粉纹夜蛾离体细胞对Bt Cry1Ac毒素抗性分子机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以对Bt Cry1Ac毒素十分敏感的BT1-TN-581细胞和经过Cry1Ac筛选了83代的同源抗性细胞为实验材料,采用双向电泳和mRNA差异显示技术分别从蛋白质水平和转录水平较系统的揭示了两者之间的差异,另外还通过设计简并引物,对作为Cry1Ac的重要受体之一的氨肽酶N家族成员进行了cDNA片段克隆。实验结果如下:
     (1) 得到了抗性细胞和敏感细胞总蛋白的2-DE图谱,通过Melanie Viewer Ⅱ软件分析,在抗性细胞的总蛋白2-DE图谱上检测到的平均蛋白质点数为707±25(n=3)个,在敏感细胞的总蛋白2-DE图谱上检测到的平均蛋白质点数为637±19(n=3)个。
     (2) 两者总蛋白的2-DE图谱存在显著差异,初步确定了在两者总蛋白2-DE图谱上存在显著差异的11个蛋白质点的MW/pI,分别为:98.5/4.5、88.7/6.5、65.5/4.8、39.2/4.7、38.8/5.4、35.5/6.7、28.5/8.2、22.5/8.7、21.8/8.3、21.1/7.0、21.1/6.4。
     (3) 对一种敏感细胞特有的蛋白质点进行了肽质指纹图谱分析,同源性收索结果表明它与胞质外周蛋白有较高相似性,推测它为一种膜蛋白。
     (4) 得到了抗性细胞和敏感细胞的膜蛋白2-DE图谱,通过Melanie Viewer Ⅱ软件分析,在抗性细胞的膜蛋白2-DE图谱上检测到的平均蛋白质点数为290±10(n=3)个,在敏感细胞的膜蛋白2-DE图谱上检测到的平均蛋白质点数为295±10(n=3)个。
     (5) 抗性细胞和敏感细胞的膜蛋白2-DE图谱存在显著差异,初步确定了膜蛋白2-DE图谱上存在差异的10蛋白质点的MW/pI,分别为:66.0/6.8、34.6/5.8、31.5/6.8、31.0/7.1、31.4/7.3、28.5/7.1、27.0/6.5、20.7/5.9、20.0/5.8、14.4/6.5。
     (6) mRNA差异显示结果表明抗性细胞品系和敏感细胞品系在转录水平上存在差异。
     (7) 初步鉴定了5个在两种细胞之间存在差异的ESTs序列,三种为敏感细胞特有分别命名为:S1(CF322415)、S2(CF322416)、S3(CF322417),
    
    圆
    硕士学位论文
    、!入S下狂R’5丁}l[引叹
    两种为抗性细胞特有,分别命名为:RI(CF322413)、R2(CF322414)。
     (8)根据Rl序列推导的氨基酸序列与磷酸烯醇式丙酮酸梭激酶与较高
    同源性,推测它所对应的基因可能编码磷酸烯醇式丙酮酸梭激酶。
     〔9)根据R2序列推导的氨基酸序列与糖蛋白和粘蛋白类有一定的同源
    性,推测它所对应的基因可能编码一种糖蛋白或粘蛋白。
     (10)获得了3条分别代表3种氨肤酶N基因的ESTs片断,分别命名
    为:APNSI(CD809324)、APNSZ(CD809325)、APNS3(CD809326)。
     (川初步确定本实验所鉴定的三种氨肤酶基因在两种细胞群体中都有
    表达。
     现阶段的诸多研究都表明昆虫对Bt产生抗性的机制十分复杂,鉴于
    本实验所获得的结果,我们推测BTI~TN一5BI对Cry1A。抗性产生的分子
    基础和可能的机制如下:
     (l)本实验结果表明多种蛋白质在抗性细胞和敏感细胞中存在差异,
    多种基因在两种细胞中存在差异表达,这些结果表明BTI~TN一5BI对
    cry1Ac抗性是多因素控制的。
     (2)多方面的信息都表明抗性细胞和敏感细胞的膜蛋白组分存在差
    异,而膜蛋白是Bt Cry1Ac作用于细胞的直接靶标,因此我们推测膜蛋白
    的改变可能是BTI~TN一5BI对Cry1A。产生抗性的重要分子基础。
     (3)我们在实验中证实磷酸烯醇式丙酮酸梭激酶在抗性细胞和敏感
    细胞中差异表达,而磷酸烯醇式丙酮酸梭激酶是三梭酸循环回补反应的
    重要酶类,因此推测BTI一TN一SBI对Cry1Ac抗性的产生可能还涉及细胞
    能量代谢。
     本实验为进一步研究BTI一T’N一5BI对Cry1Ac抗性的分子机理奠定了
    基础,也为Bt抗性机理的研究工作提供了一定的依据。
In this study, we utilized two-dimensional electrophoresis to examine changes in the total proteins and membrane proteins from the Trichoplusia ni cell line BT1-TN-5B1 exhibiting resistance to Bt Cry 1 Ac endotoxin, and the mRNA changes was examined by mRNA differential display. In addition, we have cloned and sequenced three cDNA fragments of aminopeptidase N family which served as important receptors of Bt Cry 1 Ac. Our results are as following:
    (1) 707+25 protein dots (n=3) were detected on the resistance cell's proteomic2-DE map, and 637+19 (n=3) on the susceptible cell's proteomic 2-DE map with Melanie Viewer II software.
    (2) The 2-DE maps between the resistant and susceptible BTl-TN-5Bl's proteomic have remarkable difference. Eleven different dots have been shown. The MW/pI of them are 98.5/4.5, 88.7/6.5, 65.5/4.8, 39.2/4.7, 38.8/5.4, 35.5/6.7,28.5/8.2, 22.5/8.7,21.8/8.3,21.1/7.0 and 21.1/6.4.
    (3) One differential dot on susceptible cell's 2-DE map was analysed using the peptide mass fingerprint technology, the result showed that the protein was similar to a periplasmic protein, so it appeared that it may be one kind of membrane protein.
    (4) 290+10 protein dots (n=3) were detected on the resistance cell's membrane proteins 2-DE map, and 295+10 (n=3) on the susceptible cell's membrane proteins 2-DE map with Melanie Viewer II software.
    (5) The 2-DE maps between the resistant and susceptible BTl-TN-5Bl's membrane proteins have remarkable difference. Ten different dots have been shown. The MW/pI of them are 66.0/6.8, 34.6/5.8, 31.5/6.8, 31.0/7.1, 31.4/7.3, 28.5/7.1, 27.0/6.5, 20.7/5.9, 20.0/5.8, 14.4/6.5.
    (6) The results of DDRT-PCR shown that there are transcriptional difference between resistant cell and the susceptible cell.
    
    
    
    (7) Five differential ESTs have been identified between resistant cell and the susceptible cell, three of them from the susceptible cell, named them S1(CF322415) S2(CF322416) and S3(CF322417), and the other two from the resistant cell named them R1(CF322413), R2(CF322414).
    (8) The deduced amino sequence from Rl was similar to phosphoenolpyruvate carboxykinase, so we suppose that the gene corresponding to it encode one kind of phosphoenolpyruvate carboxykinase.
    (9) The deduced amino sequence from R2 was similar to mucin, they are the important communent of cell membrane, so we suppose that the gene corresponding to it encode one kind of mucin.
    (10) We have cloned three aminopeptidase N cDNA fragment, named them APNS1(CD8O9324) , APNS2(CD809325) and APNS3(CD809326) respectively, and they represent three kind of aminopeptidase N respectively.
    (11) We have identified that all of the three aminopeptidase genes expressed both the susceptible cell and resistant cell.
    Some previous reports have shown that the mechanism of resistance in insects to Bt is multifaceted (complex). Basing on the results of our studies, we suppose that some possible resistance mechanisms to Cry 1 Ac in BT1-TN-5B1 are as following:
    (1) Our studies has identified some different proteins and some differential expressing genes between the resistant cell and susceptible cell, So, the results of our studies support the hypothesis that the resistance to Cry 1 Ac in BTl-TN-5Blis multifaceted.
    (2) The membrane proteins changes between the resistant cell and susceptible cell have been identified. The membrane is the target of Bt toxin, so we suppose that the changes of many membrane proteins are the most important molecular basis of the resistance BT1-TN-5B1 to CrylAc.
    (3) The resistance cell contained phosphoenolpyruvate carboxykinase which can not been detected in the susceptible cell, so we suppose that the resistant
    
    
    
    to CrylAc toxin in BT1-TN-5B1 may has some relation to oxidative metabolism.
    Not only did this study provided a solid foundation for the further investigation on the resistant mechanism related to CrylAc toxin, but also it was beneficial to realize the mechanism of the resistance to Bt
引文
[1] 洪华珠,杨红.1997.杀虫微生物纲要.华中师范大学出版社.
    [2] McGaughey W H. 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science. 229:193-195.
    [3] McGaughey W H and Beeman R W. 1988. Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 81:28-33.
    [4] Whalon M E, Miller D L, Hollingworth R M, et al. 1993. Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant to Bacillus thuringiensis. J. Econ. Entomol. 86: 226-233.
    [5] Estada U, and Ferré J. 1994. Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), and selection for resistance to one of the crystal proteins. Appl. Environ. Microbiol. 60: 3840-3846.
    [6] Müller-Cohn J, Chaufaux J, Buisson C, et al. 1996. Spodoptera littoralis (Lepidoptera: Noctuidae) resistance to CryIC and cross-resistance to other Bacillus thuringiensis crystal toxins. J. Econ. Entomol. 89: 791-797.
    [7] Moar W J, Pusztai-Carey M, Faassen H, et al. 1995. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 61: 2086-2092.
    [8] Gould F, Martinez-Ramirez A, Anderson A, et al. 1992. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA 89: 7986-7990.
    [9] Lee M K, Rajamohan F, Gould F, et al. 1995. Resistance to Bacillus thuringiensis CryIA δ-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl. Environ. Microbiol. 61: 3836-3842.
    [10] Stone T B, Sims S R, and Marrone P G. 1989. Selection of tobacco budworm
    
    for resistance to a genetically engineered Pseudomonas fluorescens containing the δ-endotoxin of Bacillus thuringiensis subsp. kurstaki. J. Invertebr. Pathol. 53:228-234.
    [11] Bolin P C, Hutchison W D and Andow D A. 1995. Presented at the ⅩⅩⅧth Annual Meeting of the Society for Invertebrate Pathology Cornell University, Ithaca, N.Y.
    [12] Lee M K, Rajamohan F, Gould F, and Dean D H. 1995. Resistance to Bacillus thuringiensis CryIA δ-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl. Environ. Microbiol. 61:3836-3842.
    [13] Gould F, Anderson A, Reynolds A, et al. 1995. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88:1545-1559.
    [14] McGaughey W H. 1985. Evaluation of Bacillus thuringiensis for controlling Indianmeal moths (Lepidoptera: Pyralidae) in farm grain bins and elevator silos. J. Econ. Entomol. 78:1089-1094.
    [15] McGaughey W H and Beeman R W. 1988. Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 81:28-33.
    [16] Van Rie J, McGaughey W H, Johnson D E, et al. 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science. 247:72-74
    [17] Oppert B, Kramer K J, Beeman R W, et al. 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 272: 23473-23476.
    [18] Oppert B, Kramer K J, Johnson D E, et al. 1994. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem. Biophys. Res. Commun. 198: 940-947.
    [19] Tabashnik B E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39: 47-79.
    [20] Ferré J, Real M D, Van Rie J, et al. 1991. Resistance to the Bacillus
    
    thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88: 5119-5123.
    [21] Georghiou G P, and Wirth M C. 1997. Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp, israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl. Environ. Microbiol. 63: 1095-1101.
    [22] Ballester V, Escriche B, Mensua J L, et al. 1994. Lack of cross-resistance to other Bacillus thuringiensis crystal proteins in a population of Plutella xylostella highly resistant to CrylA(b). Biocontrol Technol. 4: 437-443.
    [23] Tabashnik B E, Liu Y B, Malvar T, et al. 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94: 12780-12785.
    [24] Tabashnik B E, Finson N, Groeters F R, et al. 1994. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc. Natl. Acad. Sci. USA 91: 4120-4124.
    [25] Tabashnik B E, Malvar T, Liu Y B. 1996. Cross-resistance of the diamondback moth indicates altered interactions with domain Ⅱ of Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 62: 2839-2844.
    [26] Liu Y B, Tabashnik B E, and Pusztai-Carey M. 1996. Field-evolved resistance to Bacillus thuringiensis toxin CryIC in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 89: 798-804.
    [27] Shelton A M, Robertson J L, Tang J D, et al. 1993. Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol. 86: 697-705.
    [28] Tang J D, Shelton A M, Van Rie J, et al. 1996. Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella). Appl. Environ. Microbiol. 62: 564-569.
    
    
    [29] MacIntosh S C, Stone T B, Jokerst R S, et al. 1991. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. Proc. Natl. Acad. Sci. USA 88: 8930-8933.
    [30] Forcada C, Alcacer E, Garcera M D, et al. 1996. Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Arch. Insect Biochem. Physiol. 31:257-272.
    [31] Heckel D G, Ganhan L J, Gauld F, et al. 1997.51: 251-258.
    [32] Ferre J, Escriche B, Bel Y, et al. 1995. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiol. Lett. 132: 1-7.
    [33] 李建洪,邓望喜,喻子牛.2000.小菜蛾对苏云金芽孢杆菌抗性研究进展.湖北植保.2:11-12.
    [34] Van Rie J, McGaughey W H, Johnson D E, et al.1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringensis. Science. 247: 72-74.
    [35] Luo K, Tabashnik B E, Adang M. 1997. J. Appl. Environ. Microbio. 63: 1024-1027.
    [36] Heckel G D. 1994. The complex genetic basis of resistance to Bacillus thuriengensis toxin in insect. Biocontrol Sci. Techn. 4: 405-417.
    [37] Aronson A I, Han E S, McGaughey W, et al. 1991. Appl. Environ. Microbiol., 57: 981-986.
    [38] Linda J G, Fred G, David G H. 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science. 293: 857-860.
    [39] Rajagopal R, Silvakumr S, Neema A, et al. 2002. Silencing of Midgut Aminopeptidase N of Spodoptera litura by Double-stranded RNA Establishes Its Role as Bacillus thuringiensis Toxin Receptor. J. Biol. Chem. 227(49):46849-46851.
    [40] Zhu Y, Kramer K J, Oppert B and Dowdy A K. 2000. cDNAs of
    
    aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxin. Insect Biochem. Mol. Biol. 30: 215-224.
    [41] Juan L J, Fred L G and Michael J A. 2002. Altered Glycosylation of 63- and 68-Kilodalton Microrillar Proteins in Heliothis virescens Correlates with Reduced Cryl Toxin Binding, Decreased Pore Formation, and Increased Resistance to Bacillus thuringiedsis Cryl Toxins. Appl Enviro Micro. 68 (11): 5711-5717.
    [42] Morin S, Biggs R W, Sisterson M S, et al. 2003. Three cadherin alleles associated with resistance to Bacillus thuringensis in pink bollworm. PNAS. 100 (9): 5004-5009.
    [43] Linda J G, Gould F, Heckel D G. 2002. Identification and mapping of a second major gene conferring resistance to Bacillus thuringiensis toxins in tobacco budworm Heliothis virescens, Journal of Insect Science (ISMIS Abstracts of the Fourth International Symposium on Molecular Insect Science). 2 (17): 18-19.
    [44] Yong-Biao Liu, Bruce E. T, Luke M, Baltasar E, and Juan F. 2000. Binding and toxicity of Bacillus thuringiensis protein CrylC to susceptible and resistant Diamondback Moth. Journal of Economic Entomology. 93 (1): 1-6.
    [45] Griffitts J S, Johanna L W, Daniel E S, and Raffi V A. 2001. Bt toxin resistance from loss of a putative carbohydrate- modifying enzyme. Science. 293: 860-863.
    [46] Marroquin L D, Elyassnia D, Griffitts J S, et at. 2000. Bacillus thuringensis (Bt) toxin susceptility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics. 155 (4): 1693-1699.
    [47] Mehmet C, Olga L, Brenda O, Pradeepa K, Lee A and Bulla J. 2003. Insect Resistance to Bacillus thuringiensis Alterations in the Indianmeal Moth Larval Gut Proteome, Molecular & Cellular Proteomics. 2: 19-28.
    [48] 洪华珠,肖明,魏林等.1990.苏云金芽孢杆菌晶体毒素感染敏感昆虫离体与活体细胞的病理学比较研究.生物防治通报(增刊).39-42.
    
    
    [49] Wit D P, Carlson H, Hodgdon J C. 1986. Cytotoxicity of Bacillus thuringiensis delta endotoxin to cultured CF-1 cells does not correlate with in vivo activity towards spruce budworm larvae. In "Fundamental and Applied Aspects of Invertevrate Patholoty" (Samson RA, Vlak JM and Peters P), pp, 3-6. Society for Invertebrate Pathology, San Diego, CA.
    [50] O'Farrell P H. 1975. Highresolution of two dimensional electrophoresis of proteins. J Biol Chem. 250: 4007-4011.
    [51] Klose J, Kolalz U. 1995.Two dimensional electrophoresis of proteins:an updated protocol and implications for a functional analysis of the genome. Electrophoresis. 16: 1034-1059.
    [52] Terence C W and Philip J J. 2001. Proteome analysis and its impact on the discovery of serological tumor makers, Clinica Chimica Acta. 313: 213.
    [53] 李永明,赵玉琪.1998.实用分子生物学方法手册.北京:科学出版社,351-352.
    [54] Cordwell S J, Larsen R T, Cole B J, et al. 2002. Microbiology. 148: 2765.
    [55] Liang P, Pardee A B. 1992.Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 257: 967-971.
    [56] Liang P, Averboukh L, Pardee A B, et al. 1993. Distribution and cloning of eukaryotic mRNAs by means of differential display: refine ments and optimization. Nucleic Acid Res. 22 (25): 5763-5764.
    [57] Liang P, Zhu W, Zhang X, et al. 1994. Differential display using one- base anchored oligo-dT primers. Nucleic Acid Res. 21 (14): 3269-3275.
    [58] Diachenko L B, Ledesma J, Chenchik A A, et al.1996. Combining the technique of RNA fingerpringting and differential display to abtain differentially extressed mRNA. Biochem biophys Res Comm. 219(3): 824-828.
    [59] Zegzouti H, Marty C, Jones B, et al. 1997. Improved screeming of cDNAs generated by mRNA differential display enable the selection of true positives and the isolation of weakly expressed messages. Plant Mol Bio Rep. 15(3): 236-245.
    
    
    [60] 赵大钟.1998.运用差异显示法分离冬小麦春化作用相关cDNA克隆.科学通报.43:965-968.
    [61] 苟德明,李文鑫,蒋大和等.2000.用改进的DDRT-PCR技术进行人胚差异基因筛选.生物化学与生物物理进展.27(2):205-209.
    [62] 印丽萍,刘维仲,刘祥林等.2001.铁胁迫小麦根DDRT-PCR分析及ABC基因的表达差异.34(3):301-303.
    [63] Zuo L I, Core K O, Josef E F, et al. 1997. mRNA differential display of colonic mucosa cells in ulcerative colitis. J Surg Res. 69: 119-127.
    [64] Livesey F J, O'Brien J A, Li B, et al. 1997. Aschwann cell mitogen accompanying regeneration of motor neurons. Nature, 390: 614-618.
    [65] Russell M, Utans U, Wallance A F, et al. 1994. Identification and upregulation of galactose/N2acetyl galactosamine macrophage lectin in rat cardiacallografts with arteriosclorosis. J Clin Invest. 94: 722-730.
    [66] Zimmermann J W, Schultz R. 1994. Analysis of gene expression in the preimplantation mouse embryo:use of mRNA differential display. Proc Natl Acid Sci USA. 91: 5456-5460.
    [67] Li Z, Steven E Z, Robert E C, et al. 1998. Differential display of gene in normal and hypoplastic fetal murine lungs. J Surg Res. 75: 66-73.
    [68] Johnson B J, Estrada I, Shen Z, et al. 1998. Differential gene expression in response to adjunctive RhIL22 immunotherapy in multidrug resistant tuberculosis patients. Infect Immun. 66: 2426-2433.
    [69] Pullman G S. Gene expression differences between zygotic and somatic embryos monitored by differential display and cDNA array: a potential tool to improve loblolly pine somatic embryo quality[A]. Plant biotechnology and in vitro biology in the 21 st century. Proceedings of the Ⅸth International Congress of the International Association of Plant Tissue Culture and Biotechnology[C]. Jerusalem, Israel 14-19 June 1998; 1999. 81-84.
    [70] 刘凯于,郑丙莲,蒋才富,洪华珠,彭建新.2003.粉纹夜蛾离体细胞对
    
    Bt Cry1Ac毒素的抗性发展及其交互抗性,植物保护学报.30(3):250-254.
    [71] 刘凯于,蒋才富,洪华珠等.2003.粉纹夜蛾细胞中Bt Cry1Ac选择抗性的研究及离体品系与毒素结合的比较,昆虫知识.40(3):247-250.
    [72] Marroquin L D, Elyassnia D, Griffitts J S, et al. 2000. Bacillus thuringensis (Bt) toxin susceptility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics. 155 (4): 1693-1699.
    [73] 李永明,赵玉琪.1998.实用分子生物学方法手册.北京:科学出版社,351-352.
    [74] Laemmli, U K. 1970. Cleavage of structure proteins during the assembly of the head of bactriophaseT4. Nature. 227: 680-685.
    [75] O'Farrell P H. 1975. Highresolution of two dimensionalelec trophoresis of protins.J Biol Chem. 250: 4007-4011,
    [76] 方卫国,韦宇拓,斐艳.2000.一种新的DNA银染方法.遗传,22(3):167-168.
    [77] 萨姆布鲁克 J,弗里奇 EF,曼尼阿蒂斯 T,2002.分子克隆实验指南.
    [78] 蒋才富,刘凯于,洪华珠等,2003.昆虫离体细胞总膜蛋白的提取及双向电泳分析.生物技术,14(1):37-38.
    [79] Liang P, Averboukh L, Pardee A B. 1993. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 21(4): 3269-3275.
    [80] 王宏,李春海,陈高明等.1999.mRNA差异显示技术中差异条带的回收与再扩增.中国肿瘤临床,26(5):350-351.
    [81] 蒋才富,刘凯于,洪华珠等.2003.对Cry1 Ac毒素敏感性不同的三种BT1-Tn-5B1细胞品系基因组DNA的RAPD及SSR分析,生物技术通迅.1:40-44.
    [82] Lee M K, Rajancis F, Gould F, et aI. 1995. Resistance to Bacillus thuringiensis Cry 1A endotoxin in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl and Environ Microbiol. 61(11): 3836-3842.
    
    
    [83] LIU Y B, Tabashnik B E, Masson L, et al. 2000. Binding and toxicity of Bacillus thuringiensis protein Cry1C to susceptible and resistant diamondback moth. (Lepidoptera: pluteIlidae). Journal of Economic Entomol. 93(1): 1-7.