毛乌素沙地东南缘沙漠化演变机制与植物的耐胁迫性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙漠化作为当今世界社会、经济和环境的重大问题,在国内和国际社会引起了广泛的关注。本研究以陕北榆林地区毛乌素沙地东南缘沙质草地沙漠化演替阶段空间序列为主线,通过实地观测和实验分析,从自然状态下土壤、植被性质的变化展开沙漠化演变机制的研究,探讨在不同沙漠化阶段土壤因子的响应机制与植物群落结构、功能的演变机制,并阐明二者在维持植被和生态系统稳定性方面的作用;基于植物逆境生理响应的耐胁迫类型划分突出了植物种群对生态系统的适应性关系,为不同沙漠化阶段植被的修复提供理论依据;最后,运用RS和GIS手段将过程的研究提升为对过程的格局研究,基于NDVI提取植被盖度,并据此对不同沙漠化类型草地进行划分,提出不同沙漠化类型区治理和保护的建议和措施。
     以此为研究主线,得出研究结论如下:
     (1)沙漠化过程中,土壤的物理、化学和生物学性质均呈现出规律性响应。随沙漠化程度的加剧,土壤沙粒含量、容重、C/N增加,土壤粘粒、粉粒、含水量、有机质、有机碳、全氮、脲酶、过氧化氢酶、多酚氧化酶呈降低趋势;对土壤各指标的相关性分析表明,土壤物理、化学和生物学特性存在密切的内在相关性。对土壤物理、化学和生物学性状的演变规律进行分析发现,随沙漠化程度的加剧,土壤结构的稳定性和功能的完备性均遭到破坏,土壤质量下降,土壤环境恶化;同时,土壤退化也使得沙漠化程度进一步加剧。
     (2)沙漠化过程中,植被结构和功能特征退化,植被稳定性状况不断变差。随沙漠化程度的加剧,植被群落发生了逆行演替,从非沙漠化阶段的多年生禾草类逐步演变为重度沙漠化阶段的一年生杂草类;植被盖度、密度、物种丰富度、多样性指数均呈下降趋势,地上生物量呈先升高后降低趋势;混合植物(优势种)有机质含量变化规律不明显,全氮含量在沙漠化进程中逐渐降低;植被稳定性指数不断降低,稳定性状况变差。
     (3)对沙漠化过程中土壤、植被的演变特征分析发现,土壤、植被要素是相互依赖、协同演进的。植被的进展演替依赖于良好的土壤环境,而土壤环境同样需要处于进展演替中的植被来不断改善,因此,土壤——植被系统之间的相互作用决定了沙漠化的正、逆过程。沙漠化过程中,众多土壤属性指标的测定值在Ⅱ、Ⅲ阶段出现了增降幅的突变,植被属性指标的观察和测定值在Ⅲ、Ⅳ或Ⅳ、Ⅴ阶段出现了降幅的突变,表明沙漠化过程是一个渐变到突变的过程,由于植被对土壤环境的内在适应性,使得植被退化过程滞后与土壤的退化过程;分析发现,土壤、植被属性突变的关键衔接阶段为Ⅲ阶段,即轻度沙漠化阶段,说明该阶段是沙漠化严重或恢复的重要转折阶段,故维持或营造该阶段土壤——植被系统的和谐与稳定是沙漠化修复的关键。。
     (4)沙漠化过程中,不同植物在不同阶段对沙漠化的响应不同,表现出的受损程度和抗逆性能也有所差异。本氏针茅(Stipa bungeana)叶片含水量、叶绿素a、叶绿素b、总叶绿素和类胡萝卜素含量均呈降低趋势,质膜相对透性和丙二醛含量持续增加,脯氨酸含量也在波动中上升,超氧化物酶、过氧化氢酶和过氧化物酶活性也反应敏感,呈先增加后迅速降低的趋势,表明其在沙漠化进程中生理受损严重,对生存环境要求严格;糙隐子草(Cleistogenes squarrosa)的生理响应与本氏针茅相似,表现出较差的耐胁迫性;达乌里胡枝子(Lespedeza davurica)叶片含水量最初基本稳定,Ⅳ阶段后降低,叶绿素a、叶绿素b、总叶绿素和类胡萝卜素含量均减少,质膜相对透性和脯氨酸含量均上升,丙二醛含量呈先增后降再增的趋势,但变幅较小,超氧化物酶、过氧化氢酶活性变化趋势与丙二醛一致,过氧化物酶活性反应不敏感,表明其膜系统受到一定程度的损伤,但自身具有适应性反应,受损程度较小;油蒿(Artemisia ordosica)叶片含水量最初有所降低,Ⅱ阶段后回升,叶绿素a、叶绿素b、总叶绿素和类胡萝卜素含量也表现出先减少后增加的趋势,质膜相对透性和脯氨酸含量先有所上升,Ⅲ阶段后基本稳定,丙二醛含量轻微波动,变化不大,超氧化物酶、过氧化氢酶和过氧化物酶活性反应一致,均呈现出先升后降再升的变化趋势,协同抑制膜质过氧化作用,膜受损并不明显;牛心朴子(Cynanchum komarovii)各生理指标的响应与油蒿基本一致。
     (5)对共有种各生理指标进行相关性分析发现,植物种自身生理指标之间存在着密切的内在联系和相互作用规律,但不同植物种的相关性分析结果存在较大差异,表明不同植物种是通过不同的内部适应机理来形成抗性机制的。在分析了共有种各生理指标之间错综复杂的应变关系基础上,运用主成分分析对每种植物种提取三种负荷最大的生理指标作为其耐胁迫类型划分的依据,对五种共有植物种进行分类:本氏针茅和糙隐子草为敏感受损型,其最初都能对沙漠化胁迫做出积极的应对反应,但当胁迫达到一定程度,植物全面受损;达乌里胡枝子为积极耐受型,其在沙漠化过程中表现出轻度的受损性状,但能通过积极的应对来适应沙漠化环境,使其并未遭受不可逆转的伤害,胁迫程度在其承受阈值之内;油蒿和牛心朴子为真正的抗逆型植物,其抗性指标能协同作用,受损性状不明显,对较为严重的沙漠化具有良好的适应性。
     (6)应用RS和GIS手段,选取典型区进行沙质草地沙漠化程度空间格局划分。以沙漠化土壤、植被演替分析和植物耐胁迫性研究为理论基础,根据沙漠化程度类型划分图,提出沙漠化保护和治理建议:非沙漠化阶段和潜在沙漠化阶段区域应加强保护;轻度沙漠化阶段和中度沙漠化阶段区域应注重飞播育草,增加植被,防风固沙,改善土壤;重度沙漠化阶段区域应使用工程措施设置沙障固沙。
     在开展沙漠化演变机制与植被耐胁迫类型的研究中,主要从以下几个方面实现了对以往研究内容和方法的突破:
     (1)从土壤、植被的共同变化深入揭示了沙漠化的演变过程,并认为轻度沙漠化阶段是沙漠化恢复和转变的关键阶段。
     (2)以植物生理指标作为植物耐胁迫类型的划分依据,并应用主成分分析方法找出贡献最大的三种生理指标,是对植物群体分类的新尝试。
     (3)通过对过程的格局的研究,实现了具体理论研究与不同沙漠化类型区治理的结合。
     综上所述,本研究一方面通过对沙漠化过程中土壤性质、植被结构、功能和稳定性等方面的变化研究系统揭示了沙漠化的演变机制;另一方面以植物生理响应为依据进行了沙漠化共有种耐胁迫类型的划分,明确了不同植物种群对沙漠化的适应性机制,为不同沙漠化阶段适宜植物种的选取提供理论依据;最后,以相关理论研究为支撑,应用技术手段进行了不同沙漠化类型区修复与重建的探索,实现了沙漠化研究理论意义和现实意义的结合。
Desertification which arouses close concerns in the domestic and international community, is one of the most serious social, environmental and economic problems in contemporary world. In this study, made the spatial series of sandy grassland successional stages as the main line on the southeastern edge of Mu Us sandy land in the north of Shaanxi, through field investigation and laboratory test, started the study of the evolutionary mechanism of desertification based on the changing of soil and vegetation in nature, researched on the evolutionary mechanism of soil factors and the structure and function of the plant communities, and illustrated the function of them in keeping the stability of vegetation and ecosystem; the classification of the stress resistance types of different plants, which based on the physiological response of plants on stress, highlighted the interaction between adaptation of plants and ecosystem, provided rationale for the restoration of vegetation in different desertification stages; at the same time, using RS and GIS methods, upgraded the study of process to the pattern of processing, extracted the vegetation cover based on NDVI, accordingly, divided the desert grassland, and offered some measures for different regions.
     Based on this, some conclusions were put forward as follows:
     (1) During the process of desertification, the physical, chemical and biological properties of soil were changing regularly. With the increasing degree of desertification, soil sand particle, bulk density, C/N were increasing, while soil clay, silt, moisture, organic matter, organic carbon, total nitrogen, urease, catalase, polyphenol oxidase were decreasing; the results of correlation analysis showed, there existed close correlation among these properties; the analysis of the evolutionary law of the physical, chemical and biological properties of soil showed, with the increasing degree of desertification, the stability of soil structure and the completeness of soil function were destroyed, soil quality has being fallen, soil environment had being degraded; and the soil degradation also makes a further serious desertification.
     (2) During the process of desertification, the structural and functional characteristics of vegetation degraded, and the stability deteriorated steadily. With the increasing degree of desertification, vegetation communities took place retrograde succession, changed from perennial bunch grass in non-desertification stage to annual herb in severe desertification stage; vegetation cover, species density, species richness, diversity index were all decreasing, aboveground biomass was first increasing and then reducing, organic matter content of mixed plants was not changing obviously, total nitrogen content was decreasing gradually; vegetation stability index continued to diminish.
     (3) The analysis of the evolution of soil and vegetation in the process of desertification showed that the vegetation and soil were interdependent and cooperated with each other. The progress of vegetation succession depended on good soil environment, while the soil environment needed to be improved by the vegetation in succession. Therefore, the interaction of soil-vegetation system determined the process of desertification and its reverse; in addition, the observed and measured values of soil and vegetation all changed suddenly in the mild desertification stage, what indicated that this stage was the turning stage in which the desertification was becoming more serious or restoring, so to maintain or improve the harmony and stability of the soil-vegetation system in this stage was the key to the restoration of desertification.
     (4) During the process of desertification, the responses of different plants at different stages were different, the degree of damage and the ability of resistance also varied. For Stipa bungeana, the leaf water content, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decreased during the process of desertification, relative plasma membrane permeability and MDA increased constantly, the proline fluctuated and raised, SOD, CAT and POD reacted sensitively, which increased at first and then decreased rapidly, indicated that it was damaged seriously and had strict requirements for habitat; for Cleistogenes squarrosa, the physiological responses were similar to Stipa bungeana, also had weak stress resistance; for Lespedeza davurica, the leaf water content was stable originally, then reduced at IV stage, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decreased, relative plasma membrane permeability and proline increased, MDA increased firstly and then decreased and further raised, but the variance range was lower, so as SOD and CAT, POD activity was not sensitive, indicated that although the membrane system subjected to a certain degree of damage, it had self-adaptive response, the damage was to a lesser extent; for Artemisia ordosica, the leaf water content reduced at first, raised again fromⅡstage, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid also decreased at first and then increased gradually, relative plasma membrane permeability and proline raised at first and then kept stable at III stage, MDA fluctuated slightly with little changing, SOD, CAT and POD reacted consistently, which showed the trend that increased firstly and then decreased and further raised, restrained the membrane lipid peroxidation cooperatively, membrane damage was not obvious; for Cynanchum komarovii, the physiological responses were similar to Artemisia ordosica.
     (5) The correlation analysis between different physiological indicators of the plant species showed, there existed close contact and interaction between their physiological indicators, but the results of correlation analysis of different plant species were various, what indicated that the resistance mechanism of different plant species which formed through different internal mechanism were different. After analyzed the complex strain relationships of various physiological indicators of the common species, chose three physiological indicators for each plant species as the basis of classification using principal component analysis, classified five common species as follows:Stipa bungeana and Cleistogenes squarrosa were sensitive and damaged types, they could make positive response to desertification stress at first, but when the desertification reached to a certain degree, they were damaged more and more seriously, irreversibly; Lespedeza davurica was active resistant types, it was damaged slightly during the desertification, and could adapt through positive coping strategies, it had not suffered irreversible damage, the stress degree was with in their tolerance threshold; Artemisia ordosica and Cynanchum komarovii were the real resistance types, they were not damaged obviously and had a good adaptability to more serious desertification.
     (6) Using RS and GIS methods, selected the typical area, divided the spatial pattern according to desertification degree of sandy grass. Made the study of the succession of soil and vegetation and the stress resistance of plants as the theoretical basis, based on the zoning map of different desertification degree, provided the suggestions for the management and protection of desertification:the region of non-desertification stage and potential desertification stage should be strengthened protection; the region of mild desertification stage and severe desertification stage should be improved the environment through seeding grass by artificial sown, increasing vegetation, making up green sand binder, conversing soil and water, improving the soil; the region of severe desertification should be used engineering measures through setting sand barrier to fix sand.
     Carried out the evolutionary mechanism of desertification and the stress resistance types of different plant species, this paper achieved innovations as follows:
     (1)Deeply revealed the evolutionary mechanism of desertification with analyzing the changes in soil and vegetation, and considered that the mild desertification stage was the key stage in the process of desertification.
     (2)Classified the stress resistance types based on the physiological indicators, identified three physiological indicators of the greatest contribution applying principal component analysis, which was a new attempt for the classification of plant groups.
     (3)Studied the pattern of the process, achieved the combination of theoretical research and regional governance.
     To sum up, the paper, in one hand, revealed the desertification evolutionary mechanism systematically through studied on the changing of soil properties, the stability, function and structure of vegetation in the process of desertification; in the other hand, classified the stress resistance types of the five common plant species according to the physiological responses, provided theoretical basis for selecting the appropriate plant species in different desertification stages; finally, supported by relevant theoretical research, explored the restore and reconstruction of different desertification regions applying technology, realized the combination of theoretical and practical significance of desertification research.
引文
[1]王涛,朱震达.我国沙漠化研究的若干问题——4.沙漠化的防治战略与途径[J].中国沙漠,2004,24(2):115-123
    [2]朱震达.土地荒漠化问题研究现状与展望[J].地理研究,1994,13(1):104-113
    [3]刘彦随,Gao J..陕北长城沿线地区土地退化态势分析[J].地理学报,2002,57(4):443-450
    [4]Stringer L.C.. Reviewing the International Year of Deserts and Desertification 2006:What contribution towards combating global desertification and implementing the United Nations Convention to Combat Desertification?[J]. Journal of Arid Environments,2008,72: 2065-2074
    [5]Nelson. Dryland management-the'desertification'problem[R]. Washington:World Bank Technical Paper No.116,1990
    [6]Thomas D. S. G., Middleton N. J.. Desertification:Exploding the Myth[M]. Chichester: Wiley,1994
    [7]Grainger A., Stafford S. M., Glenn E.P., et al. Desertification and climate change:the case for greater convergence[J]. Mitigation and Adaptation Strategies for Global Change,2000, 5:361-377
    [8]Batterbury S.P.J., Behnke R.H., Doll P.M., et al. Responding to desertification at the national scale. In:Reynolds J.F., Stafford-Smith D.M. (Eds.), Global Desertification:Do Humans Cause Deserts?[M]. Berlin:Dahlem University Press,2002
    [9]UN(United Nations). UN Earth Summit:Convention on Desertification[R]. Brazil:UN Conference in Environment and Development,1994.
    [10]Aubreville A.. Climare, forest et desertification de 1'Afrique tropieale. Societe ed'editions geographiques et coloniales, Patis.1949:352.
    [11]Mainguet M.. What is Desertification? Definitions and Evolution of the Concept. Desertification Natural Background and Human Mismanagement[M]. Berlin: Springer-Verlag,1994
    [12]Williams M.A.J.. Interactions of Desertification and Climate. London:Oxford University Press,1996
    [13]朱震达.全球变化与荒漠化[J].地学前缘,1997,4(2):213-219
    [14]朱震达.中国土地荒漠化的概念、成因与防治[J].第四纪研究,1998,(2):145-155
    [15]陈光庭.土地荒漠化[M].北京:化学工业出版社,2002
    [16]董光荣.中国西部环境演变评估——中国西部环境特征及其演变[M].北京:科学出版社,2002
    [17]王涛,朱震达.我国沙漠化研究的若干问题——1.沙漠化的概念及其内涵[J].中国沙漠,2003,23(3):209-214
    [18]Kassas M.. Desertification:a general review[J]. Journal of Arid Environments,1995,30: 115-128
    [19]Verstraete M.M., Brink A.B., Scholes R.J., et al. Climate Change and Desertification: Where do we stand, where should we go? [J]. Global and Planetary Change,2008,64(3-4): 105-110
    [20]Veron S.R., Paruelo J.M., Oesterheld M.. Assessing desertification[J]. Journal of Arid Environments,2006,66(4):751-763
    [21]Hellden U.. A Coupled Human-Environment Model for Desertification Simulation and Impact Studies[J]. Global and Planetary Change,2008,64(3-4):158-168
    [22]封建民,王涛,齐善忠等.黄河源区土地沙漠化的动态变化及成因分析——以玛多县为例[J].水土保持学报,2004,18(3):141-145
    [23]丁勇,牛建明,杨持.北方草地退化沙化趋势、成因与可持续发展研究——以内蒙古多伦县为例[J].内蒙古大学学报,2006,37(5):580-586
    [24]李玉强,赵哈林,赵学勇等.沙漠化过程中沙地植物群落生物量、热值和能量动态研究[J].干旱区研究,2005,22(3):289-294
    [25]鲍雅静,李政海,韩兴国等.植物热值及其生物生态学属性[J].生态学杂志,2008,25(9):1095-1103
    [26]王涛.我国沙漠化研究的若干问题——2.沙漠化的研究内容[J].中国沙漠,2003,23(5):477-482
    [27]张莉,王飞跃,岳乐平等.基于RS和GIS的沙漠——黄土过渡带土地沙漠化分布与变化研究——以陕北榆林地区为例.地球学报,2004,25(1):63-66
    [28]朱志梅,杨持等.草原沙漠化过程中土壤因素分析及其植物的生理响应[J].生态学报,2007,27(1):48-57
    [29]朱志梅,杨持.草原沙漠化过程中植物的耐胁迫类型研究[J].生态学报,2004,24(6):1093-1100
    [30]Barrow C.J.. Land Degradation:development and breakdown of terrestrial environments[M]. London:Cambrige University Press,1991
    [31]曹志洪.解译土壤质量演变规律,确保土壤质量持续利用[J].科技前沿与学术评论,2001,23(3):28-32
    [32]朱志梅,杨持,曹明明等.多伦草原土壤理化性质在沙漠化过程中的变化[J].水土保持通报,2007,27(1):1-5
    [33]苏永中,赵哈林,文海燕.退化沙质草地开垦和封育对土壤理化性状的影响[J].水土保持学报,2002,16(4):5-8
    [34]Su Yong Zhong, Zhao Ha Lin, Zhao Wen Zhi, et al. Fractal features of soil particle size distribution and the implication for indicating desertification[J]. Geoderma,2004,122(1): 43-49
    [35]徐丽恒,王继和,李毅等.腾格里沙漠南缘沙漠化逆转过程中的土壤物理性质变化特征[J].中国沙漠,2008,28(4):690-695
    [36]Zhou Rui Lian, Li Yu Qiang, Zhao Ha Lin, et al. Desertification effects on C and N content of sandy soils under grassland in Horqin, northern China[J]. Geoderma,2008, 145(3-4):370-375
    [37]刘颖茹,杨持,朱志梅等.我国北方草原沙漠化过程中土壤碳、氮变化规律研究[J].应用生态学报,2004,15(9):1604-1606
    [38]苏永中,赵哈林,张铜会等.不同强度放牧后自然恢复的沙质草地土壤性状特征[J].中国沙漠,2002,22(4):333-338
    [39]Wang Guo Ping, Zhai Zheng Li, Liu Jing Shuang, et al. Forms and profile distribution of soil phosphorus in four wetlands across gradients of sand desertification in Northeast China[J]. Geoderma,2008,145(1-2):50-59
    [40]贾晓红,李新荣,李元寿.干旱沙区植被恢复过程中土壤颗粒分形特征[J].地理研究,2007,26(3):518-525
    [41]苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004,24(1):71-74
    [42]张予舒,王立新,张红旗等.塔里木河下游沙漠化土壤性质及分形特征[J].资源科学, 2004,26(5):11-17
    [43]曹成有,蒋德明,朱丽辉等.山竹岩黄蓍固沙群落对土壤养分及生物活性的改良效应[J].应用生态学报,2007,18(8):1739-1744
    [44]苏永中,赵哈林,张铜会等.农田沙漠化演变中土壤质量的生物学特性变化[J].干旱区研究,2002,19(4):64-68
    [45]曹成有,朱丽辉,富瑶等.科尔沁沙质草地沙漠化过程中土壤生物活性变化[J].生态学杂志,2007,26(5):622-627
    [46]李玉强,赵哈林,赵学勇等.不同强度放牧后自然恢复的沙质草地土壤呼吸、碳平衡和碳储量[J].草业学报,2006,15(5):25-31
    [47]苏永中,赵哈林,张铜会等.不同退化沙地土壤碳的矿化潜力[J].生态学报,2004,24(2):372-378
    [48]刘钟龄,王炜,郝敦元等.内蒙古草原退化与恢复演替机理的探讨[J].干旱区资源与环境,2002,16(1):84-91
    [49]左小安,赵学勇,赵哈林等.科尔沁沙地草地退化过程中的物种组成及功能多样性变化特征[J].水土保持学报,2006,20(1):181-185
    [50]徐海源.内蒙古达茂旗天然草地退化原因及防治模式研究[D].北京:中国农业科学院,2006
    [51]Wedin D.A., Tilman D.. Influence of nitrogen loading and species composition on the carbon balance of glasslands[J]. Science,1996,274:1720-1723
    [52]Schlesinger W.H., Raikes J.A., Hartley A.E.. On the spatial pattern of soil nutrients in desert ecosystems[J]. Ecology,1996,77:364-374
    [53]肖洪浪,李新荣,段争虎等.流沙固定过程中土壤——植被系统演变对水环境的影响[J].中国沙漠,2003,40(6):809-814
    [54]Burkel I.C., Lauenroth W.K., Vinton M.A., et al. Plant-soil interaction in temperate grasslands[J]. Biogeochemistry,1998,42:121-143.
    [55]陈有君,红梅,李绍良等.浑善达克沙地不同植被下的土壤水分状况[J].干旱区资源与环境,2004,18(1):68-73
    [56]张华,伏乾科,李锋瑞.退化沙质草地自然恢复过程中土壤—植物系统的变化特征[J].水土保持通报,2003,23(6):1-6
    [57]李玉强,赵哈林,移小勇等.沙漠化过程中科尔沁沙地植物——土壤系统碳氮储量动态[J].环境科学,2006,27(4):635-640
    [58]侯扶江,南志标,肖金玉等.重牧退化草地的植被、土壤及其耦合特征[J].应用生态学报,2002,13(8):915-922
    [59]Zhu Zhi mei, Yang Chi, Cao Ming Ming, et al. Analysis on the soil factor and physiological responce of the plants in the process of sandy desertification on grassland[J]. Acta Ecologica Sinica,2007,27(1):48-57
    [60]赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004
    [61]Bajguz A., Hayat S.. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiology and Biochemistry,2009,47(1):1-8
    [62]Nanjo T., Kobayashi M., Yoshiba Y, et al. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana[J]. Plant Journal,2002,18(2):185-193
    [63]Nativ R., Ephrath J. E., Saranga Y. Drought resistance and water use efficiency in Acacia soligna[J]. Australian Journal Botany,1999,47:577-586
    [64]Marron N., Delay D., Petit J.M., et al. Physiological traits of two populus X euramericana clones, Luisa avanzo and dorskamp, during water stress and re-watering cycle[J]. Tree Physiology,2002,22:849-858
    [65]Nautiyal P.C., Ravindra V., Joshi Y.C.. Dry matter partitioning and water use efficiency under water deficit during various growth stages in groundnut[J]. Indian Journal of Plant Physiology,2002,7(2):135-139
    [66]唐晓敏,王文全,马春英.长期水分胁迫下甘草叶片的抗旱生理相应[J].河北农业大学学报,2008,31(2):16-20
    [67]Manivannan P., Jaleel C.A., Sankar B., et al. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress[J]. Colloids and Surfaces B:Biointerfaces,2007,59(2):141-149
    [68]Zhang Xiao Lu, Zang Run Guo, Li Chun yang. Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress[J]. Plant Science,2004,166(3):791-797
    [69]Jaleel C.A., Gopi R., Sankar B., et al. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress[J]. Comptes Rendus Biologies,2008, 331(1):42-47
    [70]Martinez J.P., Silva H., Ledent J.F., et al. Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.) [J]. European Journal of Agronomy,2007,26(1):30-38
    [71]Kusaka M., Lalusin A.G., Fujimura T.. The maintenance of growth and turgor in pearl millet (Pennisetum glaucum [L.] Leeke) cultivars with different root structures and osmo-regulation under drought stress[J]. Plant Science,2005,168(1):1-14
    [72]Delatorre J., Pinto M., Cardemil L.. Effects of water stress and high temperature on photosynthetic rates of two species of Prosopis[J]. Journal of Photochemistry and Photobiology B:Biology,2008,92(2):67-76
    [73]丁钰,李得禄,尉秋实等.不同土壤水分胁迫下沙漠威的水分生理生态特[J].西北林学院学报,2008,23(3):5-11
    [74]孙存华,李扬,贺鸿雁等.藜对干旱胁迫的生理生化反应[J].生态学报,2005,25(10):2556-2561
    [75]徐莲珍,蔡靖,姜在民等.水分胁迫对3种苗木叶片渗透调节物质和保护酶活性的影响[J].西北林学院学报,2008,23(2):12-16
    [76]韩瑞宏,卢欣石,高桂娟等.紫花苜蓿对干旱胁迫的光合生理响应[J].生态学报,2007,27(12):5229-5237
    [77]Smirnoff N.. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New Phytol,1993,125:27-58
    [78]Manivannan P., Jaleel C.A., Kishorekumar A., et al. Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress[J]. Colloids and Surfaces B:Biointerfaces,2007,57(1):69-74
    [79]Nayyar H., Gupta D.. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants[J]. Environmental and Experimental Botany,2006,58(1-3):106-113
    [80]Seki M., Umezawa T., Urano K., et al. Regulatory metabolic networks in drought stress responses[J]. Current Opinion in Plant Biology,2007,10(3):296-302
    [81]Egert M., Tevini M.. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schbenoprasum)[J]. Environmental and Experimental Botany,2002,48(1):43-49
    [82]龚吉蕊,赵爱芬,张立新等.干旱胁迫下几种沙漠植物抗氧化能力的比较研究[J].西北植物学报,2004,24(9):1570-1577
    [83]袁颖,周晓雷.水分胁迫下四翅滨藜和绵毛优若藜保护酶活性变化[J].草业科学,2008,25(6):39-44
    [84]朱志梅,杨持.沙漠化过程中四个共有种的生长和抗氧化系统酶类变化[J].应用生态学报,2004,15(12):2261-2266
    [85]Zhang Jian Hua, Jia Wen Suo, Yang Jian Chang, et al. Role of ABA in integrating plant responses to drought and salt stresses[J]. Field Crops Research,2006,97(1):111-119
    [86]Yin Chun Ying, Duan Bao Li, Wang Xiang, et al. Morphological and physiological responses of two contrasting Poplar species to drought stress and exogenous abscisic acid application[J]. Plant Science,2004,167(5):1091-1097
    [87]Echevaria-Zomeno S., Ariza D., Jorge I., et al. Changes in the protein profile of Quercus ilex leaves in response to drought stress and recovery[J]. Journal of Plant Physiology,2009,166(3):233-245
    [88]郭晓瑞,唐中华,孙艳斐等.自然干旱胁迫下长春花叶片和根部的激素和可溶性糖代谢变化[J].植物研究,2008,28(4):422-425
    [89]Smith T.M., Shugart H.H., Woodward F.I.. Plant Functional Types:Their Relevance to Ecosystem Properties and Global Change[M]. London:Cambridge University Press,1997
    [90]唐海萍,蒋高明.植物功能型及其生态学意义[J].应用生态学报,2000,11(3):461-464
    [91]李荣平,刘志民,蒋德明等.植物功能型及其研究方法[J].生态学杂志,2004,23(1):102-106
    [92]翁恩生,周广胜.用于全球变化研究的中国植物功能型划分[J].植物生态学报,2005,29(1):81-97
    [93]冯秋红,史作民,董莉莉等.植物功能性状对环境的响应及其应用[J].林业科学,2008,44(4):125-131
    [94]Box E.O.. Plant functional types and climate at the global scale[J]. Journal of Vegetation Science,1996,7(3):309-320
    [95]Prentice I.C., Cramer W., Harrison S.P., et al. A global biome model based on plant (?)physiology and dominance, soil properties and climate[J]. Journal of Biogeography,1992, 19(2):117-137
    [96]Bonan G.B., Levis S., Kergoat L., et al. Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models[J]. Global Biogeochemical Cycles,2002,16(2):5.1-5.25
    [97]倪健.区域尺度的中国植物功能型与生物群区[J].植物学报,2001,43(4):419-425
    [98]Pan Y.D., McGuire A.D., Melillo J.M., et al. Biogeochemistry-based dynamic vegetation model and its application along a moisture gradient in the continental United States[J]. Journal of Vegetation Science,2002,13(2):369-382
    [99]Navarro T., Alados C.L., Cabezudo B.. Changes in plant functional types in response to goat and sheep grazing in two semi-arid scrublands of SE Spain[J]. Journal of Arid Environments,2006,64(2):298-322
    [100]胡楠,范玉龙,丁圣彦等.伏牛山自然保护区森林生态系统乔木植物功能型分类[J].植物生态学报,2008,32(5):1104-1115
    [101]沈泽昊,张新时.基于植物分布地形格局的植物功能型划分研究[J].植物学报,2000,42(11):1190-1196
    [102]Han Mei, Yang Li Min, Zhang Yong Gang, et al. The biomass of C3 and C4 plant function groups in Leymus chinensis communities and theirs response to environmental change along northeast China transect[J]. Acta Ecologica Sinica,2006,26(6):1825-1832
    [103]朱玉洁,高琼,刘峻杉等.基于气孔导度和光合模型的植物功能类群合并问题[J].植物生态学报,2007,31(5):873-882
    [104]刘晓强,王仁忠.北京北部农牧交错区C4植物及其形态功能型和生境分析[J].生态学报,2006,26(5):1509-1515
    [105]左小安,赵学勇,张铜会等.退化沙质草场群落特征及功能群生物量的空间变异性[J].水土保持通报,2006,26(1):20-25
    [106]杨永梅.毛乌素沙地沙漠化驱动因素的研究[D].杨凌:西北农林科技大学,2007
    [107]何彤慧.毛乌素沙地历史时期环境变化研究[D].兰州:兰州大学,2008
    [108]董光荣,高尚玉,金炯等.毛乌素沙漠的形成、演变和成因问题[J].中国科学,1988,(6):633-642
    [109]唐克丽,贺秀斌.黄土高原全新世黄土——古土壤演替及气候演变的再研讨[J].第四 纪研究,2004,24(2):129-139
    [110]史培军.地理环境演变研究的理论与实践——鄂尔多斯地区晚第四纪以来地理环境演变研究[M].北京:科学出版社,1991
    [111]李容全.中国北方农牧交错带全新世环境演变[M].青岛:青岛海洋出版社,1992
    [112]杨志荣.中国北方农牧交错带全新世环境演变综合研究[D].北京:北京师范大学,1996
    [113]曹红霞.毛乌素沙地全新世地层及沉积环境演变记录[D].西安:西北大学,2003
    [114]曹永年.明万历间延绥中路边墙的沙雍问题——兼谈生态环境研究中的史料运用[J].内蒙古师范大学学报(哲学社会科学版),2004,33(1):5-9
    [115]王乃昂,黄银洲,何彤慧等.鄂尔多斯高原古城夯层沙的环境解释[J].地理学报,2006,61(9):937-945
    [116]韩昭庆.明代毛乌素沙地变迁及其与周边地区垦殖的关系[J].中国社会科学,2003,(5):191-205
    [117]赵永复.历史上毛乌素沙地的变迁问题[J].历史地理,1981,(创刊号):44
    [118]严尚钦.陕北榆林定边流动沙丘及其改造[J].科学通报,1954,(11):28-34
    [119]罗兴来.陕北榆林靖边间的风沙问题[J].科学通报,1954,(3):40-46
    [120]侯仁之.从红柳河上的古城废墟看毛乌素沙漠的变迁[J].文物,1973(1):35-41
    [121]朱震达,刘恕,侯仁之.历史时期的沙漠变迁-中国自然地理(历史地理)[M].北京:科学出版社,1982
    [122]慈龙骏,杨晓晖,张时新.防治荒漠化的“三圈”生态——生产范式机理及其功能[J].生态学报,2007,27(4):1450-1460
    [123]张时新.毛乌素沙地的生态背景及其草地建设的原则与优化模式[J].植物生态学报,1994,18(1):1-16
    [124]吴正主编.中国沙漠及其治理[M].北京:科学出版社,2009
    [125]吴薇.近50年来毛乌素沙地的沙漠化过程研究[J].中国沙漠,2001,21(2):164-169
    [126]王涛,吴薇,薛娴等.近50年来中国北方沙漠化土地的时空变化[J].地理学报.2004,59(2):203-212
    [127]郭坚,王涛,韩邦帅等.近30a来毛乌素沙地及其周边地区沙漠化动态变化过程研究[J].中国沙漠,2008,28(6):1017-1021
    [128]吴薇,王熙章,姚发芬.毛乌素沙地沙漠化的遥感监测[J].中国沙漠,1997,17(4): 415-420
    [129]王玉华,杨景荣,丁勇等.近年来毛乌素沙地土地覆被变化特征[J].水土保持通报,2008,28(6):53-57
    [130]刘静,银山,张国盛等.毛乌素沙地17年间植被覆盖度变化的遥感监测[J].干旱区资源与环境,2009,23(7):162-167
    [131]吴波,慈龙骏.五十年代以来毛乌素沙地荒漠化扩展及其原因[J].第四纪研究,1998,2:165-172
    [132]郝成元,吴绍洪,杨勤业.毛乌素地区沙漠化与土地利用研究[J].中国沙漠,2005,25(1):33-39
    [133]贾科利,常庆瑞,张俊华.陕北农牧交错带沙漠化土地时空变化特征分析[J].中国沙漠,2009,29(2):223-228
    [134]高小红,王一谋,王建华等.陕北长城沿线地区1986—2000年沙漠化动态变化分析[J].中国沙漠,2005,25(1):63-67
    [135]杨述河,刘彦随.土地资源开发与区域协调发展[M].北京:中国科学技术出版社,2005
    [136]杨述河.榆林土地资源利用与评价[M].北京:中国大地出版社,2002
    [137]惠振江:陕北毛乌素沙地与黄土区过渡地带荒漠化研究[D].杨凌:西北农林科技大学,2001
    [138]齐雁冰.陕北农牧交错带荒漠化土壤发生特性与演变机制研究[D].杨凌:西北农林科技大学,2006
    [139]高亚军.陕北农牧交错带土地荒漠化演化机制及土壤质量评价研究[D].杨凌:西北农林科技大学,2003
    [140]雷明德等.陕西植被[M].北京:科学出版社,1999
    [141]榆林统计局.榆林统计年鉴[M].2008
    [142]南京农业大学.土壤农化分析[M].北京:农业出版社,1980:27-28
    [146]关松萌等编著.土壤酶及其研究法[M].北京:农业出版社,1986:294-329
    [144]高俊凤主编.植物生理学实验指导[M].北京:高等教育出版社,2006
    [145]王学奎主编.植物生理生化原理与技术[M].北京:高等教育出版社,2006
    [146]李合生主编.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000
    [147]赵哈林,赵学勇,张铜会等主编.沙漠化的生物学过程及退化植被的恢复机理[M].北 京:科学出版社,2007
    [148]岳庆玲.黄土丘陵沟壑区植被恢复重建过程土壤效应研究[D].杨凌:西北农林科技大学,2007
    [149]邱莉萍.黄土高原植被恢复生态系统土壤质量变化及其调控措施[D].杨凌:西北农林科技大学,2007
    [150]Six J., Conant R.T., Paul E.A., et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil,2002,241(2):155-176
    [151]张勇,庞学勇,包维楷等.土壤有机质及其研究方法综述[J].世界科技研究与发展,2005,27(5):72-78
    [152]Feller I.C., McKee K.L., Whigham D.F., et al. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest[J]. Biogeochemistry,2004,62(2):145-175
    [153]程先富,史学正.亚热带典型地区土壤全氮和地形、母岩的关系研究——以江西省兴国县为例2004[J].水土保持学报,2004,18(2):137-139
    [154]Shahandeh H., Wright A.L., Hons F.M., et al. Spatial and temporal variation of soil nitrogen parameters related to soil texture and corn yield[J]. Agronomy Journal,2005, 97(3):772-782
    [155]许冬梅,张世熔,李婷等.金堂环溪河流域土壤氮素含量及其影响因素分析[J].土壤通报,2007,38(6):1092-1095
    [156]李菊梅,王朝辉,许明祥.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J].土壤通报,2003,40(2):233-257
    [157]Burns R.G.. Soil enzymes[M]. New York:Academic Press,1978
    [158]张焱华,吴敏,何鹏等.土壤酶活性与土壤肥力关系的研究进展[J].安徽农业学报,2007,35(34):11139-11142
    [159]邱莉萍,刘军,王益权等.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,10(3):277-280
    [160]董莉丽,郑粉莉.黄土丘陵区不同土地利用类型下土壤酶活性和养分特征[J].生态环境,2008,17(5):2050-2058
    [161]黄懿梅,安韶山,曲东等.黄土丘陵区植被恢复过程中土壤酶活性的响应与演变[J].水土保持学报,2007,21(1):152-155
    [162]杨瑞吉,杨祁峰,牛俊义.表征土壤肥力主要指标的研究进展[J].甘肃农业大学学报, 2004,39(2):86-91
    [163]赵林森,王九龄.杨槐混交林生长及土壤酶与肥力的相互关系[J].北京林业大学学报,1995,17(4):1-7
    [164]许景伟,王卫东.不同类型黑松混交林土壤微生物酶及其与土壤养分关系的研究[J].北京林业大学学报,2000,22(1):51-55
    [165]宋丽娟,吴发启,姚军等.弃耕地植被恢复过程中土壤酶活性与理化特性演变趋势研究[J].西北农林科技大学学报(自然科学版),2009,37(4):103-107
    [166]戴伟,陈晓东.北京低山地区土壤酶活性与土壤理化性质的关系[J].河北林学院学报,1995,10(1):13-18
    [167]王娟,谷雪景,赵吉.羊草草原土壤酶活性对土壤肥力的指示作用[J].农业环境科学学报,2006,25(4):934-938
    [168]岳中辉,王博文,王洪峰等.松嫩平原西部盐碱草地土壤多酚氧化酶活性及其与主要肥力因子的关系[J].草业学报,2009,18(4):251-255
    [169]郝建朝,吴沿友,连宾等.土壤多酚氧化酶性质研究及意义[J].土壤通报,2006,37(3):470-474
    [170]Martens D.A., Jonanson J.B., Frankenberger W.T.JR.. Production and persistence of soil enzymes with repeated additions of organic residues[J]. Soil Science,1992,153(1): 53-61
    [171]邵立业,董光荣.共和盆地草原沙漠化的正逆过程与植被演替规律[J].中国沙漠,1988,8(1):30-40
    [172]张继义,赵哈林.植被(植物群落)稳定性研究评述[J].生态学杂志,2003,22(4):42-48
    [173]Sennhauser E.B.. The concept of stability in connection with the gallery forests of the Chaco[J. Plant Ecology,1991,94(1):1-13
    [174]罗格平,周成虎,陈曦等.区域尺度绿洲稳定性评价[J].自然资源学报,2004,19(4):519-524
    [175]吕光辉,杜昕,杨建军等.阜康绿洲——荒漠交错带荒漠植被群落稳定性[J].干旱区地理,2007,30(5):660-665
    [176]史惠兰,王启基,景增春等.江河源区人工草地群落特征、多样性及其稳定性分析[J].草业学报,2005,14(3):23-30
    [177]张继义.沙漠化过程沙地植被稳定性变化研究[D].兰州:中国科学院寒区旱区环境 与工程研究所,2004
    [178]戈峰主编.现代生态学[M].北京:科学出版社,2008:103-108.
    [179]李合生主编.现代植物生理学[M].北京:高等教育出版社,2002:415-535
    [180]武维华.植物生理学[M].北京:科学出版社,2008:444-457
    [181]Hans S.. The evolution of the stress concept[J]. American Scientist,1973,61(6): 692-699
    [182]Larcher W..植物生态生理学[M].翟志席,郭玉海,马永泽等译.北京:中国农业大学出版社,1997:245-254
    [183]张成军.辽东栎林中四种木本植物幼苗对土壤干旱的生理生态响应[D].哈尔滨:东北林业大学,2003
    [184]Tanaka A., Ito H., Tanaka R., et al. Chlorophyll a oxygenase(CAO) is involved in chlorophyll b formation from chlorophyll[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(21):12719-12723
    [185]Mathews-Roth M.M.. Carotenoids and photoprotection[J]. Photochemistry Photobiology, 1997,65(s1):148s-151s
    [186]Ormrod D.P., Lesser V.M., Olszyk D.M., et al. Elevated temperature and carbon dioxide affect chloroPhylls and carotenoids in douglas-fir seedlings. International Journal of Plant Sciences,1999,160(3):529-534
    [187]Kyparissis A., Manetas Y. Seasonal leaf dimorphism in a semi-deciduous Mediterranean shrub:ecopysiological comparisons beween winter and summer leaves[J]. Acta Oecologica,1993,14(11):23-32
    [188]Bates L.S., Waldren R.P., Teare I.D.. Rapid determination of free proline for water-stress studies[J]. Plant and Soil,1973,39 (1):205-207
    [189]孔兰静.三种观赏草对土壤干旱胁迫的生理响应[D].山东:山东农业大学,2009:9-17
    [190]师晨娟.植物生长调节剂对苗木生长及其抗性生理的影响[D].北京:北京林业大学,2006
    [191]Delauney A.J., Verma D.P.S.. Proline biosynthesis and osmoregulation in plants[J]. Plant Journal,1993,4 (2):215-223
    [192]Sarker B.C., Hara M., Uemura M.. Proline synthesis, physiological responses and biomass yield of eggplants during and after repetitive soil moisture stress[J]. Scientia Horticulturae, 2005,' 103(4):387-402
    [193]Maggio A., Miyazaki S., Veronese P., et al. Does proline accumulation play an active role in stress-induced growth reduction? [J].2002,31(6):699-712
    [194]朱虹,祖元刚,王文杰等.逆境胁迫条件下脯氨酸对植物生长的影响[J].东北林业大学学报,2009,37(4):86-89
    [195]许祥明,叶和春,李国凤.脯氨酸代谢与植物抗渗透胁迫的研究进展[J].植物学通报,2000,17(6):536-542
    [196]Claussen W. Proline as a measure of stress in tomato plants[J]. Plant Science,2005, 168(1):241-248
    [197]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984,(1):15-21
    [198]Hong Z., Lakkineni K., Zhang Z., et al. Removal of feedback inhibition of △1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology,2000,122(4):1129-1136
    [199]Hare P.D., Cress W.A., Staden J.V.. Dissecting the roles of osmolyte accumulation during stress[J]. Plant, Cell & Environment,2002,21(6):535-553
    [200]Moftah A.E., Michel B.E.. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves[J]. Plant Physiology,1987,83:238-240
    [201]Lutts S., Majerus V., Kinet J.M.. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings[J]. Physiologia Plantarum,2002,105(3):450-458
    [202]Apel K., Hirt H.. Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology,2004,55:373-399
    [203]Elstner E.F.. Oxygen activation and oxygen toxicity[J]. Annual Review of Plant Physiology,1982,33:73-96
    [204]Mittler R.. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002,7(9):405-410
    [205]杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报,2001,21(2):215-220
    [206]Alscher R.G., Erturk N., Heath L.S.. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of Experimental Botany,2002,53(372): 1331-1341
    [207]Willekens H., Chamnongpol S., Davey M., et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants[J]. The EMBO Journal,1997,16: 4806-4816
    [208]Levin S.A.. The problem of pattern and scale in ecology[J]. Ecology,1992,73(6): 1943-1967
    [209]李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-18
    [210]郗静.退耕还林政策影响下区域土地利用/覆被变化微观行为机制研究[D].西安:西北大学,2009:23-29
    [211]汤国安,张友顺,刘咏梅等.遥感数字图像处理[M].北京:科学出版社,2004:170-217
    [212]Verburg P.H., Veldkamp A., Fresco L.O.. Simulation of change in the spatial pattern of land use in China[J]. Applied Geography,1999,19(3):211-233
    [213]王霞.基于RS和GIS的土地利用变化时空格局研究——以内蒙古乌海市为例[D].北京:北京林业大学,2007
    [214]龚道溢,史培军,陈浮等.城市边缘区土地利用变化及人文驱动力机制研究[J].自然资源学报,2001,16(3):204-209
    [215]张云霞,李晓兵,陈云浩.草地植被盖度的多尺度遥感与实地测量方法综述[J].地球科学进展,2003,18(1):85-93
    [216]顾祝军,曾志远.遥感植被盖度研究[J].水土保持研究,2005,12(2):18-21
    [217]Purevdor J., Tateishi R., Ishiyama T., et al. Relationships between percent vegetationcover and vegetation indices[J]. International Journal of Remote Sensing,1998, 19 (18):3519-3535
    [218]Eastwood J.A., Yates M.G., Thomson A.G., et al. The reliability of vegetation indices for monitoring saltmarsh vegetation cover[J]. International Journal of Remote Sensing,1997, 18 (18):3901-3907
    [219]Gutman G., Ignatov A.. The derivation of the green vegetation fraction f rom NOAA/AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote Sensing,1998,19 (8):1533-1543
    [220]Jasinski M.F.. Estimation of subpixel vegetation density of natural regions using satellite multispectral imagery[J]. Remote Sensing,1996,34 (3):804-813
    [221]谭倩,赵永超,童庆禧等.植被光谱维特征提取模型[J].遥感信息,2001,(1):14-18
    [222]张仁华.试验遥感模型及地面基础[M].北京:科学出版社,1996
    [223]姚国征.基于TM影像的镶黄旗草原沙化治理工程生态效益评价指标体系评价方法研究[D].呼和浩特:内蒙古大学,2008
    [224]郭述茂.基于3S技术的高寒草地植被覆盖度分布特征及动态变化研究[D].兰州:兰州大学,2009
    [225]李苗苗,吴炳方,颜长珍等.密云水库上游植被覆盖度的遥感估算[J].资源科学,2004,26(4):153-159
    [226]陈云浩,李晓兵,史培军等.北京海淀区植被盖度的遥感动态研究[J].植物生态学报,2001,25(5):588-592
    [227]魏江春.沙漠生物地毯工程——干旱沙漠治理的新途径[J].干旱区研究,2005,22(3):287-288
    [228]Lavauden L.. The Equatorial Forest of Africa:Its Past, Present and Future[M]. Journal of the Royal African Society.1937
    [229]Le Houerou, H.N. Recherches ecologiques et floristiques sur la vegetation de la Tunisic Meridionale[M]. Algiers:University d'Alger, Institute de Recherches Shariennes.1959: 510