinobacillus actinomycetemcomitans in human periodontal disease:a cross-sectional microbiological investigation.Infect.Immun,1980,29:1013-1020
    [74]Fine,D.H.,D.Furgang,and M.L.Barnett.Comparative antimicrobial activities of antiseptic mouthrinses against isogenic planktonic and biofilm forms of Actinobacillus actinomycetemcomitans.J.Clin.Periodontol,2001,28:697-700
    [75]Fine,D.H.,P.Goncharoff,H.Schreiner,K.M.Chang,D.Furgang,and D.H.Figurski.Colo -nization and persistence of rough and smooth colony variants ofActinobacillus actinomycetemcomitans in the mouths of rats.Arch.Oral Biol,2001,46:1065-1078
    [76]Kaplan,J.B.,and D.H.Fine.Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria.Appl.Environ.Microbioll 2002.68:4943-4950
    [77] Kaplan JB, Fine DH.Biofilm dispersal of Neisseria subflava and other phylogenetically diver -se oral bacteria.Appl Environ Microbiol. 2002 Oct;68(10):4943-4950
    [78] Scannapieco FA, Kornman KS, Coykendall AL. Observation of fimbriae and flagella in dispersed subgingival dental plaque and fresh bacterial isolates from periodontal disease. J Periodontal Res. 1983 Nov;18(6):620-633.
    [79] Paster BJ, Boches SK, Galvin JL, et al. Bacterial diversity in human subgingival plaque[J]. J Bacteriol, 2001, 183(12): 3770-3783
    [80] Kachlany SC, Planet PJ, Desalle R, Fine DH, Figurski DH, Kaplan JB.flp-1, the first repres -entative of a new pilin gene subfamily, is required for non-specific adherence of Actinoba-cillus actinomycetemcomitans. Mol Microbiol, 2001 May;40(3):542-554
    [81] Inoue T, Tanimoto I, Ohta H, Kato K, Murayama Y, Fukui K.Molecular characterization of low-molecular-weight component protein, Flp, in Actinobacillus actinomycetemcomitans fimbriae.Microbiol Immunol, 1998;42(4):253-258
    [82] Inoue T, Ohta H, Tanimoto I, Shingaki R, Fukui K. Heterogeneous post-translational modification of Actinobacillus actinomycetemcomitans fimbrillin. Microbiol Immunol, 2000; 44 (8): 715-718
    [83] Wang, X.,J. F. Preston III, and T. Romeo. The pgaABCD Locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J. Bacteriol, 2004,186:2724-2734
    [84] Joyce, J. G., C. Abeygunawardana, Q. Xu, J. C. Cook. Isolation, structural charac -terization, and immunological evaluation of a high-molecular-weight exopolysa-ccharide from Staphylococcus aureus. Carbohydr. Res. 2003. 338:903-922
    [85] Fine, D. H., D. Furgang, H. C. Schreiner, P. Goncharoff, J. Charlesworth, G.Ghazwan, P. Fitzgerald-Bocarsly, and D. H. Figurski. Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth.implications for virulence. Microbiology, 1999,145:1335-1347
    [86] Holt, S. C., A. C. R. Tanner, and S. S. Socransky. Morphology and ultrastructure of oral strains of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus. Infect. Immun, 1980,30:588-600
    [87] Meyer, D. H., and P. M. Fives-Taylor. Evidence that extracellular components function in adherence of Actinobacillus actinomycetemcomitans to epithelial cells. Infect. Immun, 1993,.61:4933-4936
    [88] Duda M, Skoczek A, Kowal B. et al. Morphology of root canal cross-sections of resected roots of first and second lower molars. Ann UnivMariae Curie Sklodowska, 2004, 59(1): 54-60
    [89] Kim S. Pecora G, Rubinstein RA. Color atlas of microslgery in endodontic US: WB Saunders Company, 2001: 105-114
    [90] Baldassari-Cruz LA, Lilly JP, Rivera EM. The influence of dental operating microscope in locating the mesiolingual canal orifice. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 93(2): 190-194
    [91] Suzuki T, Kobayashi M. Isatau K, et al. Mechanisms involved in apoptosis of human macrophages induced by lipopolysaccharide from Actinobacillus actinomycetemcomitans in the presence of cycloheximide. 1 nfect lmmun, 2004,72(4): 1856-1865
    [92] YamanoR, OharaM, Nishikubo S, etal. Prevalence of cytolethal distending toxin production in periodontopathogenic bacteria. J Clin Microbiol, 2003, 41(4): 1391-1398
    [93] Tan KS, Song KP, Ong G. Cytolethal distending toxin of Actinobacillus actinomycetemcomitans. Occurrence and association with periodontal disease. J Pefiodontal Res, 2002, 37(4): 268-272
    [94] Fabris AS, DiRienzo JM, Wikstrom M, et al. Oral. Detection of cytolethal distending toxin activity and cdt genes in Actinobacillus actinomycetemcomitans isolates from geographically diverse populations. Microbiol Immunol, 2002, 17(4): 231-238
    [95] Sugai M, Kawamoto T, Peres SY, et al. The cell cycle-specific growth-inhibitory factor produced by Actinobacillus actinomycetemcomitans is a cytolethal distending toxin. Infect Immun, 1998,66(10): 5008-5019
    [96] Shenker BJ, Besack D, McKay T, et al. Actinobacillus actinomycetemcomitans cytolethal distending toxin (Cdt): evidence that the holotoxin is composed of three subunits: CdtA, CdtB, and CdtC. J Immunol, 2004,172( 1 ):410 -417
    [97] Kaplan JB, Schreiner HC, Furgang D, et al. Population structure and genetic diversity of Actinobacillus actinomycetemcomitans strains isolated from localized juvenile periodontitis patients. J Clin Microbiol, 2002, 40(4): 1181-1187
    [98] Henderson B, Nair SP, Ward JM, et al. Molecular pathogenicity of the oral opportunistic pathogen Actinobacillus actinomycetemcomitans. Annu Rev Microbiol.2003, 57: 29-55
    [99] Kachlany SC, Planet PJ, Bhattacharjee MK, et al. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J Bacteriol, 2000,182(21): 6169-6176
    [100] Maira-Litran, T, A. Kropec, C. Abeygunawardana,. 2002. Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide, Infect. Immun, 70:4433-4440
    [101] Meikle MC. Heath JK, Reynolds JJ. Advances in understanding cell interactions in tissue resorption. Relevance to the pathogenesis of periodontal diseases and a new hypothesis. J Oral Patho, 1986,15(5) :239-50
    [102] Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin Ligand is a cytokine that regulates osteoelast differentiation and activation[J]. Cell, 1998, 93(2): 165-176
    [103] akashima T. Protein expression and function difference of membrane bound and soluble receptor activator of NF-KB ligan d: modulation of expression by osteotmpic factors an d cytokines[J]. Biochem Biophys Res Commun, 2000, 275(3): 768-775
    [104] Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligan d enhance T-cell growth and dendritic-cellfunction[J]. Nature, 1997, 390(6656): 175-179
    [105] Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density [J]. Cell, 1997, 89(2): 309-319
    [106] Burgess TL, Qian YX, Kaufman S, et al. The ligand for osteoprotegerin(OPGL) directly activates mature osteoclasts[J]. J Cell Biol, 1999. 145(3): 527-538
    [107] Yong YK, Yoshida H , Sarosui I, et al. OPGL is a key regulatorof osteoclastogenesis, lymphocyte development and lymphnodeorganogenesis[J].Nature, 1999,397(6717): 315-323
    [108] Dougall WC, Glaccum M , ChatTier K, et al. RANK is essentialfor osteoclast and lymphonode development[J]. Genes Dev, 199,13(18): 2412-2424
    [109] Bucay N , SarosiI. Dunstan CR, et al .OPG-deficientmice develop early onset osteoporosis and arterial calcification [J]. Genes Dev, 1998,12(9): 1260-1268
    [110] Liu D, Xu JK, Figliomeni L, et al. Expression of RANKL andOPG mRNA in periodontal disease: possible involvement in bone destruction[J]. Int J Mol Med, 2003, 11: 17-21
    [111] CrottiT, Smith MD, Hirsch R, et al. Receptor activator NFKB ligand(RANKL)and oste -oprotegerin(OPG)protein expression in periodontitis[J]. J Periodont Res, 2003, 38: 380-387
    [112] Mogi M, Otogoto J, Ota N, et al. Diferential expression of RANKL and osteoprotegerin in gingival crevicular fluid of patients with periodontitis[J]. J Dent Res, 2004, 83(2): 166-169
    [113] Nagasawa T, Kobayashi H, Kiji M, et al. LPS-stimulated human gingival fibmblasts inhibit the differentiation of monocytes into osteoclasts through the production of osteoprotegerin[J]. Clin Exp Immunol, 2002. 130(2): 338-344
    [114] Hasegawa T, Yoshimura Y , Kikuiri T, et al. Expression of receptor activatorof NFKB ligand and osteoprotegerin in culture of human periodontal liganment cells[J]. J Periodont Res, 2002,37: 405 -411
    [115] Kobayashi-Sakamoto M, Hirose K, Isogai E, et al. NF-jB-dependent induction of osteoprotegerin by Porphyromonas gingivalis in endothelial cells[J]. Biochem Biophys Res Commun, 2004. 315(1): 107-112
    [116] Youngnim C, Woo KM, Ko SH, et al. Osteoclastogenesis is enhanced by activated B cell but suppressed by activated CD8 Tcells[J]. Eur J Immunol, 2001, 31: 2 179-2 188
    [117] Jiang Y, Mehta CK , Hsu TY , et al . Bacteria induce osteoclastogenisis via an osteoblast-independent pathway[J]. Infect Immun, 2002, 70(6): 3 143-3 148
    [118] Oda T, Yoshie H, Yamazaki K. Porphymmonas gingivalis antigen preferentially stimulates T cells to express IL-17 but not receptor activator of NF-kB ligand in vitro[J]. Oral Micro Immunol. 2003,18: 30-36
    [119] Teng YT, Nguyen H, Gao XJ, et al. Functional human T cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection[J]. J Clin Invest, 2000, 106: 59-67
    [120] Valverde P, Kawai T, Taubman MA, et al. Selective blockade of voltage gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease[J]. J Bone Miner Res, 2004, 19(1): 155-164
    [121] Xing Z, Gauldie J, Cox G, et . IL-6 is an anti-inflammatory cytokine required for controlling local or systemic acute inflammatory responses[J]. J Clin Invest, 1998, 101 (2): 311
    [122] Naruishi K, Takashiba S, Nishimuru F, etal. Impairment of gingival fibroblast adherence by IL-6/Sil-6R[J]. J Dent Res, 2001, 80(5): 1421
    [123] Baqui AA, Meiller TF, Chon JJ, et al. Interleukin-6 production by human monoc ytes treated with granulocyte-macrophage colony-stimulating factor in the presence of lipopolysaccharide of oral microorganisms[J]. Oral Microbiol Immunol, 1998, 13(3): 173
    [124] Johnson RB, Serio FG, Dai X. Vascular endothelial growth factors and progression of periodontal diseases[J]. J Per / odontol, 1999, 70(8): 848
    [125] McGee JM, Tucci MA, Edmundson TP, et al. The relationship between concentrations of proinflammatory cytokines within gingiva and the adjacent suleular depth[J]. J Per/ odontol, 1998, 69(8): 865
    [126] Balto K, Sasaki H, Stashenko P. Interleukin-6 deficiency increases inflammatory bone destruction[J]. Infect Immun, 2001, 69(2): 744
    [127] Greenfield EM, Bi YMiyauchi A. Regulation of osteoclast activity[J]. ~ / fe Sci, 1999, 65(11): 1087
    [128]Kusano K,Miyauru C,Inada M,et al.Regulation of matrix metallopmteinases(MMP-2,-3,-9,and -13)by interleukin-1 an d interleukin -6 in mouso calvaria:association of MMP induction with bone resorption[J].Endocrinol,1998,139(3):1338
    [129]Ishimi Y,Miyaura C,Cheng HJ,et al.Interleukin-6 is produeed by osteoblasts and induces bone resorption[J].J Immunol,1990,145(10):3297
    [130]岳玲,肖明振,牛忠英.IL-6对人牙髓细胞、牙周膜细胞生长影响的实验研究[J].牙体牙髓牙周病学杂志,1998,8(4):232
    [131]Assuma R,Oates T,Cochran D,et al.IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontifis[J].Immunology,1998,160:40
    [132]Graves DT,Co&ran D.The contribution of interleukin 1 and tumor necrsis factor to periodontal tissue destruction.J Periodontol,2003,74:391-401
    [133]Westendorp RG,Langermans JA,Huizinga Tw.et al.Genetic influence on cytokine production in meningococcal disease.Lancet,1997,349(7):1912-1913
    [134]Galbraith CMP,Steed RB,Sanders JJ,et al.Tumor necrosis factor alpha production by oral leukocytes:influence of tumor necrosis factor genotype.J Periodontol,1998,69(4):428 33
    [135]Birkedal- Hansen H.Role of cytokines and inflammatory mediators in tissue destruction.J Periodontal Res,1993,28(9):500-510
    [136]Manolagas SC.Role of cytokines in bone resorption.Bone,1995,17(1):63-67
    [137]Page RC.Milestones in periodontal research and the remaining critical issues.J Periodontal Res,1999,34(6):331-339
    [138]Birkedal-Hansen H.Role of matrix metalloproteinases in human periodontal diseases.J Periodontol.1993 May;64(5 Suppl):474-84
    [139]Lukic A,Vojvodic D,Majstorovic I,Colic M.Production of interleukin-8 in vitro by mononuclear cells isolated from human periapical lesions.Oral Microbiol Immunol.2006Oct;21(5):296-300
    [140]Colic M,Lukic A,Vucevic D,et al.Correlation between phenotypic characteristics of mononuclear cells isolated from human periapical lesions and their in vitro production of Th1 and Th2 cytokines. Arch Oral Biol. 2006 Dec;51(12):1120-30. Epub 2006 Jun 23.Birkedal-Hansen H. Role of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res, 1993, 28(9): 500-510
    [141] Wang, X., J. F. Preston III, and T. Romeo. The pgaABCD Locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J. Bacteriol, 2004,186:2724-2734
    [142] Nishihara T, Koseki T. Microbial etiology of periodontitis[J]. Periodontol 2000, 2004,36: 14 -26
    [143] Xin Wang, 1 James F. Preston III.The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation JOURNAL OF BACTERIOLOGY, 2004,186(9):,2724-2734 Vol
    [144] Joseph G. Joyce, Chitrananda Abeygunawardana. Isolation, structural characterization, and immunological evaluation of a high-molecular-weight exopolysaccharide from Staphyloco-ccus aureus .Carbohydrate Research, 2003,338: 903-922