稻茬小麦超高产群体形成机理与调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在稻麦两熟条件下,选用中筋小麦品种扬麦20,于2010~2012两年采用不同基本苗、施氮量、施氮比例及追氮时期调控建立不同产量水平群体,探索稻茬小麦超高产群体(9100kg~9400kg·hm-2)产量结构及群体形成特征及其与高产群体(8200kg~8500kg·hm-2)间的差异,分析超高产群体形成的营养物质积累、分配与利用特征、碳氮代谢及光合生理特性,并从养分利用、对籽粒产量和品质及经济效益影响角度评价稻茬小麦超高产关键栽培技术的可行性与实用性,以期明确稻茬小麦超高产栽培的关键技术组合,为长江中下游流域稻麦轮作区小麦大面积高产及超高产应用提供理论与技术支撑。主要结果如下:
     (1)两年试验结果一致表明,稻茬小麦超高产群体穗数、每穗粒数及千粒重均高于高产群体,但差异均不显著。其栽培途径是合理确定群体起点获得适宜穗数,在此基础上主攻每穗粒数与千粒重,使三者协调增加。扬麦20品种超高产产量构成指标为穗数515±20×104·hm-2、每穗粒数48.5±1.5粒/穗、千粒重37±2g。
     (2)试验明确了稻茬小麦超高产群体群体质量指标特征,要求茎蘖结构动态合理,越冬始期茎蘖数是最终穗数值的0.9~1.3倍,高峰苗1250×104~1500×104·hm-2、茎蘖成穗率约40%;孕穗期、开花期、乳熟期LAI分别在6.5~7.0、5-6、4-4.5,花后维持较高的LAI;适量增加孕穗期至开花期干物质积累量,扩大花后干物质积累量是超高产群体的物质基础,孕穗期至开花期、开花期、开花期至成熟期及成熟期干物质积累量分别在2900kg~3600kg·hm-2、12500kg~13700kg·hm-2、7200kg~7600kg·hm-2、19500kg~21000kg·hm-2,花后干物质积累量对产量的贡献率约为90%,经济系数0.4左右。
     (3)稻茬小麦超高产群体养分积累特征与高产群体相比,拔节期前氮、磷、钾积累相近,拔节至开花期、开花期及成熟期氮、磷、钾积累量较高;成熟期籽粒氮、磷、钾积累量较高;花后氮素转运量较高,花后磷素及钾素转运量适宜。超高产群体百公斤籽粒吸氮、磷、钾量,氮、磷、钾素利用效率及收获指数与高产群体差异均不显著。
     (4)研究提出了稻茬小麦超高产栽培矿质营养诊断及利用效率指标:拔节期、拔节期至开花期、开花期、开花期至成熟期及成熟期氮素积累量分别在84kg~98kgh·hm-2、104kg~117kg·hm-2、195kg~205kg·hm-2、37kg~49kg·hm-2、234kg~246kg·hm-2;花后营养器官氮素转运量在138kg~144kg·hm-2。拔节期、拔节期至开花期、开花期、开花期至成熟期及成熟期磷素积累量分别在17kg~21kg·hm-2、28kg~31kg·hm-2、46kg~50kg·hm-2、18kg~24kg·hm-2、66kg~74kg·hm-2;花后营养器官磷素转运量在23kg~26kg·hm-2。开花期、成熟期钾素积累量分别在430kg~450kg·hm-2、366kg~408kg·hm-2;花后营养器官钾素转运量在91kg~100kg·hm-2。百公斤籽粒吸氮、磷、钾量分别在2.87kg~3.04kg、0.82kg~0.85kg、4.57kg~4.87kg;氮、磷、钾素利用效率分别在32.93kg~34.86kg·kg-1、113.60kg~121.28kg·kg-1、20.56kg~22.02kg·kg-1;氮、磷、钾素收获指数分别在0.72~0.77、0.64~0.67、0.095-0.112。
     (5)稻茬小麦超高产群体整个生育期植株糖、氮含量及糖氮比的变化特征是,在越冬始期至拔节期具有较高的碳、氮营养和协调的碳氮比,孕穗期至开花期具有高可溶性糖、氮含量,花后具有高碳素积累量,成熟期糖氮比较低。稻茬小麦超高产栽培碳氮营养的诊断指标:孕穗期、开花期、乳熟期及成熟期植株糖含量分别在14.56%~16.78%、14.52%~16.82%、10.59%~11.23%、1.62%~1.76%,氮含量分别在1.55%~1.64%、1.47%~1.57%、1.28%~1.30%、1.15%~1.20%,糖氮比分别在9.37~10.25、9.80~10.69、8.29~8.77、1.41~1.48。
     (6)研究了稻茬小麦超高产群体剑叶光合与衰老特性,表明超高产群体花后剑叶SPAD值、净光合速率及活性氧保护酶(POD、CAT及SOD)活性均高于高产群体,MDA含量低于高产群体,在籽粒灌浆成熟期(花后14天至28天)差异更为明显。超高产群体在籽粒灌浆期剑叶具有SPAD值及光合速率衰减速率慢、POD、CAT及SOD酶活性高和MDA含量低的特性。
     (7)初步提出了稻茬小麦超高产关键栽培技术组合:基本苗225×104.hm-2、施氮量210kg·hm-2、氮肥比例为基肥:壮蘖肥:拔节肥:穗肥3:1:3:3、剑叶露尖追氮组合不同气候年型均实现超高产,为超高产最佳密肥组合;基本苗150×104·hm-2,施氮量262.5kg·hm-2.氮肥比例3:1:3:3、孕穗期追氮及基本苗225×104·hm-2、施氮量262.5kg·hm-2.氮肥比例3:1:3:3、剑叶露尖或孕穗期追氮组合在正常气候年型可实现超高产。
     在此基础上构建形成了稻茬小麦超高产栽培技术体系:11月1日前后播种,基本苗宜在225×104.hm-2,条播,行距30cm,播深3-5cm;施氮量宜在210kg·hm-2,施磷量宜在126kg·hm-2,施钾量宜126kg·hm-2,基肥:壮蘖肥:拔节肥:穗肥采用3:1:3:3,基肥于播种前施用,壮蘖肥于4叶期施用,拔节肥于叶龄余数2.5时施用,穗肥于剑叶露尖或孕穗期施用,磷、钾肥50%基施,50%于叶龄余数2.5时追施。
     (8)评价了本试验稻茬小麦超高产条件下的氮素利用率、品质及经济效益特征,表明超高产最佳密肥组合(基本苗225×104·hm-2、施氮量210kg·hm-2、氮肥比例3:1:3:3、剑叶露尖追氮)具有高氮肥农学效率和氮肥当季利用率,且氮素利用效率及氮收获指数较高;籽粒加工品质和面粉糊化特性与高产栽培基本一致,且蛋白质含量、湿面筋含量及出粉率较高,低谷粘度、峰值时间及糊化温度较高;投入低,经济效益高。
Wheat populations at two different yield levels in rice-wheat rotation, including high-yield population (8000kg~8500kg·hm-2, hereinafter as HY) and super-high-yield population (9100kg~9400kg·hm-2, hereinafter as SHY), were established by agronomic management on the medium-gluten wheat, Yangmai20(Triticum aestivum L.). From2010to2012, the field experiments were conducted at32combinations of two planting densities (150×104·hm-2and225×104·hm-2), two applications of nitrogen amount (210·hm-2and262.5kg·hm-2), two nitrogen applied ratios of basis:tillering:elongation:booting (3:1:3:3and5:1:2:2), and four nitrogen topdressing stages (flag leaf stage, booting stage, heading stage and anthesis). This study investigated the differences between HY and SHY in grain yield components and population formation indexes. In addition, the characteristics of nutrient accumulation, distribution and utilization, carbon-nitrogen metabolism and photosynthetic were analyzed. By analyzing and evaluating the effects of different cultivation technologies on fertilizer use efficiency, wheat quality and economic profit, the best cultivation technology achieving SHY was proposed. These could provide theoretical and technological support for wheat high-yield and super-high-yield production in the middle and lower reaches of the Yangtze River. The main results are as follows:
     (1) The results of two testing years consistently showed that, the synchronous increase of number of ears, grains per spike and1000-grain-weight was the key point in achieving SHY. On the basic of right ear number, the synchronous increase in grains per spike and1000-grains-weight was the strategy for achieving SHY. The number of ears, grains per spike and1000-grain-weight of SHY were510±20×104·hm-2,48±1.5and37±2g, respectively.
     (2) In terms of results, the structural characteristics of SHY were explicit. For SHY, on the basic of suitable stems and tiller dynamics, the ratio of No. of stems and tillers at the beginning of wintering stage to No. of ears, No. of stems and tillers at elongation stage and percentage of effective stems were0.9~1.3,1250×104~1500×104·hm-2and about40%, respectively. The LAI of SHY at the stages of booting, anthesis and maturity were6.5~7.0,5~6and4~4.5, respectively. And post-anthesis LAI was maintained higher as compared with HY. Besides, the moderate increase in dry matter accumulation amount (DMAA) from booting to anthesis, especially the increase in DMAA after anthesis, laid a solid material foundation for the construction of SHY. The DMAA of SHY during the interval from booting to antheis and from anthesis to maturity were2900kg~3600kg·hm-2and7200~7600kg·hm-2, separately. The dry matter amount of SHY at anthesis and at maturity were12500kg~13700kg·hm-2and19500kg~21000kg·hm-2, respectively. The contribution rate of post-anthesis DMAA to yield of SHY was around90%. Coefficient of economics (HI) of SHY was around0.4.
     (3) The results also showed that N, P and K accumulation amounts (hereinafter as NAA, PAA and KAA) of SHY before elongation were suitable. And during the interval from emergencing to elongation, there were no observable differences in these parameters between HY and SHY. From elongation to anthesis, at anthesis and at maturity, NAA, PAA and KAA of SHY were higher than those of HY. Compared with HY, NAA, PAA and KAA of SHY in grains at maturity were higher. N translocation amount (NTA) of SHY from vegetative organ at anthesis to grain was higher as compared with HY, but P and K translocation amount (PTA and KTA) were relatively suitable. In terms of the two parameters (a) N, P and K amounts producing100kg grain and (b) the use efficiency and harvest index of N, P and K, there were no significant differences between HY and SHY.
     (4) The mineral nutrition diagnosis indexes for SHY were suggested as follows:
     NAA at elongation, from elongation to anthesis, at anthesis and from anthesis to maturity were84kg~98kg·hm-2,104kg~117kg·hm-2,195kg~205kg·hm-2,37kg~49kg·hm-2and234kg~246kg·hm-2, respectively. And NTA from total organs were138kg~144kg·hm-2.
     PAA at elongation, from elongation to anthesis, at antheis, from anthesis to maturity and at maturity were17kg~21kg·hm-2,28kg~31kg·hm-2,46kg~50kg·hm-2,18kg~24kg·hm-2and66kg~74kg·hm-2, respectively. And PTA from total organs were23kg~26kg·hm-2.
     KAA at anthesis and at maturity were430kg~450kg·hm-2and366kg~408kg·hm-2, respectively. And KTA from total organs was91kg~100kg·hm-2.
     The N, P and K amount producing100kg grain were2.87kg~3.04kg,0.82kg~0.85kg and4.57kg~4.87kg, respectively. N, P and K use efficiency were32.93kg~34.86kg·kg-1,113.60kg~121.28kg·kg-1and20.56kg~22.02kg·kg-1, respectively. In addition, N, P and K harvest index were0.72~0.77,0.64~0.67and0.095~0.112, respectively.
     (5) Soluble sugar content, nitrogen content and soluble sugar to nitrogen ratio (hereinafter as C/N) dynamics in SHY plants were analyzed. Compared with HY, from the beginning of wintering stage to elongation, soluble sugar content and nitrogen content in SHY plants were higher, and C/N was relatively suitable. From booting stage to anthesis, soluble sugar content and nitrogen content in SHY plants were higher. After anthesis, SHY plants could accumulate more carbon. But at maturity, C/N in SHY plants was lower as compared with HY.
     The carbon-nitrogen nutrition diagnosis indexes for SHY were suggested. At the stages of booting, anthesis, milk-ripe and maturity, soluble sugar content were14.56%~16.78%,14.52%~16.82%,10.59%~11.23%and1.62%~1.76%respectively, nitrogen content were1.55%~1.64%,1.47%~1.57%,1.28%~1.30%and1.15%~1.20%, respectively, and C/N were9.37~10.25,9.80~10.69,8.29-8.77and1.41~1.48, respectively.
     (6) Flag leaves photosynthetic and senescence characteristics of SHY were clarified. Compared with HY, SPAD reading, photosynthetic rate (Pn) and the activities of SOD, POD and SOD in flag leaves after anthesis were higher, but MDA content was lower. These differences between SHY and HY were more significant at grain-filling stage (from the14th to28th day after anthesis). At grain-filling stage, in flag leaves of SHY, SPAD reading and Pn declined slower, the activities of SOD, POD and SOD were higher, and MDA content was lower as compare with HY.
     (7) A preliminary cultivation technology achieving SHY was developed. There were four cultivation technical combinations achieving SHY. The best was the combination of planting density225×104·hm-2, nitrogen amount210kg·hm-2, nitrogen applied ratio of basal:tillering: jointing:booting3:1:3:3and topdressing nitrogen at flag leaf stage, which could achieve SHY in different climatic type year. The other combinations could achieve SHY only in normal climatic year, i.e., combination of planting density150×104·hm-2, nitrogen amount262.5kg·hm-2, nitrogen applied ratio3:1:3:3and topdressing nitrogen at booting stage, and combinations of planting density225×104·hm-2, nitrogen amount262.5kg·hm-2, nitrogen applied ratio3:1:3:3and topdressing nitrogen at flag leaves stage or booting stage.
     The SHY cultivation technology system was established as follows. The suitable seeding date is around1st November. The seeds are sown at a planting density of225×104·hm-2by drill sowing, with a line spacing of30cm and a seedling depth of3cm~5cm. The applied amount of N, P and K are kept at210kg·hm-2,126kg·hm-2and126kg·hm-2, respectively, with an nitrogen application ratio of3:1:3:3at the stages of basal, tillering, jointing and booting. The fertilizer at the stages of basal, tillering, jointing and booting should be applied before sowing, at the4th leaf stage, at the remaining leaf age of2.5, and at the flag leaf stage or booting stage. Half amount of P and K is applied before sowing, and the remained half is applied at the remaining leaf age of2.5.
     (8) Fertilizer use efficiency, grain quality and economic profit of SHY technology were also evaluated. Among32combinations in the experiments, the best combination achieving SHY (planting density225×104·hm-2, nitrogen amount210kg-hm-2, nitrogen applied ratio3:1:3:3and topdressing nitrogen at the flag leaf stage) was generally better. In consequence, for SHY best combination, nitrogen agronomic efficiency (NAE) and nitrogen fertilizer use efficiency (NUE) were highest, and utilization efficiency (NUTE) and nitrogen harvest index (NHI) were generally high. The SHY cultivation technology didn't severely affect grain processing quality and flour pasting parameters. Grain protein content, wet gluten content and flour yield, flour trough viscosity, peak time and pasting temp were even increased. Compared with other combinations, the SHY best combination could achieve the highest economic profits at a relatively low total cost.
引文
[1]Austin R B, Bingham J, Blackwell R D, et al. Genetic improvement in winter wheat yields since 1900 and associated physiological changes[J]. The Journal of Agricultural Science,1980,94(3):675-689.
    [2]Austin R B. Physiological limitations to cereal yield and ways of reducing them by breeding[M]. Cambridge, UK, Opportunities for increasing crop yields,1980:3-19.
    [3]Bishop D L, Bugbee B G. Photosynthestic capacity and dry mass portioning in dwarf and semi-dwarf wheat[J]. Plant Physiology,1998,153(5-6):558-565.
    [4]Blum A. Variation among wheat cultivars in the response of leaf gas-exchange to light[J]. J. Agric. Sci., 1990,115:305-311.
    [5]Brougham R W. Interception of light by the foliage of pure and mixed stands of pasture plants[J]. Australian Journal of Agricultural Research,1958,9(1):39-52.
    [6]Damon P M, Ma Q F, Rengel Z. Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress[J]. Crop and Pasture Science,2011,62(7):550-555.
    [7]DeVos N M, Spiertz J, Kramer T H.. Cultivar difference in plant crop photosynthesis[A]. Crop Physiology and Breeding[C], Edited by Spiertz J and Kramer T H. Pudoe Wageningen,1979,71-74.
    [8]Duncan W G. Leaf angles, leaf area, and canopy photosynthesis[J]. Crop Science,1971,11:482-485.
    [9]Ehdaie B, Waines J G. Sowing date and nitrogen rate effects on dry matter and nitrogen partitioning in bread and durum wheat[J]. Field Crops Research,2001,73:47-61.
    [10]Ferrise R, Triossi A, Stratonovitch P, et al. Sowing date and nitrogen fertilisation effects on dry matter and nitrogen dynamics for durum wheat:An experimental and simulation study[J]. Field Crops Research,2010,117(2-3):245-257.
    [11]Fischer R A, Bidinger F, Syme J R, et al. Leaf photosynthesis, leaf permeability, crop growth and yield of short spring wheat genotypes under irrigation[J]. Crop Science,1981,21(3):367-373.
    [12]Fischer R A, Rees D, Sayre K D, et al. Wheat yield progress associated with higher stomatal conductance and photo-synthetic rate, and cooler canopies[J]. Crop Sci,1998,38:1467-1475.
    [13]Fischer R A. Wheat physiology:a review of recent developments[J]. Crop Pasture Sci.2011,62:95-114.
    [14]Flowers M, Weisz R, Heiniger R et al. In-season optimization and site-specific nitrogen management for soft red winter wheat[J]. Agronomy Journal,2004,96(1):124-134.
    [15]Foulkes M J, Reynolds M P, Sylvester-Bradley R. Genetic improvement of grain crops:yield potential[A]. In:Sadras, V.O., Calderini, D.F. (Eds.), Crop Physiol-ogy:Applications for Genetic Improvement and Agronomy[C]. Academic Press, San Diego,1999:355-385.
    [16]Foulkes M J, Slafer G A, Davies W J, et al. Raising yield potential of wheat. Ⅲ. Optimizing partitioning to grain while maintaining lodging resistance[A]. J. Exp. Bot.2011,62:469-486.
    [17]Gardner F P, Pearce R B, Mitchell R L, et al著,于振文,王振林,崔德才译.作物生理学[M].北京:北京农业出版社,1993.
    [18]Gerbaud A, Andree M, Richaud C. Gas exchange and nitrogen nutrition patterns during the life cycle of an artificial wheat crop[J]. Physiologic Plantarum,1988,73(4):471-478.
    [19]Good N E, Bell D H. Photosynthesis, plant productivity, and crop yield[M]. New York, Academic press, 1980,3-51.
    [20]Hardy R F W, Havelka U D, Q uebedeaux B. Increasing crop productivity:the problem, strategies approach and selected rate limitations to photosynthesis[A]. Proceeding of 4th International Congress of Photosynthesis[C], London:Biochemical Society,1978.695-719.
    [21]Huggins D R, Pan W L. Wheat stubble management affects growth, survival, and yield of winter grain legumes[J]. Soil Science Society of America Journal,1991,55(3):823-829.
    [22]Koike F. Reconstruction of two-dimension tree and forestry canopy profiles using photographs[J]. Journal of Applied Ecology,1958,22:921-929.
    [23]Martin P N G. Canopy light interception, gas exchange, and biomass in reduced height isolines of winter wheat[J]. Crop Science,1995,35:1636-1642.
    [24]Masoni A, Ercoli L, Mariotti M, et al. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type[J]. European Journal of Agronomy, 2007,26(3):179-186.
    [25]Morgan J A, Lecain D R, McCaig T N, et al. Gas-exchange, carbon iso-tope discrimination, and productivity in winter-wheat[J]. Crop Sci.,1993,33:178-186.
    [26]Nichiporovich A A. Properties of plant crops as optical system SOV[J]. Plant Physic,1961,8:428-435.
    [27]Parry M A J, Reynolds M, Salvucci M E, et al. Raising yield potential of wheat. Ⅱ. Increasing photosynthetic capacity and efficiency[J]. J. Exp. Bot.2011,62:453-467.
    [28]Sadras V O, Lawson C, Montoro A. Photosynthetic traits in Australian wheat varieties released between 1958 and 2007[J]. Field Crops Research,2012,134:19-29.
    [29]Sayre K D. The role of crop management research at CIMMTY in addressing bread wheat yield potential issues[A]. In:M P Reynolds. Increasing yield potential in wheat:Breaking the barriers[C]. Mexico. CIMMYT,1996,203-207.
    [30]Shanahan J F, Donnelly K J, Smithetal D H. Shoot development associated with grain yield in winter wheat[J]. Crop Science,1985,25:770-775.
    [31]Slafer G A, Andrade F H. Changes in physiological attributes of the dry matter economy of bread wheart (Triticum aestivum) through genetic improvement of grain yield potential at different regions of the world[J]. Euphytic,1991,58:37-49.
    [32]Slafer G A, Satorre E H, Andrade F H. Increases in grain yield in bread wheat from breeding and associated physiological changes[A]. In:Slafer, G.A. (Ed.), Genetic improvement of field crops[C]. Marcel Dekker, New York,1994:1-68.
    [33]Slaton N A, Mozaffari M, DeLong R E, et al. Influence of nitrogen fertilizer application rate and time on winter wheat yields[J]. Arkansas Agric Exp Sta Res Ser,2005,525:95-99.
    [34]Wang Z, Fu J, He M, et al. Effects of source/sink manipulation on net photosynthetic rate and photosynthate portioning during grain filling in winter wheat[J]. Biologia Plantarum,1997,39(3):379-385.
    [35]Watanabe N, Evans J R, Chow W S. Changes in photosynthetic, properties of Australian wheat cultivars over the last century[J]. Australian Journal of Plant Physiology,1994,21(2):169-183.
    [36]Wilhelm W W, McMaster G S, Harrell D M. Nitrogen and dry matter distribution by culm and leaf position at two stages of vegetative growth in winter wheat[J]. Agronomy Journal,2002,94(5):1078-1086.
    [37]Wong M T F, Corner R J, Cook S E. A decision support system for mapping the site-specific potassium requirement of wheat in the field[J]. Australian Journal of Experimental Agriculture,2001,41(5):655-661.
    [38]Xu H, Chen S B, Biswas D K, et al. Photosynthetic and yield responses of an old and a modern winter wheat cultivars to short-term ozone exposure[J]. Photosynthetica,2009,47:247-254.
    [39]Tang X, Li J, Ma Y, et al. Phosphorus efficiency in long-term (15 years) wheat-maize cropping systems with various soil and climate conditions[J]. Field Crops Research,2008,108:231-237.
    [40]Tian Z W, Jing Q, Dai T B, et al. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China[J]. Field Crops Res,2011,124:417-425.
    [41]Zheng T C, Zhang X K, Yin G H, et al. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008[J]. Field Crops Res,2011, 122:225-233.
    [42]白宝璋.植物生理学[M].北京:中国科学出版社(第二版),1994:89-90.
    [43]程顺和,郭文善,王龙俊,等.中国南方小麦[M].南京:江苏科学技术出版社,2012.
    [44]陈国祥,张荣铣.小麦旗叶光合功能衰退过程中PSII特性的研究[J].中国农业科学,2004,37(1):36-42.
    [45]陈乐梅,马林,刘建喜,等.免耕覆盖对春小麦灌浆期干物质积累特性及最终产量的影响[J].干旱地区农业研究,2006,24(6):21-24.
    [46]陈雨海,余松烈,于振文.小麦生长后期群体光截获量及其分布与产量的关系[J].作物学报,2003,29(5):730-734.
    [47]陈子威,彭永欣,黄德明,等.江苏小(大)麦高产模式栽培[M].南京:江苏科学技术出版社.1990.
    [48]崔党群,张娟,闻捷,等.黄淮冬麦区超高产小麦品种的产量结构模式研究[J].华北农学报,2001,16(4):1-5.
    [49]丁晓义,姜鸿明,严美玲,等.胶东半岛冬小麦9750kg/hm2超高产品种类型筛选及群体质量指标研究[J].山东农业科学,2007,4:46-49.
    [50]丁雪惠,唐明臻,吴兆苏.江苏淮阴地区小麦品种产量能力及其育种目标的探讨[J].南京农业大学学报,1992,15(2):16-20.
    [51]董树亭.高产冬小麦群体光合能力与产量关系的研究[J].作物学报,1991,17(6):461-468.
    [52]杜宝华,刘明孝,洪佳华.冬小麦群体光照条件及其光合特征[J].中国农业气象,1990,11(3):27-30.
    [53]杜永.黄淮地区稻麦周年超高产群体特征与调控技术的研究[D].江苏:扬州大学.博士论文,2007.
    [54]杜永,王艳,王学红,等.稻麦两熟区超高产小麦株型特征研究[J].麦类作物学报,2008,28(6): 1075-1079.
    [55]方正,邵锡珍,翟冬峰,等.小麦超高产育种刍议[J].山东农业科学,2007(3):18-19.
    [56]封超年,朱新开,王龙俊,等.小麦茎蘖成穗率与产量关系及其调控[J].江苏农业研究,1999,20(3):1-7.
    [57]封超年,郭文善,何建华,等.高产小麦株型的指标体系[J].扬州大学学报,1998,4:12-16.
    [58]傅兆麟,李洪琴.黄淮麦区小麦超高产的几个问题探讨[J].麦类作物,1998,18(6):48-51.
    [59]高凤梅.黑龙江省超高产春小麦研究现状及发展应用前景[J].黑龙江农业科学,2008(3):130-131.
    [60]高海涛,王育红,孟战赢,等.超高产小麦产量及旗叶生理特性的研究[J].麦类作物学报,2010,30(6):1080-1084.
    [61]郭天财,朱云集,沈天民,等.重穗型小麦品种窄行密植公顷产量超10t配套栽培技术探讨[J].河南农业科学,2006,3:25-28.
    [62]郭文善,严六零,封超年,等.小麦源库协调栽培途径的研究[J].江苏农学院学报,1995,16(3):33-37.
    [63]国家统计局.2012年全国粮食总产量 5.89亿吨[EB/OL].http://www.feedtrade.com.cn/echnology/news/news/2012-12-04/2008173.html.2012-12-04.
    [64]韩燕来,介晓磊,谭金芳,等.超高产冬小麦氮磷钾吸收、分配与运转规律的研究[J].作物学报,1998(5):908-9015.
    [65]郝代成,高国华,朱云集,等.施氮量对超高产冬小麦花后光合特性及产量的影响[J].麦类作物学报,2010,30(2):346-352.
    [66]河南省小麦高稳低优研究推广协作组.小麦穗粒重研究[M].北京:中国农业出版社.1995,191-196.
    [67]季书勤,赵淑章,吕凤荣,等.多穗型小麦品种公顷产9000kg主要技术指标及关键技术[J].麦类作物学报,2001,21(1):55-59.
    [68]姜宗庆.磷素对小麦产量和品质的调控效应及其生理机制[D].江苏:扬州大学.博士论文,2006
    [69]江阴日报.江阴夏粮生产喜获“九连增”'[EB/OL]. http://unn.people.com.cn/n/2012/0626/c80078-18382307.html.2010-06-26.
    [70]姜丽娜,李春喜,代西梅,等.超高产小麦氮素吸收、积累及分配规律的研究[J].麦类作物学报,2000,20(2):53-59.
    [71]金善宝,中国小麦学[M].北京:中国农业出版社.1996.
    [72]康祥波.冬小麦群体叶层的研究[J].河南职业技师学报,1990,18(3-4):13-24.
    [73]赖世登,刘柞昌,余彦波,等.小麦光合速率与光呼吸的研究[J].植物学报,1981,23(20):122-1626.
    [74]雷振生,林作.黄淮麦区冬小麦合理株型结构研究[J].华北农学报,1994,9(4):27-32.
    [75]李升东,王法宏,司纪升,等.不同基因型冬小麦在两种栽培模式下蒸腾速率、光合速率和水分利用效率的比较研究[J].麦类作物学报,2007,27(3):514-517.
    [76]李书超.中国小麦生产的发展趋势、制约因素及战略对策[J].中国农村经济,1998,16(专):7- 51.
    [77]凌启鸿,郭文善,彭永欣,等.小麦高产群体质量及其优化控制技术研究与应用研究报告[J].江苏农学院学报,1996,16(专):7-51.
    [78]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000,17-19.
    [79]凌启鸿,张洪程.小麦“小群体、壮个体、高积累”高产栽培途径的研究[J].江苏农学院学报,1993,4(2):11-17.
    [80]李春燕,徐月明,郭文善,等.氮素运筹对弱筋小麦扬麦9号产量、品质和旗叶衰老特性的影响[J].麦类作物学报,2009,29(3):524-529.
    [81]刘道宏Leaf senescence of plant. Plant Physiology Communications[J]植物生理学通讯,1993,1:14-19.
    [82]刘兴海,王树安,李绪厚.冬小麦抗逆栽培技术原理的研究II:不同生育期重施氮肥对冬小麦生育和抗逆性的影响[J].华北农学报,1986,1(3):1-9.
    [83]刘兆晔,于经川,牟春生,等.小麦上三叶配置比例对产量性状的影响[J].莱阳农学院学报,2000,17(3):183-186.
    [84]刘兆晔,于经川,牟春生,等.小麦株高构成指数的研究[J].莱阳农学院学报,2000,17(2):120-123.
    [85]骆兰平,于振文,王东,等.土壤水分和种植密度对小麦旗叶光合性能和干物质积累与分配的影响[J].作物学报,2011,37(6):1049-1059.
    [86]马书荣,李海英,祖元刚.裂叶沙参和泡沙参气孔行为与蒸腾特性的关系[J].植物研究,2004,24(1):45-48.
    [87]苗果园,李焕章.株型.中国农业百科全书农作物卷[M].北京:中国农业出版社,1991,877-878.
    [88]彭永欣.小麦高光效群体结构与控制程序[J].江苏农学院学报,1983,4(4):56-60.
    [89]彭永欣,封超年,郭文善,等.小麦潜在源、库与产量关系的研究[A].彭永欣,郭文善,严六零,等.小麦栽培与生理[C].南京:东南大学出版社,1992:1-21.
    [90]曲成文,孙美芝,綦长海,等.冬小麦莱州137特征特性及超高产栽培技术[J].山东农业科学,2000,1:21-22.
    [91]任明全.高产小麦品种冠层形态生理性状的研究[J].华北农学报,1990,5(3):1-8.
    [92]沈允纲.作物光辐射利用[J].科学通报,1961,10:46-50.
    [93]沈天民.中国超级小麦栽培关键技术[M].北京:中国三峡出版社.2006.
    [94]田纪春.超级小麦及其育种方法[J].麦类作物学报,2002,22(1):87-90.
    [95]田伟.10个超高产小麦品种株型结构分析[J].河南农业科学,2011,40(8):67-71.
    [96]万富世.新世纪中国的小麦及其发展对策.中国育种与小麦遗传多样产业化进展[M].北京:中国农业出版社,2002,1-6.
    [97]王龙俊,郭文善,封超年,等.小麦高产优质栽培新技术[M].上海:上海科学技术出版社.
    [98]王龙俊.小麦高产群体质量栽培的调控指标和关键技术[J].江苏农学院学报,1996,17(专):201-210.
    [99]王法宏.山东小麦科技50年回顾与下世纪初展望[J].山东农业科学,1999,3:48-52.
    [100]王绍中.河南省小麦栽培技术的发展与展望.中国小麦栽培研究新进展[M].北京:农业出版社,1993,59-70.
    [101]王树亮,田奇卓,李娜娜,等.不同小麦品种对磷素吸收利用的差异[J].麦类作物学报,2008,28(3):476-483.
    [102]王之杰,郭天财,王化岑,等.种植密度对超高产小麦生育后期光合特性及产量的影响[J].麦类作物学报,2001,21(3):64-67.
    [103]王之杰,郭天财,朱云集,等.超高产小麦冠层光辐射特征的研究[J].西北植物学报,2003,23(10):1657-1662.
    [104]王志芬,吴科,宋良增,等.山东不同穗型超高产小麦产量构成因素分析与选择思路[J].山东农业科学,2001,4:6-8.
    [105]魏东.科技日报:麦田里的“守望者”—2012年度山东省科学技术最高奖获得者赵振东[EB/OL].http://www.sdcrops.cn/newsinfo.asp?ID=2687.2012-11-26.
    [106]吴同彦,谢令琴,杨学举,等.小麦株高构成因素与产量及其他性状相关性的研究[J].河北农业大学学报,25(3):10-13.
    [107]吴兆苏.小麦育种学[M].北京:中国农业出版社,1990:206-234.
    [108]肖凯,谷俊涛,张荣铣,等.杂种小麦光合特性的初步研究[J].作物学报,1997,23(4):425-431.
    [109]肖世和.超级麦育种现状与展望[A].中国小麦育种产业化进展[C].北京:中国农业出版社,2002,34-44.
    [110]肖世和.超级小麦研究与21世纪小麦育种[A].全国作物遗传学术讨论会论文集[C].北京:农业出版社,1998.
    [111]行翠平,韩东翠,史民芳,等.不同株叶型冬小麦生长动态分析[J].山西农业科学,2003,31:3-6.
    [112]徐恒永,赵君实.高产冬小麦的冠层光合能力及不同器官的贡献[J].作物学报,1995,21(2):204-209.
    [113]徐正进.日本水稻育种的现状与展望[J].水稻文摘,1990,9:5.
    [114]许大全,沈允钢.光合作用于作物产量[A].邹琦主编.作物高产高效生理学研究进展[C].北京:科学出版社,1996,17-24.
    [115]杨兆生,许红霞,梁文科,等.紧凑大穗型小麦新品种93中6(37)的选育及亩产600kg栽培技术研究[J].作物学报,1998,24(6):971-977.
    [116]于振文,潘庆民,董庆裕,等.冬小麦超高产栽培[M].北京:中国农业出版社,1999.
    [117]于振文,潘庆民,姜东,等.9000kg/公顷小麦施氮量与生理特性分析[J].作物学报,2003,29(1):37-43.
    [118]于振文,田奇卓,潘庆民,等.黄淮麦区冬小麦超高产栽培的理论与实践[J].作物学报,2002,28(5):577-585.
    [119]于振文.小麦产量与品种生理及栽培技术[M].北京:中国农业出版社,2007.
    [120]余松烈,亦新华,刘希运.高产冬小麦对三要素的吸收和供应特点的研究[J].土壤肥料,1981(1): 31-34.
    [121]余松烈.中国小麦栽培理论与实践[M].上海:上海科学技术出版社,2006.
    [122]岳寿松,于振文,余松烈,等.不同生育时期施氮对冬小麦旗叶衰老和粒重的影响[J].中国农业科学,1997,30(2):42-46.
    [123]曾浙荣,赵双宁,李青.北京地区高产小麦品种的冠层形成、光截获和产量[J].作物学报,1991,17(3):161-169.
    [124]张法全,王小燕,于振文,等.公顷产10000kg小麦氮素和干物质积累与分配特性[J].作物学报,2009,35(6):1086-1096.
    [125]张洪程,许轲,戴其根,等.超高产小麦吸氮特性与氮肥运筹的初步研究[J].作物学报,1998,24(6):935-940.
    [126]张洪程,许轲,戴其根,等.黄淮地区小麦超高产形成及其特征的初步研究[J].江苏农业科学,1998.2:2-6.
    [127]张铭,蒋达,缪瑞林,等.稻茬田肥力水平与施氮量对小麦籽粒产量和物质生产的影响[J].麦类作物学报,2010,30(2):330-336.
    [128]张维成,李春喜,杨永光.论冬小麦产量构成因素的制约关系[A].中国小麦栽培研究新进展[C].北京:农业出版社,1993,511-517.
    [129]张艳敏,李晋生,钱维朴,等.小麦冠层结构与光分布研究[J].华北农学报,1996,11(1):54-58.
    [130]张正斌,徐萍.中国水资源和粮食安全问题探讨[J].中国生态农业学报,2008,16(5):1305-1310.
    [131]郑丕尧.作物生理学导论[M].北京:北京农业大学出版社.1992,169-210.
    [132]中国网络电视台.“扬辐麦4号”创江苏省小麦亩产最高记录[EB/OL].http://nongjiale.cntv.cn/20110808/106364.shtml.2011-08-08.
    [133]中国新闻网.专家预计2012年全球小麦产量同比减少 4.2%[EB/OL].http://futures.hexun.com/2012-08-16/144816178.html.2012-08-16.
    [134]中国江苏. 徐州市小麦单产创全省记录[EB/OL]. http://www.jiangsu.gov.cn/ shouye/jjjs/hgzc/201006/t20100622_466673.html.2010-06-21.
    [135]中国江苏.大中农场小麦万亩示范片单产刷新淮南地区最高记录[EB/OL].http://www.jiangsu.gov.cn/lsjs/lsyw/201007/t20100719_475645.htm.2010-07-14.
    [136]周玲,赵护兵,王朝辉,等.不同产量水平旱地冬小麦品种氮磷钾养分积累与转移的差异分析[J].中国生态农业学报,2011,19(2):318-325.
    [137]朱根海,张荣铣.叶片含氮量与光合作用[J].植物生理学通讯,1985,2:9-12.
    [138]朱新开,郭凯泉,郭文善,等.密度对稻田套播强筋小麦花后剑叶衰老特性的影响[J].华北农学报,2009,24(6):65-68.
    [139]朱新开,郭文善,封超年,等.不同类型专用小麦优质高产群体氮素积累特征分析[J].扬州大学学报(农业与生命科学版),2007,28(3):58-63.
    [140]朱新开,郭文善,何建华,等.淮南麦区超高产小麦产量形成特点及其生理特性分析[J].麦类作物,1998,18(6):40-44.
    [141]朱新开,郭文善,王龙俊,等.江苏省小麦高产超高产创建途径分析[A].张洪程等编,作物生产理论与技术研究进展[C].江苏:扬州大学农学院.2011.
    [142]朱新开,郭文善,周正权,等.氮肥对中筋小麦扬麦10号氮素吸收、产量和品质的调节效应[J].中国农业科学,2004,37(12):1831-1837.
    [143]朱新开,郭文善,周君良,等.氮素对不同类型专用小麦营养和加工品质调控效应[J].中国农业科学,2003,36(6):640-645.
    [144]庄巧生.庄巧生论文集[M].北京:中国农业出版社.1999:412-413.
    [1]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000,17-19.
    [2]林忠成,叶世超,戴其根,等.太湖流域施氮量对小麦-土壤系统氮素利用的影响[J].麦类作物学报,2010,30(1):141-148.
    [3]季书勤,赵淑章,吕凤荣,等.多穗型小麦品种公顷产9000kg主要技术指标及关键技术[J].麦类作物学报,2001,21(1):55-59.
    [4]李国强,汤亮,张文宇,等.不同株型小麦干物质积累与分配对氮肥响应的动态分析[J].作物学报,2009,35(12):2258-2265.
    [5]于振文,田奇卓,潘庆民,等.黄淮麦区冬小麦超高产栽培的理论与实践[J].作物学报,2002,28(5):577-585.
    [6]张法全,王小燕,于振文,等.公顷产10000kg小麦氮素和干物质积累与分配特性[J].作物学报,2009,35(6):1086-1096.
    [7]张铭,蒋达,缪瑞林,等.稻茬田肥力水平与施氮量对小麦籽粒产量和物质生产的影响[J].麦类作物学报,2010,30(2):330-336.
    [8]朱新开,郭文善,何建华,等.淮南麦区超高产小麦产量形成特点及其生理特性分析[J].麦类作物.1998,18(6):40-44.
    [1]Alessandro Masoni a, Laura Ercoli, Marco Mariotti, et al. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type[J]. European Journal of Agronomy,2007,26:179-186.
    [2]Damon P M, Ma Q F, Rengel Z. Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress[J]. Crop and Pasture Science,2011,62(7):550-555
    [3]Dordas C. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations[J]. European Journal of Agronomy,2009,30(2):129-139.
    [4]Flowers M, Weisz R, Heiniger R, et al. In-season optimization and site-specific nitrogen management for soft red winter wheat[J]. Agron J,2004,96:124-134.
    [5]Moll R H, Kamprath E J, Kacksom W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy journal,1982,74(5-6):562-564.
    [6]Roshania G A, Narayanasamyb G. Effects of potassium on temporal growth of root and shoot of wheat and its uptake in different soils[J]. International Journal of Plant Production,2010,4(1):25-32.
    [7]Slaton N A, Mozaffari M, DeLong R E et al. Influence of nitrogen fertilizer application rate and time on winter wheat yields[J]. Arkansas Agric Exp Sta Res Ser,2005,525:95-99.
    [8]Swiadera J M, Chyana Y, Freijia F G. Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids[J]. Journal of Plant Nutrition,1994,17(10):1687-1699.
    [9]Timsina J, Singh U, Badaruddin M, et al. Cultivar,nitrogen, and water effects on productivity, and nitrogen use efficiency and balance for rice-wheat sequences of Bangladesh[J]. Field Crops Res,2001, 72:143-161.
    [10]Wilhelm W W, McMaster G S, Harrell D M. Nitrogen and dry matter distribution by culm and leaf position at two stages of vegetative growth in winter wheat[J]. Agron J,2002,94:1078-1086.
    [11]Wong M T F, Corner R J, Cook S E. A decision support system for mapping the site-specific potassium requirement of wheat in the field[J]. Australian Journal of Experimental Agriculture,2001,41(5):655-661.
    [12]Zhang G P, Chen J X, Eshetu A T. Genotypic variation for potassium uptake and utilization efficiency in wheat[J]. Nutrient Cycling in Agroecosystems,1999,54(1):41-48.
    [13]Zhang H M, Yang X Y, He X H, et al. Effect of long-term potassium fertilization on crop yield and potassium efficiency and balance under wheat-maize rotation in China[J]. Pedosphere,2011,21(2):154-163.
    [14]韩燕来,介晓磊,谭金芳,等.超高产冬小麦氮磷钾吸收、分配与运转规律的研究[J].作物学报,1998(5):9008-9015.
    [15]姜宗庆,封超年,黄联联,等.施磷量对小麦物质生产及吸磷特性的影响[J].植物营养与肥料学报,2006,12(5):628-634.
    [16]李国强,汤亮,张文宇,等.不同株型小麦干物质积累与分配对氮肥响应的动态分析[J].作物学报,2009,35(12):2258-2265.
    [17]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000,17-19.
    [18]吕伟仙,葛滢,吴建之,等.植物中硝态氮、氨态氮、总氮测定方法的比较研究[J].光谱学与光谱分析,2004,24(2):204-206.
    [19]谭金芳,介晓磊,韩燕来,等.潮土区超高产麦田供钾特点与小麦钾素营养研究[J].麦类作物学报,2001,21(1):45-50.
    [20]王强盛,甄若宏,丁艳锋,等.钾肥用量对优质粳稻钾素积累利用及稻米品质的影响[J].中国农业科学,2004,37(10):1444-1450.
    [21]王树亮,田奇卓,李娜娜,等.不同小麦品种对磷素吸收利用的差异[J].麦类作物学报,2008,28(3):476-483.
    [22]吴国梁,崔秀珍.高产小麦氮磷钾营养机理和需肥规律研究[J].中国农学通报,2000,16(2):8-11.
    [23]于振文,田奇卓,潘庆民,等.黄淮麦区冬小麦超高产栽培的理论与实践[J].作物学报,2002,28(5):577-585.
    [24]余松烈,亦新华,刘希运.高产冬小麦对三要素的吸收和供应特点的研究[J].土壤肥料,1981(1):31-34.
    [25]张法全,王小燕,于振文,等.公顷产10000 kg 小麦氮素和干物质积累与分配特性[J].作物学报,2009,35(6):1086-1096.
    [26]张洪程,许轲,戴其根,等.超高产小麦吸氮特性与氮肥运筹的初步研究[J].作物学报,1998,24(6):935-940.
    [27]张铭,蒋达,缪瑞林,等.稻茬田肥力水平与施氮量对小麦籽粒产量和物质生产的影响[J].麦类作物学报,2010,30(2):330-336.
    [28]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983,276-277.
    [29]周玲,赵护兵,王朝辉,等.不同产量水平旱地冬小麦品种氮磷钾养分积累与转移的差异分析[J].中国生态农业学报,2011,19(2):318-325.
    [30]朱新开,郭文善,封超年,等.不同类型专用小麦氮肥施用参数研究[J].麦类作物学报,2009,29(2):308-313.
    [31]朱新开,郭文善,封超年,等.不同类型专用小麦氮素吸收积累差异研究[J].植株营养与肥料学报,2005,11(2):148-154.
    [1]Austin R B, Edrich J A, Ford M.A, et al. The fate of the dry matter, carbohydrates and 14C lost from the leaves and stems of wheat during grain filling[J]. Annals of Botany,1977,41(6):1309-1321.
    [2]Banziger M, Feil B, Stamp P. Competition between nitrogen accumulation and grain growth for carbohydrates during grain filling of wheat[J]. Crop Science,1994,34(2):440-446.
    [3]Kiniry J R. Nonstructural carbohydrates utilisation by wheat shaded during grain growth[J]. Agronomy Journal,1993,85(4):844-849.
    [4]Lunn J E, Hatch M D. Primary partitioning and storage of photosynthate in sucrose and starch in leaves of C4 plants[J]. Planta,1995,197(2):385-391.
    [5]Valluru R, Link J, Claupein W. Natural variation and morpho-physiological traits associated with water-soluble carbohydrate concentration in wheat under different nitrogen levels[J]. Field Crops Research, 2011,124(1)104-113.
    [6]胡济生,梁德印.关于小麦碳氮营养关系的商讨[J].中国农业科学,1961,2(5):26-28.
    [7]吕伟仙,葛滢,吴建之,等.植物中硝态氮、氨态氮、总氮测定方法的比较研究[J].光谱学与光谱分析,2004,24(2):204-206.
    [8]孙大业,杨家泗.糖氮比在小麦植株营养诊断中的运用[J].中国农业科学,1978,11(4):32-39.
    [9]张继林,孙元敏,郭绍铮,等.高产小麦营养生理特性与高效施肥技术研究[J].中国农业科学,1988,21(4):39-45.
    [10]朱新开,严六零,郭文善,等.淮北稻茬超高产小麦碳氮代谢特征研究[J].麦类作物学报,2002,22(1):51-55.
    [1]Evans L T. Photosynthesis and nitrogen relationships in leaves of C3 plants[J].Oecologia,1989,78:9-19.
    [2]Gerbaud A, Andree M, Richaud C. Gas exchange and nitrogen nutrition patterns during the life cycle of an artificial wheat crop[J]. Physiologic Plantarum,1988,73(4):471-478.
    [3]Khaliq I, Irshad A, Ahsan M. Awns and flag leaf contribution towards grain yield in spring wheat (Triticum aestivum L.)[J]. Cereal Res. Comm.2008,36:65-76.
    [4]Shanahan J F, Donnelly K J, Smithetal D H. Shoot development associated with grain yield in winter wheat[J]. Crop Science,1985,25:770-775.
    [5]陈国祥,张荣铣.小麦旗叶光合功能衰退过程中PSII特性的研究[J].中国农业科学,2004,37(1):36-42.
    [6]董树亭.高产冬小麦群体光合能力与产量关系的研究[J].作物学报,1991,17(6):461-468.
    [7]高海涛,王育红,孟战赢,等.超高产小麦产量及旗叶生理特性的研究[J].麦类作物学报,2010,30(6):1080-1084.
    [8]郭天财,彭文博,王向阳,等.小麦灌浆后青枯骤死原因分析及控制[J].作物学报,1997,23(4):474-481.
    [9]郝代成,高国华,朱云集,等.施氮量对超高产冬小麦花后光合特性及产量的影响[J].麦类作物学报,2010,30(2):346-352.
    [10]胡延吉,兰近好.不同时期小麦品种冠层结构研究[J].中国农业气象,1999,20(1):11-14
    [11]李春燕,徐月明,郭文善,等.氮素运筹对弱筋小麦扬麦9号产量、品质和旗叶衰老特性的影响[J].麦类作物学报,2009,29(3):524-529.
    [12]潘庆民,于振文,田奇卓,等.追氮时期对超高产冬小麦旗叶和根系衰老的影响[J].作物学报,1998,24(6):924-929.
    [13]彭永欣,封超年,郭文善,等.小麦潜在源、库与产量关系的研究[A].彭永欣,郭文善,严六零,等.小麦栽培与生理[C].南京:东南大学出版社,1992:1-21.
    [14]徐恒永,赵君实.高产冬小麦的冠层光合能力及不同器官的贡献[J].作物学报,1995,21(2):204-209.
    [15]于振文,田奇卓,潘庆民,等.黄淮麦区冬小麦超高产栽培的理论与实践[J].作物学报,2002,28(5):577-585.
    [16]岳寿松,于振文,余松烈,等.不同生育时期施氮对冬小麦旗叶衰老和粒重的影响[J].中国农业科学,1997,30(2):42-46.
    [17]郑丕尧.作物生理学导论[M].北京:北京农业大学出版社.1992,169-210.
    [18]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [19]朱新开,郭凯泉,李春燕,等.氮肥运筹比例对稻田套播强筋小麦产量及花后旗叶衰老的影响[J].麦类作物学报,2010,30(5):900-904.
    [1]杜世州,曹承富,张耀兰,等.氮肥基追比对淮北地区超高产小麦产量和品质的影响[J].麦类作物学报,2009,29(6):1027-1033.
    [2]杜世州,曹承富,张耀兰,等.氮素运筹对淮北地区超高产小麦养分吸收利用的影响[J].植物营养与肥料学报,2011,17(1):9-15.
    [3]何照范.粮油籽粒品质及其分析技术[M].北京:中国农业出版社,1985:290-294.
    [4]陆成彬,张伯桥,高德荣,等.弱筋小麦高产优质栽培模式研究[J].麦类作物学报,2006,26(6):91-94.
    [5]唐国章,王永华,郭天财,等.氮素施用对超高产小麦生育后期光合特性及产量的影响[J].作物学报,2003,29(1):82-86.
    [6]王之杰,郭天财,王化岑,等.种植密度对超高产小麦生育后期光合特性及产量的影响[J].麦类作物学报,2001,21(3):64-67.
    [7]于振文,潘庆民,姜东,等.9000kg/公顷小麦施氮量与生理特性分析[J].作物学报,2003,29(1):37-43.
    [8]袁秋勇,李庚生,郭万胜,等.淮南稻茬小麦大面积超高产栽培技术研究[J].江苏农业科学,1997,6:11-13.
    [9]张洪程,许轲,戴其根,等.超高产小麦吸氮特性与氮肥运筹的初步研究[J].作物学报,1998,24(6):935-940.
    [10]朱冬梅,刘蓉蓉,马谈斌,等.弱筋小麦扬麦15优质高产群体调控技术研究[J].江苏农业科学,2005,(6):16-21.
    [11]朱新开,郭文善,何建华,等.淮南麦区超高产小麦产量形成特点及其生理特性分析[J].麦类作物.1998,18(6):40-44.
    [12]朱新开,郭文善,王龙俊,等.江苏省小麦高产超高产创建途径分析[A].张洪程等编,作物生产理论与技术研究进展[C].江苏:扬州大学农学院.2011.
    [13]朱新开,郭文善,周正权,等.氮肥对中筋小麦扬麦10号氮素吸收、产量和品质的调节效应[J].中国农业科学,2004,37(12):1831-1837.
    [14]朱新开,郭文善,周君良,等.氮素对不同类型专用小麦营养和加工品质调控效应[J].中国农业利学,2003,36(6):640-645.
    [15]朱云集,郭天财,王晨阳,等.两种穗型冬小麦品种产量形成特点及超高产关键栽培技术研究[J]麦类作物学报,2006,26(1):82-86.
    [16]余松烈,山东农省农业厅.山东小麦[M].1990.
    [1]Alessandro M, Laura E, Marco M, et al. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type[J]. European Journal of Agronomy, 2007,26:179-186.
    [2]Austin R B, Edrich J A, Ford M A, et al. The fate of dry matter, carbohydrates and 14C lost from the leaves and stems of wheat during grain filling[J]. Annals of Botany,1977,41:1309-1321.
    [3]Austin R B, Morgan C L, Ford M A. Flag leaf photosynthesis of Triticum aestivum and related diplpid and teraploid species[J]. Annales Botanici Fennici,1982,49:177.
    [4]Banziger M, Feil B, Stamp P. Competition between nitrogen accumulation and grain growth for carbohydrates during grain filling of wheat[J]. Crop Science,1994,34(2):440-446.
    [5]Bertheloot J, Martre P, Andrieu B. Dynamics of light and nitrogen distribution during grain filling within wheat canopy[J]. Plant Physiology,2008,148(3):1707-1720
    [6]Bidinger F R, Musgrave R B, Fisher R A. Contribution of stored preanthesis assimilate to grain yield in wheat and barley[J]. Nature,1977,270:431-433
    [7]Blum A. Improving wheat grain filling under stress by stem reserve mobilization[J]. Euphytica,1998, 100(1):77-83.
    [8]Burkart S, Manderscheid R, Weigel H J. Design and performance of a portable gas exchange chamber system for CO2- and H2O-flux measurements in crop canopies[J]. Environ. Exp. Bot.2007,61:25-34;
    [9]Cabrera-Bosquet L, Albriziob R, Araus J L, et al. Photosynthetic capacity of field-grown durum wheat under different N availabilities:A comparative study from leaf to canopy [J]. Environmental and Experimental Botany,2009,67:145-152.
    [10]Cai R G, Zhang M, Yin Y P, et al. Photosynthetic characteristics and antioxidative metabolism of flag Leaves in responses to nitrogen application during grain filling of field-grown wheat[J]. Agricultural Sciences in China,2008,7(2):157-16
    [11]Carrido-Lestache E, Lopez-Bellido R J, L6pez-Bellido L. Effect of N rate, timing and splitting and N type on bread-making quality in hard red spring wheat under rained Mediterranean conditions[J]. Field Crops Research,2004,85:213-236.
    [12]Damon P M, Rengel Z. Wheat genotypes differ in potassium efficiency under glasshouse and field conditions [J]. Australian Journal of Agricultural Research,2007,58(8):816-825.
    [13]Davidson D J, Chevalier P M. Storage and remobilization of water-soluble carbohydrates in stemd of spring wheat[J]. Crop Scien.ce,1992,32(1):186-190
    [14]Devos N M, Spiertz J, Kramer T H.. Cultivar difference in plant crop photosynthesis[M]. Crop Physiology and Breeding, Edited by Spiertz J and Kramer T H. Pudoe Wageningen,1979,71-74.
    [15]Dhugga K S, Waines J G. Analysis of nitrogen accumulation and use in bread and durum wheat[J]. Crop Sci,1989,29(5):1232-1239
    [16]Dordas C. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilizationi as affected by N and P fertilization and source-sink relations[J]. European Journal of Agronomy,2009, 30(2):129-139.
    [17]Dreccer M F, Herwaarden A F, Chapman S G. Grain number and grain weight in wheat lines contrasting for stem water soluble carbohydrate concentration[J]. Field Crops Research,2009,112(1):43-54.
    [18]Ehdaie B, Waines J G. Sowing date and nitrogen rate effects on dry matter and nitrogen partitioning in bread and durum wheat[J]. Field Crops Research,2001,73:47-61.
    [19]Evans L T, Dunstone R L. Some physiological aspects of evelotion in wheat[J]. Aust. J. Agri. Res,1971, 23:725.
    [20]Evans L T. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia,1989,78:9-19.
    [21]Ferrise R, Triossi A, Stratonovitch P, et al. Sowing date and nitrogen fertilisation effects on dry matter and nitrogen dynamics for durum wheat:An experimental and simulation study[J]. Field Crops Research, 2010,117(2-3):245-257.
    [22]Field C B, Jackson R B, Mooney H A. Stomatal responses to increased CO2 implication from the plant to the global-scale[J]. Plant Cell Environ,1995,18:1214-1225.
    [23]Fuertes-Mendizabal T, Aizpurua A, Gonzalez-Moro M B, et al. Improving wheat breadmaking quality by splitting the N fertilizer rate[J]. Europ. J. Agronomy,2010,33:52-61.
    [24]Gallangher J N, Biscoe P V, Hunter B. Effect of drought on grain growth[J]. Nature,1976,264:541-542.
    [25]Geletaa B, Ataka M, Baenziger P S, et al. Seeding rate and genotype effect on agronomic performance and end-use quality of winter Wheat[J]. Crop Science,2002,42(3):827-832.
    [26]Gutierrez-Rodriguez M, Reynoldsb M P, Larque-Saavedra A. Photosynthesis of wheat in a warm, irrigated environment Ⅱ. Traits associated with genetic gains in yield[J]. Field Crops Research,2000,66: 51-62.
    [27]Hardy R F W, Havelka U D, Q uebedeaux B. Increasing crop productivity:the problem, strategies approach and selected rate2lim itations to photosynthesis[M]. Proceeding of 4th International Congress of Photosynthesis, London:Biochemical Society,1978,695-719.
    [28]Photiades I, Hadjichristodoulou A. Sowing date, sowing depth, seed rate and row spacing of wheat and barley under dryland conditions[J]. Field Crops Research,1984,9:151-162
    [29]Jiang D, Dai T, Jing Q, et al. Effects of longterm fertilization on leaf photosynthetic characteristics and grain yield in winter wheat[J]. Photosynthetica,2004,42:439-446.
    [30]Khaliq I, Irshad A, Ahsan M. Awns and flag leaf contribution towards grain yield in spring wheat (Triticum aestivum L.)[J]. Cereal Res. Comm.,2008,36,65-76.
    [31]Loffler A M, Busch R H. Selection for grain protein, grain yield and nitrogen partitioning efficiency in hard red spring wheat[J]. Crop Science,1982,22:591-595.
    [32]Masoni A, Ercoli L, Mariotti M, et al. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type[J]. European Journal of Agronomy, 2007,26(3):179-186.
    [33]McIntyre C L, Casu R E, Rattey A, et al. Linked gene networks involved in nitrogen and carbon metabolism and levels of water-soluble carbohydrate accumulation in wheat stems[J]. Functional & Integrative Genomics,2011,11(4):585-597.
    [34]Mohanty N. Photosynthetic characteristics and enzymatic antioxidant capacity of flag leaf and the grain yield in two cultivars of Triticum aestivum (L.) exposed to warmer growth conditions[J]. J. Plant Physiol, 2003,160:71-74.
    [35]Moll R H, Kamprath E J, Kacksom W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy journal,1982,74(5-6):562-564.
    [36]Papakosta D.K. Phosphorus accumulation and translocation in wheat as affected by cultivar and nitrogen fertilization[J]. Journal of agronomy and crop science.,1994,173:260-270.
    [37]Pearmen 1,Thomas S M, Thome G N. Effects of nitrogen fertilizer on photosynthesis of several varieties of winter wheat[J]. Annals of Botany,1977,43:613-621.
    [38]Puckridge D W, Donald C M. Competition among wheat plants sown at a wide rang of plant densities[J]. Australian Journal Of Agricultural Research,1967,18:193-211.
    [39]Rattey A, Shorter R, Chapman S, et al. Variation for and relationships among biomass and grain yield component traits conferring improved yield and grain weight in an elite wheat population grown in variable yield environments[J]. Crop & Pasture Science,2009,60(8):717-729.
    [40]Rebetzke G J, Herwaarden A F V, Jenkins C, et al. Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat[J]. Australian Journal of Agricultural Research,2008, 59(10):891-905.
    [41]Ruuska S A, Lewis D C, Kennedy G, et al. Large scale transcriptome analysis of the effects of nitrogen nutrition on accumulation of stem carbohydrate in reproductive-stage wheat[J]. Plant Molecular Biology, 2008,66(1-2):15-32.
    [42]Sadrasa V O, Lawsona C, Montorob A. Photosynthetic traits in Australian wheat varieties released between 1958 and 2007[J]. Field Crops Research,2012,134:19-29.
    [43]Scheible W R, Gonzales-Fontes A, Lauerer M, et al. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco[J]. The Plant Cell,1997,9(5):783-798.
    [44]Schnyder H. The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling—a review[J]. New Phytologist,1993,123(2):233-245.
    [45]Scofield G N, Ruuska S A, Aoki N, et al. Starch storage in the stems of wheat plants:localization and temporal changes[J]. Annals of Botany,2009,103(6):859-868.
    [46]Shanahan J F, Donnelly K J, Smithetal D H. Shoot development associated with grain yield in winter wheat[J]. Crop Science,1985,25:770-775.
    [47]Singer J W, Sauer T J, Blaser B C, et al. Radiation use efficiency in dual winter cereal-forage production systems[J]. Agronomy Journal,2007,99:1175-1179.
    [48]Smith C J, White D M. Nitrogen accumulation and redistribution of late applied of N15 labelled fertilizer by wheat[J]. Field Crop Res,1990,24(4):221-228.
    [49]Swiadera J M, Chyana Y, Freijia F G. Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids[J]. Journal of Plant Nutrition,1994,17(10):1687-1699.
    [50]Thomas H, Howarch C J. Five ways to stay green[J]. Journal of Experimental Botany,2000,51:329-337.
    [51]Van-Sanford D A, MacKown C T. Cultivar differences in nitrogen remobilization during grain fill in soft red winter wheat[J]. Crop Sci,1987,27(2):295-300.
    [52]Varga B, Svednjak Z. The effect of late-season urea spraying on grain yield and quality of winter wheat cultivars under low and high basal nitrogen fertilization[J]. Field Crops Research,2006,96:125-132.
    [53]Wang C, Ende W V D, Tillberg J E. Fructan accumulation induced by nitrogen deficiency in barley leaves correlates with the leaves of sucrose:fructan 6-fructosyltransferase Mrna[J]. Planta,2000,211(5): 701-707.
    [54]Wang C, Tillberg J E. Effects of nitrogen deficiency on accumulation of fructan and fructan metabolising enzyme activities in sink and source leaves of barley (Hordeum vulgare)[J]. Physiologia Plantarum, 1996,97(2):339-345.
    [55]Wang X R, Shen J B, Liao H. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops[J]. Plant Science,2010,179:302-306.
    [56]William T P. Potassium influences on yield and quality production for maize, wheat, soybean and cotton[J]. Physiologia Plantarum,2008,133(4):670-681.
    [57]Tang X, Li J M, Ma Y B, et al. Phosphorus efficiency in long-term (15 years) wheat-maize cropping systems with various soil and climate conditions[J]. Field Crops Research,2008,108:231-237.
    [58]Zhu X K, Guo W S, Ding J F, et al. Enhancing nitrogen use efficiency by combinations of nitrogen application amount and time in wheat[J]. Journal of Plant Nutrition,2011,34:1747-1761.
    [59]曹倩,贺明荣,代兴龙,等.密度、氮肥互作对小麦产量及氮素利用效率的影响[J].植物营养与肥料学报,2011,17(4):815-822.
    [60]党红凯,李瑞奇,李雁鸣,等.超高产栽培条件下冬小麦对磷的吸收、积累和分配[J].植株营养与肥料学报,2012,18(3):531-541.
    [61]丁晓义,姜鸿明,严美玲,等.胶东半岛冬小麦9750kg/hm2超高产品种类型筛选及群体质量指标研究[J].山东农业科学,2007,4:46-49.
    [62]丁雪惠,唐明臻,吴兆苏.江苏淮阴地区小麦品种产量能力及其育种目标的探讨[J].南京农业大学学报,1992,15(2):16-20.
    [63]杜世州,曹承富,张耀兰,等.氮素运筹对淮北地区超高产小麦养分吸收利用的影响[J].植物营养与肥料学报,2011,17(1):9-15.
    [64]杜永,王艳,王学红,等.稻麦两熟区超高产小麦株型特征研究[J].麦类作物学报,2008,28(6):1075-1079.
    [65]封超年,朱新开,王龙俊,等.小麦茎蘖成穗率与产量关系及其调控[J].江苏农业研究,1999,20(3):1-7.
    [66]高海涛,王育红,孟战赢,等.超高产小麦产量及旗叶生理特性的研究[J].麦类作物学报,2010,30(6):1080-1084.
    [67]韩燕来,介晓磊,谭金芳,等.超高产冬小麦氮磷钾吸收、分配与运转规律的研究[J].作物学报,1998.5:908-9015.
    [68]郝代成,高国华,朱云集,等.施氮量对超高产冬小麦花后光合特性及产量的影响[J].麦类作物学报,2010,30(2):346-352.
    [69]季书勤,赵淑章,吕凤荣,等.多穗型小麦品种公顷产9000 kg 主要技术指标及关键技术[J].麦类作物学报,2001,21(1):55-59.
    [70]贾维贵,刘维,张作仿,等.稻茬小麦大面积地产变中产栽培技术及其经济效益研究[J].安徽农业科学,1988,36(2):4548.
    [71]姜丽娜,李春喜,代西梅,等.超高产小麦氮素吸收、积累及分配规律的研究[J].麦类作物学报,2000,20(2):53-59.
    [72]孔令聪,汪建来,曹承富,等.主要栽培措施对中筋小麦皖麦44产量和品质的影响[J].麦类作物学报,2004,24(4):84-87.
    [73]林仁惠.中国小麦生产的成本效益分析[J].世界农业,2008,256:11-12.
    [74]凌启鸿,郭文善,彭永欣,等.小麦高产群体质量及其优化控制技术研究与应用研究报告[J].江苏农学院学报,1995,16(专):7-51.
    [75]凌启鸿,朱庆森.小麦各叶位叶片对产量形成作用的研究[J].作物学报,1965,4(3):219-233.
    [76]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000,17-19.
    [77]刘爱民,于格.中美小麦生产成本与收益有多大[J].中国农业信息,2003,(6):7-9.
    [78]刘萍,郭文善,徐月明,等.种植密度对中、弱筋小麦籽粒产量和品质的影响[J].麦类作物学报,2006,26(5):117-121.
    [79]刘万代,杜沛鑫,尹钧,等.种植密度对超高产小麦豫麦49-198籽粒产量及品质的影响[J].安徽农业科学,2008,36(35):15402-15404.
    [80]陆成彬,张伯桥,高德荣,等.弱筋小麦高产优质栽培模式研究[J].麦类作物学报,2006,26(6):91-94.
    [81]陆建飞,刘锋,陈波.江苏省五大作物超高产栽培的技术经济分析[J].农业技术经济,2002,(6):39-42.
    [82]马兴华,于振文,梁晓芳,等.施氮量和底追比例对小麦氮素吸收利用及籽粒产量和蛋白质含量的影响[J].植物营养与肥料学报,2006,12(2):150-155.
    [83]慕美财,史桂萍,邹积华,等.小麦控株增穗栽培的源库流特点[J].麦类作物学报,2008,28(4):502-506.
    [84]彭永欣,封超年,郭文善,等.小麦潜在源、库与产量关系的研究[C].彭永欣,郭文善,严六零,等.小麦栽培与生理.南京:东南大学出版社,1992:1-21.
    [85]钱维朴,俞仲林,刘葆金.淮北地区百亩小麦千斤高产栽培技术原理与经济效益分析[J].南京农学院学报,1981,4:1-14.
    [86]盛承师.小麦冠层形态结构与籽粒产量的关系(一)[J].国外农学-麦类作物,1986,4:20-24.
    [87]孙大业,杨家泗.糖氮比在小麦植株营养诊断中的运用[J].中国农业科学,1978,11(4):32-39.
    [88]田纪春,陈建省,王延训,等.氮素追肥后移对小麦籽粒产量和旗叶光合特性的影响[J].中国农业科学,2001,34(1):101-103.
    [89]童依平,李继云,李振声.不同小麦品种吸收利用氮素效率的差异及有关机理研究Ⅰ:吸收和利用效率对产量的影响[J].西北植株学报,1999,19(2):270-277.
    [90]王龙俊.小麦产量八连增的“后发展时代”[J].江苏农村经济,2012(4):28-31.
    [91]王树丽,贺明荣,代兴龙,等.种植密度对冬小麦根系时空分布和氮素利用效率的影响[J].应用生态学报,2012,23(7):1839-1845.
    [92]王之杰,郭天财,王化岑,等.种植密度对超高产小麦生育后期光合特性及产量的影响[J].麦类作物学报,2001,21(3):64-67.
    [93]许振柱,于振文,王东,等.灌溉量对小麦氮素吸收和运转的影响[J].作物学报,2004,30(10):1002-1007.
    [94]阳显斌,张锡洲,李廷轩,等.磷素子粒生产效率不同的小麦品种磷素吸收利用差异[J].植物营养与肥料学报,2011,17(3):525-531.
    [95]于振文,梁晓芳,李延奇,等.施钾量和施钾时期对小麦氮素和钾素吸收利用的影响[J].应用生态学报,2007,18(1):69-74.
    [96]于振文,潘庆民,姜东,等.9000 kg/公顷小麦施氮量与生理特性分析[J].作物学报,2003,29(1):37-43.
    [97]于振文,田奇卓,潘庆民,等.黄淮麦区冬小麦超高产栽培的理论与实践[J].作物学报,2002,28(5):577-585.
    [98]余松烈,亦新华,刘希运.高产冬小麦对三要素的吸收和供应特点的研究[J].土壤肥料,1981(1):31-34.
    [99]岳寿松,于振文,余松烈,等.不同生育时期施氮对冬小麦旗叶衰老和粒重的影响[J].中国农业科学,1997,30(2):42-46.
    [100]张法全,王小燕,于振文,等.公顷产10000 kg 小麦氮素和干物质积累与分配特性[J].作物学报,2009,35(6):1086-1096.
    [101]张国平,张光恒.小麦氮素利用效率的基因型差异研究[J].植株营养与肥料学报,1996,2(4):331-336.
    [102]张洪程,许轲,戴其根,等.黄淮地区小麦超高产形成及其特征的初步研究[J].江苏农业科学,1998,2:2-6.
    [103]张洪程,许轲,戴其根,等.超高产小麦吸氮特性与氮肥运筹的初步研究[J].作物学报,1998,24(6):935-940.
    [104]张继林,孙元敏,郭绍铮,等.高产小麦营养生理特性与高效施肥技术研究[J].中国农业科学,1988,21(4):39-45.
    [105]张铭,蒋达,缪瑞林,等.稻茬田肥力水平与施氮量对小麦籽粒产量和物质生产的影响[J].麦类作物学报,2010,30(2):330-336.
    [106]赵俊哗,于振文,李延奇,等.施氮量对小麦氮磷钾养分吸收利用和产量的影响[J].西北植物学报,2006,26(1):98-103.
    [107]赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J].作物学报,2006,32(4):484-490.
    [108]周玲,赵护兵,王朝辉,等.不同产量水平旱地冬小麦品种氮磷钾养分积累与转移的差异分析[J].中国生态农业学报,2011,19(2):318-325.
    [109]朱冬梅,刘蓉蓉,马谈斌,等.弱筋小麦扬麦15优质高产群体调控技术研究[J].江苏农业科学,2005.6:16-21.
    [110]朱新开,郭文善,封超年,等.不同类型专用小麦氮素吸收积累差异研究[J].植株营养与肥料学报,2005,11(2):148-154.
    [111]朱新开,郭文善,封超年,等.不同类型专用小麦优质高产群体氮素积累特征分析[J].扬州大学学报(农业与生命科学版),2007,28(3):58-63.
    [112]朱新开,郭文善,何建华,等.淮南麦区超高产小麦产量形成特点及其生理特性分析[J].麦类作物.1998,18(6):40-44.
    [113]朱新开,郭文善,周君良,等.氮素对不同类型专用小麦营养和加工品质调控效应[J].中国农业科学,2003,36(6):640-645.
    [114]朱新开,郭文善,周正权,等.氮肥对中筋小麦扬麦10号氮素吸收、产量和品质的调节效应[J].中国农业科学,2004,37(12):1831-1837.
    [115]朱新开,严六零,郭文善,等.淮北稻茬超高产小麦碳氮代谢特征研究[J].麦类作物学报,2002,22(1):51-55.
    [116]朱致伟,于振文.我国小麦生产成本收益情况分析[J].山东农业科学,2007,4:61-64.
    [117]庄巧生.庄巧生文件[M].中国农业出版社,1999:412-413.