层状双羟基复合金属氧化物及其薄膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以发展层状双羟基复合金属氧化物(LDHs)电化学功能材料为目标,采用多种技术手段制备了一系列LDHs纳米粉体及LDHs基纳米结构薄膜。采用X射线衍射(XRD)、电感耦合等离子体原子发射光谱(ICP-AES)、傅立叶变换红外光谱(FT-IR)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、热重-质谱联用(TG-MS)、透射电镜(TEM)、高分辨透射电镜(HR-TEM)、场发射扫描电镜(FE-SEM)、扫描隧道显微镜(STM)和电化学测试等表征手段对合成产物组成结构、电极反应机理以及材料组成结构与电化学性能之间的关系进行了较深入的研究。主要研究工作和结论如下:
     1、采用成核晶化隔离法制备了粒径分布均一的不同Co/Al比的碳酸根插层Co-Al LDHs。系统研究了焙烧处理温度和Co/Al比对其组成、微观形貌、比表面积、晶体结构和电化学性能的影响。Co/Al比为2的Co-Al LDHs在160℃焙烧处理后仍能保持层状结构,且Co电化学活性位得到充分暴露。其比电容达684 F·g~(-1),并具有良好的倍率特性和电化学循环稳定性。这种材料在超级电容器电极材料中具有应用价值。
     2、采用电泳沉积技术制备了Mg-Al LDHs薄膜。将Mg-Al LDHs纳米颗粒分散在无水乙腈中制备悬浮液,在直流电场作用下,表面带有正电荷的Mg-Al LDHs纳米颗粒将向氧化铟锡导电玻璃(ITO)阴极定向迁移并沉积形成Mg-Al LDHs薄膜。系统考察了电泳沉积时间和电压以及悬浮液浓度对薄膜沉积量和微观形貌的影响。在相同浓度的悬浮液和相同沉积时间内,薄膜沉积量随施加电压的增大而增大;在相同电压条件下,薄膜沉积量随沉积时间的延长而增大;而在相同沉积电压和时间下,薄膜沉积量随悬浮液浓度的增大而线性增大。
     3、采用电泳沉积技术制备了Co-Al LDHs/多壁碳纳米管(MWCNTs)复合薄膜。将表面带有正电荷的Co-Al LDHs纳米颗粒和表面带有负电荷的MWCNTs分散在无水乙腈中后,由于二者之间的静电自组装将形成带有正电荷的Co-Al LDHs/MWCNTs复合颗粒。在直流电场作用下,向ITO阴极定向迁移并沉积形成Co-AlLDHs/MWCNTs复合薄膜。得益于MWCNTs的加入,该复合薄膜的倍率特性和电化学循环稳定性明显得到改善。
     4、采用电泳沉积技术,利用Zn-Al LDHs纳米片作为构建模块,在ITO基片上制备了Zn-Al LDHs纳米球薄膜。薄膜形貌可以通过控制沉积时间加以调控。进一步的焙烧处理可以制备Zn-Al复合金属氧化物(MMO)纳米球薄膜。形成这种纳米球结构的原因是在电泳沉积过程中,作为剥层溶剂的甲酰胺会发生电解反应生成类金刚石(DLC)前体,Zn-Al LDHs纳米片以其为晶核组装成纳米球。
     5、采用溶剂蒸发法,以具有电化学活性的LDHs纳米片作为构建模块,在ITO基片上制备了连续高取向的LDHs纳米片薄膜电极材料。系统研究了Al含量、薄膜厚度和焙烧处理温度对Co-Al LDHs纳米片薄膜电极材料电化学性能的影响。Co/Al比为3的薄膜电极材料比电容高达2500 F·cm~(-3)(833 F·g~(-1)),且具有好的倍率特性和优异的循环稳定性,是一类高性能薄膜超级电容器电极材料。通过对Ni-AlLDHs纳米片薄膜电极材料的电化学性能研究发现,该薄膜电极材料的电极反应受质子扩散控制,其质子扩散系数高(1.92×10~(-9) cm~2·s~(-1))。按Ni计算其比容量达660 mAh·g~(-1),且具有好的倍率特性和循环稳定性,是一类高功率型Ni-MH电池电极材料。
In this paper,we are trying to develop the application of Layered Double Hydroxides(LDHs) in electrochemistry.Based on this conception, a series of powdery LDHs nanomaterials and LDHs based nanostructured thin films have been synthesized by a variety of techniques.Structure and composition of the synthesized materials,electrode reaction mechanisms, the relationships among structure,composition and electrochemical properties of materials were characterized by means of XRD,ICP-AES, FT-IR,Raman,XPS,TG-MS,TEM,HR-TEM,FE-SEM,STM and electrochemical test.The main results are as follows:
     1.Co-Al LDHs have been synthesized by a method involving separate nucleation and aging steps.The effects of thermal treatment and Co/Al mole ratio on their microscopic morphology,surface area, crystal structure,and electrochemical behavior have also been investigated.The Co-Al LDHs with the Co/Al ratio of 2:1 retain a layered structure up to 160℃and the electrochemically active Co sites become increasingly exposed.This material obtained by heating at 160℃exhibited supercapacitor behavior with a high specific capacitance of 684 F·g~(-1),a good high-rate capability,and an excellent electrochemical stability.This material can be used as electrode material for supercapacitors.
     2.Mg-Al LDH films have been fabricated by an electrophoretic deposition(EPD) method.The Mg-Al LDH nanoparticles were dispersed in pure acetonitrile medium to prepare the suspension solution.By applying a positive voltage,the positively charged Mg-Al LDH nanoparticles moved towards the conductive indium tin oxide(ITO)-coated glass cathode and deposited on it.A kind of Mg-Al LDH films can be obtained.The effects of EPD parameter, sucha as voltage,time,and suspensiosn concentration,have also been investigated.The deposition weight increases with the time for the same voltage and suspension concentration;the deposition weight increases with the EPD voltage for the same time and suspension concentration;the deposition weight increases linearly with the suspension concentration for the same votage and time.
     3.A novel Co-Al LDHs/multiwall carbon nanotubes(MWCNTs) composite film has been fabricated on the ITO substrate via an EPD method.EPD of two different charged nanoparticles,the positively charged Co-Al LDHs nanoparticles and the negatively charged MWCNTs,has been achieved due to the self-assembly of the Co-Al LDH nanoparticles to the surface of the MWCNTs.The further electrochemical investigations show that the composite films have better high-rate capability and longer cycle life than those without MWCNTs,which can be attributed to the adding of MWCNTs.
     4.A novel Zn-Al LDH nanosphere film has been fabricated on an ITO substrate using Zn-Al LDH nanosheets as building blocks via an EPD method.The morphology of the as-deposited films can be tailored by adjusting the deposition time and a Zn-Al mixed metal oxide(MMO) can be obtained by further heat treatment.We propose that the novel nanosphere microstructure results from the formation of diamond like carbon(DLC) precursor material,by electrolytic decomposition of formamide during the EPD process,which precipitates the Zn-Al nanosheets to lead to nuclei which develop into nanospheres.
     5.A serious of novel highly oriented and continuous LDH nanosheet thin film electrode materials have been fabricated using electrochemical active LDH nanosheets as building blocks by a simple evaporation method.The effects of varying the Al content,the film thickness,and the heating temperature on the electrochemical properties of the as-deposited Co-Al LDH nanosheet thin film electrode materials have been investigated.A thin film electrode material with a Co/Al molar ratio of 3:1,which has a large specific capacitance of 2500 F·cm~(-3)(833 F·g~(-1)),a good high-rate capability, and an excellent electrochemical stability,shows the best performance when used as an electrode material for thin film supercapacitors.The electrochemical investigations show that the electrode reaction of the Ni-Al LDH nanosheet thin film electrode material is controlled by proton diffusion and a high proton diffusion coefficient of 1.92×10~(-9) cm~2·s~(-1) can be obtained.A high specific capacity of 660 mAh·g~(-1) of Ni, an excellent high-rate capability,and a good electrochemical stability have also been obtained.This kind of thin film electrode material made up of Ni based LDH nanosheets may be an alternative electrode material for Ni-MH battery that can prove high energy density even at high-power specifications.
引文
[1]Braterman P S,Xu Z P,Yarberry F.Layered Double Hydroxides(LDHs).In Hand Book of Layered Materials[M].Auerbach,S M;Carrado K A;Dutta P K Eds.Marcel Dekker:New York,2004.8:373-474.
    [2]段雪,张法智.插层组装与功能材料[M].北京:化学工业出版社,2007.
    [3]沈家骢.超分子层状结构—组装与功能[M].北京:科学出版社,2003.125-185.
    [4]Williams G R,O'Hare D.Towards understanding,control and application of layered double hydroxide chemistry[J].J.Mater.Chem.,2006,16:3065-3074.
    [5]Evans D G,Duan X.Preparation of layered double hydroxides and their applications as additives in polymers,as precursors to magnetic materials and in biology and medicine[J].Chem.Commun.,2006:485-496.
    [6]Evans D G,Slade R C T.Structural aspects of layered double hydroxides[J].Struct.Bond.,2006,119:1-87.
    [7]He J,Wei M,Li B,Kang Y,Evans D G,Duan X.Preparation of layered double hydroxides [J].Struct.Bond.,2006,119:89-119.
    [8]Yun S K,Pinnavaia T J.Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides[J].Chem.Mater.,1995,7:348-354.
    [9]Wang J,Wei M,Rao G Y,Evans D G,Duan X.Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide[J].J.Solid State Chem.,2004,177:366-371.
    [10]Wei M,Shi S X,Wang J,Li Y,Duan X.Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD[J].J.Solid State Chem.,2004,177:2534-2541.
    [11]Millange F,Walton R I,O'Hare D.Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds[J].J.Mater.Chem.,2000,10:1713-1720.
    [12]Aramendia M A,Aviles Y,Borau V,Luque J M,Marinas J M,Ruiz J R,Urbano F J.Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides:a spectroscopic study[J].J.Mater.Chem.,1999,9:1603-1607.
    [13]Zhao Y,Li F,Zhang R,Evans D G,Duan X.Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps[J].Chem.Mater.,2002,14:4286-4291.
    [14]Oh J M,Hwang S H,Choy J H.The effect of synthetic conditions on tailoring the size of hydrotalcite particles[J].Solid State Ionics,2002,151:285-291.
    [15]Zou K,Zhang H,Duan X.Studies on the formation of 5-aminosalicylate intercalated Zn-Al layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes[J].Chem.Eng.Sci.,2007,62:2022-2031.
    [16]Carlino S,Hudson M J,Husain S W,Knowles J A.The reaction of molten phenylphosphonic acid with a layered double hydroxide and its calcined oxide[J].Solid State Ionics,1996,84:117-129.
    [17]Ogawa M,Asai S.Hydrothermal synthesis of layered double hydroxide-deoxycholate intercalation compounds[J].Chem.Mater.,2000,12:3253-3255.
    [18]Li F,Duan X.Applications of layered double hydroxides[J].Struct.Bond.,2006,119:193-223.
    [19]Rousselot I,Taviot-Gueho C,Besse J P.Synthesis and characterization of mixed Ga/Al-containing layered double hydroxides:study of their basic properties through the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate,and comparison to other LDHs[J].Int.J.Inorg.Mater.,1999,1:165-174.
    [20]Zhang H,Zou K,Guo S H,Duan X.Nanostructural drag-inorganic clay composites:Structure,thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides[J].J.Solid State Chem.,2006,179:1792-1801.
    [21]Zhang H,Zou K,Sun H,Duan X.A magnetic organic-inorganic composite:synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides [J].J.Solid State Chem.,2005,178:3485-3493.
    [22]Itaya K,Chang H C,Uchida I.Anion-exchanged hydrotalcite-like-clay-modified electrodes [J].Inorg.Chem.,1987,26:624-626.
    [23]Xiang H J,Kobayashi K,Chen Y M,Villemure G,Yamagishi A.Electrocatalytic response of GMP on an ITO electrode modified with a hybrid film of Ni(Ⅱ)-Al(Ⅲ) layered double hydroxide and amphiphilic Ru(Ⅱ) cyanide complex[J].Electrochem.Commun.,2001,3:473-477.
    [24]Qiu J B,Villemure G.Anionic clay modified electrodes:electrochemical activity of nickel(Ⅱ) sites in layered double hydroxide films[J].J.Electroanal.Chem.,1995,395:159-166.
    [25]Qiu J B,Villemure G.Anionic clay modified electrodes:electron transfer mediated by electroactive nickel,cobalt or manganese sites in layered double hydroxide films[J].J.Electroanal.Chem.,1997,428:165-172.
    [26]Shan D,Cosnier S,Mousty C.HRP/[Zn-Cr-ABTS]redox clay-based biosensor:design and optimization for cyanide detection[J].Biosens.Bioelectron.,2004,20:390-396.
    [27]Shan D,Cosnier S,Mousty C.Layered double hydroxides:an attractive material for electrochemical biosensor design[J].Anal.Chem.,2003,75:3872-3879.
    [28]Li F,Liu X F,Yang Q Z,Liu J J,Evans D G,Duan X.Synthesis and characterization of Ni_(1-x)Zn_xFe_2O_4 spinel ferrites from tailored layered double hydroxide precursors[J].Mater.Res.Bull.,2005,40:1244-1255.
    [29]Li F,Liu J J,Evans D G,Duan X.Stoichiometric synthesis of pure MFe_2O_4(M=Mg,Co,and Ni) spinel ferrites from tailored layered double hydroxide(hydrotalcite-like) precursors [J].Chem.Mater.,2004,16:1597-1602.
    [30]Liu J.J,Li F,Evans D G,Duan X.Stoichiometric synthesis of a pure ferrite from a tailored layered double hydroxide(hydrotalcite-like) precursor[J].Chem.Commun.,2003:542-543.
    [31]Sasaki T.Fabrication of nanostructured functional materials using exfoliated nanosheets as a building block[J].J.Ceram.Soc.Jpn.,2007,115:9-16.
    [32]Wang L Z,Omomo Y,Sakai N,Fukuda K,Nakai I,Ebina Y,Takada K,Watanabe M,Sasaki T.Fabrication and characterization of multilayer ultrathin films of exfoliated MnO_2nanosheets and polycations[J].Chem.Mater.,2003,15:2873-2878.
    [33]Osada M,Ebina Y,Takada K,Sasaki T.Gigantic magneto-optical effects in multilayer assemblies of two-dimensional titania nanosheets[J].Adv.Mater.,2006,18:295-299.
    [34]Sasaki T,Watanabe M.Semiconductor nanosheet crystallites of quasi-TiO_2 and their optical properties[J].J.Phys.Chem.B,1997,101:10159-10161.
    [35]Liu Z P,Ma R Z,Osada M,Iyi N,Ebina Y,Takada K,Sasaki T.Synthesis,anion exchange,and delamination of Co-Al layered double hydroxide:assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies[J].J.Am.Chem.Soc.,2006,128:4872-4880.
    [36]Sasaki T,Watanabe M,Hashizume H,Yamada H,Nakazawa H.Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate,pairwise association of nanosheets and dynamic reassembling process initiated from it[J].J.Am.Chem.Soc.,1996,118:8329-8335.
    [37]Alberti G,Cavalaglio S,Dionigi C,Marmottini F.Formation of aqueous colloidal dispersions of exfoliated γ-zirconium phosphate by intercalation of short alkylamines[J].Langmuir,2000,16:7663-7668.
    [38]Takagaki A,Lu D L,Kondo J N,Hara M,Hayashi S,Domen K.Exfoliated HNb_3O_8nanosheets as a strong protonic solid acid[J].Chem.Mater.,2005,17:2487-2489.
    [39]Liu Z H,Ooi K,Kanoh H,Tang W P,Tomida T.Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions[J].Langmuir,2000,16:4154-4164.
    [40]Ebina Y,Sasaki T,Harada M,Watanabe M.Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts[J].Chem.Mater.,2002,14:4390-4395.
    [41]Prevot V,Forano C,Besse J P,Abraham F.Syntheses and thermal and chemical behaviors of tartrate and succinate intercalated Zn_3Al and Zn_2Cr layered double hydroxides[J].Inorg.Chem.,1998,37:4293-4301.
    [42]Kwon T,Pinnavaia T J.Pillaring of a layered double hydroxide by polyoxometalates with Keggin-ion structures[J].Chem.Mater.,1989,1:381-383.
    [43]Adachi-Pagano M,Forano C,Besse J P.Delamination of layered double hydroxides by use of surfactants[J].Chem.Commun.,2000:91-92.
    [44]Leroux F,Adachi-Pagano M,Intissar M,Chauviere S,Forano C,Besse J P.Delamination and restacking of layered double hydroxides[J].J.Mater.Chem.,2001,11:105-112.
    [45]Jobbagy M,Regazzoni A E.Delamination and restacking of hybrid layered double hydroxides assessed by in situ XRD[J].J.Colloid Interface Sci.,2004,275:345-348.
    [46]Singh M,Ogden M I,Parkinson G M,Buckley C E,Connolly J.Delamination and re-assembly of surfactant-containing Li/Al layered double hydroxides[J].J.Mater.Chem.,2004,14:871-874.
    [47]Rajamathi J T,Ravishankar N,Rajamathi M.Delamination-restacking behaviour of surfactant intercalated layered hydroxy double salts,M_3Zn_2(OH)_8(surf)_2·2H_2O[M=Ni,Co and surf=dodecyl sulphate(DS),dodecyl benzene sulphonate(DBS)][J].Solid State Sci.,2005,7:195-199.
    [48]Venugopal B R,Shivakumara C,Rajamathi M.Effect of various factors influencing the delamination behavior of surfactant intercalated layered double hydroxides[J].J.Colloid Interface Sci.,2006,294:234-239.
    [49]Hibino T,Jones W.New approach to the delamination of layered double hydroxides[J].J.Mater.Chem.,2001,11:1321-1323.
    [50]Hibino T.Delamination of layered double hydroxides containing amino acids[J].Chem.Mater.,2004,16:5482-5488.
    [51]Wu Q,Olafsen A,Vistad O B,Roots J,Norby P.Delamination and restacking of a layered double hydroxide with nitrate as counter anion[J].J.Mater.Chem.,2005,15:4695-4700.
    [52]Li L,Ma R Z,Ebina Y,Iyi N,Sasaki T.Positively charged nanosheets derived via total delamination of layered double hydroxides[J].Chem.Mater.,2005,17:4386-4391.
    [53]Ma R Z,Liu Z,Li L,lyi N,Sasaki T.Exfoliating layered double hydroxides in formamide:a method to obtain positively charged nanosheets[J].J.Mater.Chem.,2006,16:3809-3813.
    [54]Liu Z P,Ma R Z,Ebina Y,Iyi N,Takada K,Sasaki T.General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides[J].Langmuir,2007,23:861-867.
    [55]Ma R Z,Liu Z P,Takada K,Iyi N,Bando Y,Sasaki T.Synthesis and exfoliation of Co~(2+)-Fe~(3+) layered double hydroxides:an innovative topochemical approach[J].J.Am.Chem.Soc.,2007,129:5257-5263.
    [56]Ma R Z,Takada K,Fukuda K,Iyi N,Bando Y,Sasaki T.Topochemical synthesis of monometallic(Co~(2+)-Co~(3+)) layered double hydroxide and its exfoliation into positively charged Co(OH)_2 nanosheets[J].Angew.Chem.Int.Ed.,2007,46:1-5.
    [57]Hibino T,Kobayashi M.Delamination of layered double hydroxides in water[J].J.Mater.Chem.,2005,15:653-656.
    [58]Jaubertie C,Holgado M J,SanRoman M S,Rives V.Structural characterization and delamination of lactate-intercalated Zn,Al-layered double.hydroxides[J].Chem.Mater.,2006,18:3114-3121.
    [59]Kumar P P,Kalinichev A G,Kirkpatrick R J.Hydration,swelling,interlayer structure,and hydrogen bonding in organolayered double hydroxides:insights from molecular dynamics simulation of citrate-intercalated hydrotalcite[J].J.Phys.Chem.B,2006,110:3841-3844.
    [60]Hou W Y,Kang L P,Sun R G,Liu Z H.Exfoliation of layered double hydroxides by an electrostatic repulsion in aqueous solution[J].Colloids Surf.,A,2008,312:92-98.
    [61]O'Leary S,O'Hare D,Seeley G.Delamination of layered double hydroxides in polar monomers:new LDH-acrylate nanocomposites[J].Chem.Commun.,2002:1506-1507.
    [62]Hu G,Wang N,O'Hare D,Davis J.One-step synthesis and AFM imaging of hydrophobic LDH monolayers[J].Chem.Commun.,2006:287-289.
    [63]汪信,郝青丽,张莉莉.软化学方法导论[M].北京:科学出版社,2007.
    [64]Lukashin A V,Vyacheslavov A S,Vertegel A A,Tret'yakov Y D.Synthesis of PbS/LDH nanocomposites with the use of the method of reversible delamination of LDHs[J].Dokl.Chem.,2002,385:178-181.
    [65]Chen X,Fu C L,Wang Y,Yang W S,Evans D G.Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni-Al layered double hydroxide nanosheets[J].Biosens.Bioelectron.,2008,2008:356-361.
    [66]Zhang Y H,Chen X,Wang J,Yang W S.The direct electrochemistry of glucose oxidase based on layered double hydroxide nanosheets [J]. Electrochem. Solid-State Lett., 2008, 11: F19-F21.
    [67] Wypych F, Bubniak G A, Halma M, Nakagaki S. Exfoliation and immobilization of anionic iron porphyrin in layered double hydroxides [J]. J. Colloid Interface Sci., 2003, 264: 203-207.
    [68] Wypych F, Bail A, Halma M, Nakagaki S. Immobilization of iron(III) porphyrins on exfoliated MgAl layered double hydroxide, grafted with (3-aminopropyl)triethoxysilane [J]. J.Catal., 2005, 234: 431-437.
    [69] Nakagaki S, Halma M, Bail A, Arizaga G G C, Wypych F. First insight into catalytic activity of anionic iron porphyrins immobilized on exfoliated layered double hydroxides [J]. J. Colloid Interface Sci., 2005,281:417-423.
    [70] Chen W, Qu B J. Synthesis and characterization of PE-g-MA/MgAl-LDH exfoliation nanocomposite via solution intercalation [J]. Chin. J. Chem., 2003,21: 998-1000.
    [71] Chen W, Qu B J. Structural characteristics and thermal properties of PE-g-MA/MgAl-LDH exfoliation nanocomposites synthesized by solution intercalation [J]. Chem. Mater., 2003, 15: 3208-3213.
    [72] Chen W, Qu B J..LLDPE/ZnAl LDH-exfoliated nanocomposites: effects of nanolayers on thermal and mechanical properties [J]. J. Mater. Chem., 2004, 14: 1705-1710.
    [73] Chen W, Li F, Qu B J. Preparation of nanocomposites by exfoliation of ZnAl layered double hydroxides in nonpolar LLDPE Solution [J]. Chem. Mater., 2004,16: 368-370.
    [74] Qiu L Z, Chen W, Qu B J. Structural characterisation and thermal properties of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposites prepared via solution intercalation [J]. Polym. Degrad. Stab., 2005, 87: 433-440.
    [75] Ding P, Qu B J. Synthesis and characterization of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposite via emulsion polymerization [J]. J. Colloid Interface Sci., 2005,291:13-18.
    [76] Hsueh H B, Chen C Y. Preparation and properties of LDHs/polyimide nanocomposites [J]. Polymer, 2003,44: 1151-1161.
    [77] Hsueh H B, Chen C Y. Preparation and properties of LDHs/epoxy nanocomposites [J]. Polymer, 2004,44: 5275-5283.
    [78] Li B G, Hu Y, Zhang R, Chen Z Y, Fan W C. Preparation of the poly(vinyl alcohol)/layered double hydroxide nanocomposite [J]. Mater. Res. Bull., 2003, 38: 1567-1572.
    [79] Li B G, Hu Y, Liu J, Chen Z Y, Fan W C. Preparation of poly (methyl methacrylate)/LDH nanocomposite by exfoliation-adsorption process [J]. Colloid Polym. Sci., 2003, 281: 998-1001.
    [80] Liao C S, Ye W B. Enhanced ionic conductivity in poly(ethylene oxide)/layered double hydroxide nanocomposite electrolytes [J]. J. Polym. Res., 2003, 10: 241-246.
    [81] Venugopal B R, Shivakumara C, Rajamathi M. A composite of layered double hydroxides obtained through random costacking of layers from Mg-Al and Co-Al LDHs by delamination-restacking: thermal decomposition and reconstruction behavior [J]. Solid State Sci., 2007: 287-294.
    [82] Nethravathi C, Ravishankar N, Shivakumara C, Rajamathi M. Nanocomposites of α-hydroxides of nickel and cobalt by delamination and co-stacking: enhanced stability of α-motifs in alkaline medium and electrochemical behavior [J]. J. Power Sources, 2007, 2007: 970-974.
    [83] Li L, Ma R Z, Iyi N, Ebina Y, Takada K, Sasaki T. Hollow nanoshell of layered double hydroxide [J]. Chem. Commun., 2006: 3125-3127.
    [84] Liu S Y, Jiang X Z, Zhuo G L. Heck reaction catalyzed by colloids of delaminated Pd-containing layered double hydroxide [J]. J. Mol. Catal. A: Chem.,s 2008, 290: 72-78.
    [85] Gardner E, Huntoon K M, Pinnavaia T J. Direct synthesis of alkoxide-intercalated derivatives of hydrotalcite-like layered double hydroxides: precursors for the formation of colloidal layered double hydroxide suspensions and transparent thin films [J]. Adv. Mater., 2001, 13: 1263-1266.
    [86] Okamoto K, Sasaki T, Fujita T, Iyi N. Preparation of highly oriented organic-LDH hybrid films by combining the decarbonation, anion-exchange, and delamination processes [J]. J. Mater. Chem., 2006, 16: 1608-1616.
    [87] Lee J H, Rhee S W, Jung D Y. Solvothermal ion exchange of aliphatic dicarboxylates into the gallery space of layered double hydroxides immobilized on Si substrates[J].Chem.Mater.,2004,16:3774-3779.
    [88]Lee J H,Rhee S W,Jung D Y.Orientation-controlled assembly and solvothermal ion-exchange of layered double hydroxide nanocrystals[J].Chem.Commun.,2003:2740-2741.
    [89]Lee J H,Rhee S W,Jung D Y.Selective layer reaction of layer-by-layer assembled layered double-hydroxide nanocrystals[J].J.Am.Chem.Soc.,2007,129:3522-3523.
    [90]Wang L Y,Li C,Liu M,Evans D G,Duan X.Large continuous,transparent and oriented self-supporting films of layered double hydroxides with tunable chemical composition[J].Chem.Commun.,2007:123-125.
    [91]Gursky J A,Blough S D,Luna C,Gomez C,Luevano A N,Gardner E A.Particle-particle enteractions between layered double hydroxide nanoparticles[J].J.Am.Chem.Soc.,2006,128:8376-8377.
    [92]He J X,Yamashita S,Jones W,Yamagishi A.Templating effects of stearate monolayer on formation of Mg-Al-hydrotalcite[J].Langmuir,2002,18:1580-1586.
    [93]Costa A S,Imae T.Morphological investigation of hybrid Langmuir-Blodgett films of arachidic acid with a hydrotalcite/dendrimer nanocomposite[J].Langmuir,2004,20:8865-8869.
    [94]Gao Y F,Nagai M,Masuda Y,Sato F,Seo W S,Koumoto K.Surface precipitation of highly porous hydrotaleite-like film on Al from a zinc aqueous solution[J].Langmuir,2006,22:3521-3527.
    [95]Chen H Y,Zhang F Z,Fu S S,Duan X.In-situ mierostrueture control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J].Adv.Mater.,2006,18:3089-3093.
    [96]Decher G.Fuzzy nanoassemblies:toward layered polymeric multicomposites[J].Science,1997,277:1232-1237.
    [97]沈家骢.超分子层状结构—组装与功能[M].北京:科学出版社,2004.1-68.
    [98]Han J B,Lu J,Wei M,Wang Z L,Duan X.Heterogeneous ultrathin films fabricated by alternate assembly of exfoliated layered double hydroxides and polyanion[J].Chem.Commun.,2008:5188-5190.
    [99]蔡珣,石玉龙,周建.现代薄膜材料与技术[M].上海:华东理工大学出版社,2007.
    [100]黄慧忠.论表面分析及其在材料研究中的应用[M].北京:科学技术文献出版社,2002.
    [101]Zhang F Z,Zhao L L,Chen H Y,Xu S L,Evans D G,Duan X.Corrosion resistance of superhydrophobic layered double hydroxide films on aluminium[J].Angew.Chem.Int.Ed.,2008,47:1-5.
    [102]L(u|¨) Z,Zhang F Z,Lei X D,Yang L,Xu S L,Duan X.In situ growth of layered double hydroxide films on anodic aluminium oxide/aluminium and its catalytic feature in aldol condensation of acetone[J].Chem.Eng.Sci.,2008,63:4055-4062.
    [103]Conway B E.Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage[J].J.Electrochem.Soc.,1991,138:1539-1548.
    [104]K(o|¨)tz R,Carlen M.Principles and applications of electrochemical capacitors[J].Electrochim.Acta,2000,45:2483-2498.
    [105]Burke A.Ultracapacitors:why,how,and where is the technology[J].J.Power Sources,2000,91:37-50.
    [106]吴宇平,张汉平,吴锋.绿色电源材料[M].北京:化学工业出版社,2008.
    [107]Pell W G,Conway B E,Adams W A,Oliveira J.Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications[J].J.Power Sources,1999,80:134-141.
    [108]Conway B E,Pell W G.Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices[J].J.Solid State Electrochem.,2003,7:637-644.
    [109]Frackowiak E,Beguin F.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39:937-950.
    [110]Pandolfo A G,Hollenkamp A F.Carbon properties and their role in supercapacitors[J].J.Power Sources,2006,157:11-27.
    [111]Saliger R,Fischer U,Herta C,Fricke J.High surface area carbon aerogels for supercapacitors[J].J.Non-Crystal.Solids,1998,225:81-85.
    [112]Merino C,Soto P,Vilaplana-Ortego E,Gomez de Salazar J M,Pico F,Rojo J M.Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors[J].Carbon,2005,43:551-557.
    [113]Fuertes A B,Lota G,Centeno T A,Frackowiak E.Templated mesoporous carbons for supercapacitor application[J].Electrochim.Acta,2005,50:2799-2805.
    [114]Prabaharan S R S,Vimala R,Zainal Z.Nanostructured mesoporous carbon as electrodes for supercapacitors[J].J.Power Sources,2006,161:730-736.
    [115]Huang Q H,Wang X Y,Li J,Dai C L,Gamboa S,Sebastian P J.Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors[J].J.Power Sources,2006,164:425-429.
    [116]Wang Q,Li J L,Gao F,Li W S,Wu K Z,Wang X D.Activated carbon coated with polyartiline as an electrode material in supercapacitors[J].New Carbon Mater.,2008,23:275-280.
    [117]Jow T R,Zheng J P.Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide[J].J.Electrochem.Soc.,1998,145:49-52.
    [118]Hu C C,Chen W C,Chang K H.How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors[J].J.Electrochem.Soc.,2004,151:A281-A290.
    [119]Hu C C,Chang K H,Lin M C,Wu Y T.Design and tailoring of the nanotubular arrayed architecture of hydrous RuO_2 for next generation supercapacitors[J].Nano Lett.,2006,6:2690-2695.
    [120]Pang S C,Anderson M A,Chapman T W.Novel electrode materials for thin-film ultracapacitors:comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J].J.Electrochem.Soc.,2000,147:444-450.
    [121]Liu K C,Anderson M A.Porous nickel oxide/nickel films for electrochemical capacitors[J].J.Electrochem.Soc.,1996,143:124-130.
    [122]Nam K W,Kim K B.A study of the preparation of NiO_x electrode via electrochemical route for supercapacitor applications and their charge storage mechanism[J].J.Electrochem.Soc.,2002,149:A346-A354.
    [123]Nam K W,Kim K H,Lee E S,Yoon W S.Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates[J].J.Power Sources,2008,182:642-652.
    [124]Cao L,Kong L B,Liang Y Y,Li H L.Preparation of novel nano-composite Ni(OH)_2/USY material and its application for electrochemical capacitance storage[J].Chem.Commun.,2004:1646-1647.
    [125]Lang J W,Kong L B,Wu W J,Luo Y C,Kang L.Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors[J].Chem.Commun.,2008:4213-4215.
    [126]Lin C,Ritter J A,Popov B N.Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors[J].J.Electrochem.Soc.,1998,145:4097-4103.
    [127]Cao L,Zhou Y K,Lu M,Li H L.Preparation of nanocrystalline Co_3O_4 and its properties as supercapacitors[J].Chin.Sci.Bull.,2003,48:1212-1215.
    [128]Cao L,Lu M,Li H L.Preparation of mesoporous nanocrystalline Co_3O_4 and its applicability of porosity to the formation of electrochemical capacitance[J].J.Electrochem.Soc.,2005,152:A871-A875.
    [129]曹林,周盈科,陆梅,力虎林.纳米氧化钴的制备及其超电容特性[J].科学通报,2003,48:668-670.
    [130]Kandalkar S G,Gunjakar J L,Lokhande C D.Preparation of cobalt oxide thin films and its use in supercapacitor application[J].Appl.Surf.Sci.,2008,254:5540-5544.
    [131]张密林,刘志祥.沉淀转化法制备的Co(OH)_2的超级电容特性[J].无机化学学报,2002,18:513-517.
    [132]Hu C C,Cheng C Y.Ideal pseudocapacitive behavior of amorphous hydrous Cobalt-Nickel oxide prepared by anodic deposition[J].Electrochem.Solid-State Lett.,2002,5:A43-A46
    [133]Tao F,Shen Y Z,Liang Y Y,Li H L.Synthesis and characterization of Co(OH)_2/TiO_2nanotube composites as supercapacitor materials[J].J.Solid State Electrochem.,2007,11:853-858.
    [134]He K X,Zhang X G,Li J.Preparation and electrochemical capacitance of Me double hydroxides(Me=Co and Ni)/TiO_2 nanotube composites electrode[J].Electrochim.Acta,2006,51:1289-1292.
    [135]Liang Y Y,Cao L,Kong L B,Li H L.Synthesis of Co(OH)_2/USY composite and its application for electrochemical supercapacitors[J].J.Power Sources,2004,136:197-200.
    [136]Cao L,Xu F,Liang Y Y,Li H L.Preparation of the novel nanocomposite Co(OH)_2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density[J].Adv.Mater.,2004,16:1853-1857.
    [137]Liang Y Y,Li H L,Zhang X G.A novel asymmetric capacitor based on Co(OH)_2/USY composite and activated carbon electrodes[J].Mater.Sci.Eng.,A,2008,473:317-322.
    [138]Gupta V,Kusahara T,Toyama H,Gupta S,Miura N.Potentiostatically deposited nanostructured α-Co(OH)_2:a high performance electrode material for redox-capacitors[J].Electrochem.Commun.,2007,9:2315-2319.
    [139]Chou S L,Wang J Z,Liu H K,Dou S X.Electrochemical deposition of porous Co(OH)_2nanoflake films on stainless steel mesh for flexible supercapacitors[J].J.Electrochem.Soc.,2008,155:A926-A929.
    [140]Zhou W J,Zhao D D,Xu M W,Xu C L,Li H L.Effects of the electrodeposition potential and temperature on the electrochemical capacitance behavior of ordered mesoporous cobalt hydroxide films[J].Electrochim.Acta,2008,53:7210-7219.
    [141]Zhou W J,Zhang J,Xue T,Zhao D D,Li H L.Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors[J].J.Mater.Chem.,2008,18:905-910.
    [142]Zhou W J,Xu M W,Zhao D D,Xu C L,Li H L.Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors[J].Microporous Mesoporous Mater.,2009,117:55-60.
    [143]Lee H Y,Goodenough J B.Ideal supercapacitor behavior of amorphous V_2O_5·nH_2O in potassium chloride(KCl) aqueous solution[J].J.Solid State Chem.,1999,148:81-84.
    [144]Wang S Y,Ho K C,Kuo S L,Wu N L.Investigation on capacitance mechanisms of Fe_3O_4electrochemical capacitors[J].J.Electrochem.Soc.,2006,153:A75-A80.
    [145]Amarnath C A,Chang J H,Kim D,Mane R S,Han S H,Sohn D.Electrochemical supercapacitor application of electroless surface polymerization of polyaniline nanostructures[J].Mater.Chem.Phys.,2009,113:14-17.
    [146]Arbizzani C,Mastragostino M,Soavi F.New trends in electrochemical supercapacitors[J].J.Power Sources,2001,100:164-170.
    [147]Mastragostino M,Arbizzani C,Soavi F.Conducting polymers as electrode materials in supercapacitors[J].Solid State Ionics,2002,148:493-498.
    [148]Liu L,Zhao Y M,Zhou Q,Xu H,Zhao C J,Jiang Z Y.Nano-polypyrrole supercapacitor arrays prepared by layer-by-layer assembling method in anodic aluminum oxide templates [J].J.Solid State Electrochem.,2006,11:32-37.
    [149]刘献明,张校刚.CoAl双氢氧化物作超级电容器的电极材料[J].电源技术,2003,27:315-317.
    [150]刘献明,张校刚.水热处理对Co-Al双氢氧化物电容性能的影响[J].应用化学,2003,20:525-527.
    [151]Wang J,You J,Li Z S,Yang P P,Jing X Y,Zhang M L.Capacitance performance of porous nickel electrode modified with Co/Al hydrotalcite[J].J.Electroanal.Chem.,2008,624:241-244.
    [152]Su L H,Zhang X G.Effect of carbon entrapped in Co-Al double oxides on structural restacking and electrochemical performance[J].J.Power Sources,2007,172:999-1006.
    [153]Su L H,Zhang X G,Mi C H,Liu Y.Insights into the electrochemistry of layered double hydroxide containing cobalt and aluminum elements in lithium hydroxide aqueous solution [J].J.Power Sources,2008,179:388-394.
    [154]张校刚,刘献明,包淑娟,王永刚.Ni离子掺杂对CoAl双氢氧化物电化学电容的影响[J].无机化学学报,2004,20:94-98.
    [155]Liu X M,Zhang Y H,Zhang X G,Fu S Y.Studies on Me/Al-layered double hydroxides(Me =Ni and Co) as electrode materials for electrochemical capacitors[J].Electrochim.Acta,2004,49:3137-3141.
    [156]Gupta V,Gupta S,Miura N.Al-substituted alpha-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors[J].J.Power Sources,2008,177:685-689.
    [157]Gupta V,Gupta S,Miura N.Potentiostatically deposited nanostructured Co_xNi_(1-x) layered double hydroxides as electrode materials for redox-supercapacitors[J].J.Power Sources,2008,175:680-685.
    [158]Wang Y G,Cheng L,Xia Y Y.Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution[J].J.Power Sources,2006,153:191-196.
    [159]Su L H,Zhang X G;Yuan C Z,Gao B.Symmetric self-hybrid supercapacitor consisting of multiwall carbon nanotubes and Co-Al layered double hydroxides[J].J.Electrochem.Soc.,2008,155:A110-A114.
    [160]唐有根,李文良.镍氢电池[M].北京:化学工业出版社,2007.
    [161]Bode H,Dehmelt K,Witte J.Zur kenntnis der nickelhydroxidelektrode-Ⅰ,uber das nickel (Ⅱ)-hydroxidhydrat[J].Electrochim.Acta,1966,11:1079-1087.
    [162]杜晓华,姜长印.动力电池用铝取代氢氧化镍结构及电化学性能[J].电源技术,2002,26:74-77.
    [163]Buss D H,Bauer J,Diembeck W,Glemser O.The electrochemical properties of the intercalation compounds cobalt hydroxide-aluminium hydroxide and nickel hydroxide-aluminium hydroxide[J].J.Chem.Soc.,Chem.Commun.,1985:81-82.
    [164]冷拥军,王凤军,刘兵,廖小珍,孝英,马紫峰.铝取代氢氧化镍制备、结构与电化学性能(Ⅰ)电化学性能[J].电源技术,2000,24:77-80.
    [165]冷拥军,刘兵,王凤军,周锦鑫,孝英,马紫峰.铝取代氢氧化镍制备、结构与电化学性能(Ⅱ)结构分析[J].电源技术,2000,24:326-329.
    [166]Sugimoto A,Ishida S,Hanawa K.Preparation and characterization of Ni/Al-layered double hydroxide[J].J.Electrochem.Sot.,1999,146:1251-1255.
    [167]Liu B,Yuan H T,Zhang Y S,Zhou Z X,Song D Y.Cyclic voltammetric studies of stabilized α-nickel hydroxide electrode[J].J.Power Sources,1999,79:277-280.
    [168]Liu B,Yuan H T,Zhang Y S.Impedance of Al-substitued a-nickel hydroxide electrodes[J].Int.J.Hydrogen Energy,2004,29:453-458.
    [169]尹筱莉,李娟,符继红,龚良玉,夏熙.Co取代Ni(OH)_2纳米粉体的制备、表征及电化学性能研究[J].化学研究与应用,2002,14:405-408.
    [170]Mavis B,Akinc M.Three-component layer double hydroxides by urea precipitation:structural stability and electrochemistry[J].J.Power Sources,2004,134:308-317.
    [171]Wang C Y,Zhong S,Bradhurst D H,Liu H K,Dou S X.Ni/Al/Co-substitued a-Ni(OH)_2 as electrode materials in the nickel metal hydride cell[J].J.Alloy.Compd.,2002,330-332:802-805.
    [172]Guerlou-Demourgues L,Delmas C.Electrochemical behavior of the manganese-substituted nickel hydroxides[J].J.Electrochem.Soc.,1996,143:561-566.
    [173]Jayashree R S,Kamath P V.Layered double hydroxides of Ni with Cr and Mn as candidate electrode materials for alkaline secondary cells[J].J.Power Sources,2002,107:120-124.
    [174]Indira L,Dixit M,Kamath P V.Electrosynthesis of layered double hydroxides of nickel with trivalent cations[J].J.Power Sources,1994,52:93-97.
    [175]Guerlou-Demourgues L,Fournes L,Delmas C.In situ ~(57)Fe M(o|¨)ssbauer spectroscopy study of the electrochemical behavior of an iron-substituted nickel hydroxide electrode[J].J.Electrochem.Soc.,1996,143:3083-3088.
    [176]Guerlou-Demourgues L,Delmas C.Effect of iron on the electrochemical properties of the nickel hydroxide electrode[J].J.Electrochem.Soc.,1994,141:713-717.
    [177]肖轶,马骏,任韶玲,杨锡尧;.碳酸根离子柱撑钴铝水滑石的合成与表征[J].催化学报,1999,20:459-462.
    [178]Svegl F,Orel B,Hutchins M G,Kalcher K.Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co_3O_4 Films[J].J.Electrochem.Soc.,1996,143:1532-1539.
    [179]Entani S,Kiguchi M,Saiki K.Fabrication of polar CoO(111) thin films on Pt(111)[J].Surf.Sci.,2004,566-568:165-169.
    [180]Perez-Ramirez J,Mul G,Moulijn J A.In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co-Al and Ni-Al hydrotalcites[J].Vib.Spectrosc.,2001,27:75-88.
    [181]Reichle W T,Kang S Y,Everhardt D S.The nature of the thermal decomposition of a catalytically active anionic clay mineral[J].J.Catal.,1986,101:352-359.
    [182]Li L,Ma R Z,Ebina Y,Fukuda K,Takada K,Sasaki T.Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials[J].J.Am.Chem.Soc.,2007,129:8000-8007.
    [183]Besra L,Liu M.A review on fundamentals and applications of electrophoretic deposition (EPD)[J].Prog.Mater.Sci.,2007,52:1-61.
    [184]Zhang X,Yang W S.Electrophoretic deposition of a thick film of layered manganese oxide [J].Chem.Lett.,2007,36:1228-1229.
    [185]Song C J,Villemure G.Preparation of clay-modified electrodes by electrophoretic deposition of clay films[J].J.Electroanal.Chem.,1999,462:143-149.
    [186]Wang N,Liu S Y,Zhang J,Wu Z H,Chen J,Sun D J.Lamellar phase in colloidal suspensions of positively charged LDHs platelets[J].Soft Matter,2005,1:428-430.
    [187]李丽芳,侯万国,焦燕妮,刘春霞.Zn-Al类水滑石结构正电荷对内禀电离平衡常数的影响[J].物理化学学报.2004.20:459-462.
    [188]Frackowiak E,Metenier K,Bertagna V,Beguin E Supercapacitor electrodes from multiwalled carbon nanotubes[J].Appl.Phys.Lett.,2000,77:2421-2423.
    [189]Bailey R C,Stevenson K J,Hupp J T.Assembly of micropatterned colloidal gold thin films via microtransfer molding and electrophoretic deposition[J].Adv.Mater.,2000,12:1930-1934.
    [190]Caswell K K,Wilson J N,Bunz U H F,Murphy C J.Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors[J].J.Am.Chem.Soc.,2003,125:13914-13915.
    [191]Huang Y,Duan X F,Wei Q Q,Lieber C M.Directed assembly of one-dimensional nanostructures into functional networks[J].Science,2001,291:630-633.
    [192]Rao S G,Huang L,Setyawan W,Hong S.Nanotube electronics:large-scale assembly of carbon nanotubes[J].Nature,2003,425:36-37.
    [193]Lin S Y,Fleming J G,Hetherington D L,Smith B K,Biswas R,Ho K M,Sigalas M M,Zubrzycki W,Kurtz S R,Bur J.A three-dimensional photonic crystal operating at infrared wavelengths[J].Nature,1998,394:251-253.
    [194]Xu L B,Zhou W L,Kozlov M E,Khayrullin I I,Udod I,Zakhidov A A,Baughman R H,Wiley J B.Metal sphere photonic crystals by nanomolding[J].J.Am.Chem.Soc.,2001,123:763-764.
    [195]Xu L B,Tung L D,Spinu L,Zakhidov A A,Baughman R H,Wiley J B.Synthesis and magnetic behavior of periodic nickel sphere arrays[J].Adv.Mater.,2003,15:1562-1564.
    [196]Gouadec G,Colomban P.Raman spectroscopy of nanomaterials:how spectra relate to disorder,particle size and mechanical properties[J].Prog.Cryst.Growth Charact.Mater.,2007,53:1-56.
    [197]Grill A.Diamond-like carbon:state of the art[J].Diamond Relat.Mater.,1999,8:428-434.
    [198]Schnupp R,K(u|¨)hnhold R,Temmel G,Burte E,Ryssel H.Thin carbon films as electrodes for bioelectronic applications[J].Biosens.Bioelectron.,1998,13:889-894.
    [199]Kim H G,Ahn S H,Kim J G,Park S J,Lee K R.Electrochemical behavior of diamond-like carbon films for biomedical applications[J].Thin Solid Films,2005,475:291-297.
    [200]Gao G T,Mikulski P T,Harrison J A.Molecular-scale tribology of amorphous carbon coatings:effects of film thickness,adhesion,and long-range interactions[J].J.Am.Chem.Soc.,2002,124:7202-7209.
    [201]Kato Y,Kamiya H,Saitoh Y.A diamond-like carbon film as a self-alignment layer for LCDs[J].Diamond Relat.Mater.,2007,16:296-301.
    [202]Namba Y.Attempt to grow diamond phase carbon films from an organic solution[J].J.Vac.Sci.Technol.A,1992,10:3368-3370.
    [203]Wang H,Shen M R,Ning Z Y,Ye C,Dang H Y,Cao C B,Zhu H S.Deposition of unhydrogenated diamond-like amorphous carbon films by electrolysis of organic solutions [J].Thin Solid Films,1997,293:87-90.
    [204]Jiu J T,Wang H,Cai K,Fu Q,Cao C B,Zhu H S.Liquid phase deposition of hydrogenated diamond-like carbon fihns on conductive glass substrates using a pulse-modulated source [J].Mater.Res.Bull.,1999,34:1501.
    [205]Cai K,Guo D,Huang Y,Zhu H S.Evaluation of diamond-like carbon films deposited on conductive glass from organic liquids using pulsed current[J].Surf.Coat.Technol.,2000,130:266-273.
    [206] Fu Q, Jiu J T, Cao C B, Wang H, Zhu H S. Electrodeposition of carbon films from various organic liquids [J]. Surf. Coat. Technol., 2000, 124: 196-200.
    [207] Guo D, Cai K, Li L T, Huang Y, Gui Z L, Zhu H S. Evaluation of diamond-like carbon films electrodeposited on an Al substrate from the liquid phase with pulse-modulated power [J]. Carbon, 2001,39: 1395-1398.
    [208] He W L, Yu R, Wang H, Yan H. Electrodeposition mechanism of hydrogen-free diamond-like carbon films from organic electrolytes [J]. Carbon, 2005,43: 2000-2006.
    [209] Novikov V P, Dymont V P. Synthesis of diamondlike films by an electrochemical method at atmospheric pressure and low temperature [J]. Appl. Phys. Lett., 1997,70: 200-202.
    [210] Shevchenko E, Matiusshenkov E, Kochubey D, Sviridov D, Kokorin A, Kulak A. Synthesis of carbon films with diamond-like structure by electrochemical oxidation of lithium acetylide [J]. Chem. Commun., 2001, 317: 317-318.
    [211] Zou L, Li F, Xiang X, Evans D G, Duan X. Self-generated template pathway to high-surface-area zinc aluminate spinel with mesopore network from a single-source inorganic precursor [J]. Chem. Mater., 2006,18: 5852-5859.
    [212] Baba M, Kumagai N, Kobayashi H, Nakano O, Nishidate K. Fabrication and electrochemical characteristics of all-solid-state lithium-ion batteries using V_2O_5 thin films for both electrodes [J]. Electrochem. Solid-State Lett., 1999,2: 320-322.
    [213] Park Y S, Lee S H, Lee B I, Joo S K. All-solid-state lithium thin-film rechargeable battery with lithium manganese oxide [J]. Electrochem. Solid-State Lett., 1999,2: 58-59.
    [214] Bates J B, Dudney N J, Neudecker B, Ueda A, Evans C D. Thin-film lithium and lithium-ion batteries [J]. Solid State Ionics, 2000,135: 33-45.
    [215] Jeon E J, Shin Y W, Nam S C, Cho W I, Yoon Y S. Characterization of all-solid-state thin-film batteries with V_2O_5 thin-film cathodes using ex situ and in situ processes [J]. J. Electrochem. Soc.,2001, 148: A318-A322.
    [216] Kim H K, Seong T Y, Lim J H, Cho W I, Yoon Y S. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors [J]. J. Power Sources, 2001,102: 167-171.
    [217] Lim J H, Choi D J, Kim H K, Cho W I, Yoon Y S. Thin film supercapacitors using a sputtered RuO_2 electrode [J]. J. Electrochem. Soc., 2001, 148: A275-A278.
    [218] Kim H K, Choi S H, Yoon Y S, Chang S Y, Ok Y W, Seong T Y. Characteristics of RuO_2-SnO_2 nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors [J]. Thin Solid Films, 2005,475: 54-57.
    [219] Choi S H, Kim J S, Yoon Y S. Fabrication and characterization of SnO_2-RuO_2 composite anode thin film for lithium ion batteries [J]. Electrochim. Acta, 2004, 50: 547-552.
    [220] Golodnitsky D, Yufit V, Nathan M, Shechtman I, Ripenbein T, Strauss E, Menkin S, Peled E. Advanced materials for the 3D microbattery [J]. J. Power Sources, 2006, 153: 281-287.
    [221] Li C L, Zhang B, Fu Z W. Physical and electrochemical characterization of thin films of iron phosphate and nitrided iron phosphate for all-solid-state batteries [J]. J. Electrochem. Soc., 2006, 153: E160-E165.
    [222] Xia H, Tang S B, Lu L, Meng Y S, Ceder G. The influence of preparation conditions on electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 thin film electrodes by PLD [J]. Electrochim. Acta, 2007, 52: 2822-2828.
    [223] Bravo-Suarez J J, Paez-Mozo E A, Ted Oyama S. Microtextural properties of layered double hydroxides: a theoretical and structural model [J]. Microporous Mesoporous Mater., 2004, 67: 1-17.
    [224] Kohler U, Antonius C, Bauerlein P. Advances in alkaline batteries [J]. J. Power Sources, 2004, 127: 45-52.
    [225] Oliva P, Leonardi J, Laurent J F, Delmas C, Braconnier J J, Figlarz M, Fievet F, Deguibert A. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides [J]. J. Power Sources, 1982, 8: 229-255.
    [226] Faure C, Delmas C, Fouassier M. Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO_4 solution [J]. J. Power Sources, 1991, 35: 279-290.
    [227] Dixit M, Jayashree R S, Kamath P V, Shukla A K, Kumar V G, Munichandraiah N. Electrochemically impregnated aluminum-stabilized α-nickel hydroxide electrodes [J]. Electrochem. Solid-State Lett., 1999, 1: 170-171.
    [228] Wei M, Yuan Q, Evans D G, Wang Z Q, Duan X. Layered solids as a "molecular container" for pharmaceutical agents: 1-tyrosine-intercalated layered double hydroxides [J]. J. Mater. Chem., 2005,15:1197-1203.
    [229] Guzman R S S, Vilche J R, Arvia A. Rate processes related to the hydrated nickel hydroxide electrode in alkaline solution [J]. J. Electrochem. Soc., 1978, 125: 1578-1587.
    [230] Zhang C J, Park S M. The anodic oxidation of nickel in alkaline media studied by spectroelectrochemical techniques [J]. J. Electrochem. Soc., 1987: 2966-2970.
    [231] Oshitani M, Takayama T, Kakashima K, Tsuji S. A study on the swelling of a sintered nickel hydroxide electrode [J]. J. Appl. Electrochem., 1986, 16: 403-412.
    [232] Ohta N, Takada K, Zhang L Q, Ma R Z, Osada M, Sasaki T. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification [J]. Adv. Mater., 2006,18:2226.
    [233] Wu M Q, Gao J H, Zhang S, Chen A. Comparative studies of nickel oxide films on different substrates for electrochemical supercapacitors [J]. J. Power Sources, 2006,159: 365.